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A new brittle-elastoviscoplastic (BEVP) fluid model is presented in this paper. This model is relatively simple to use, as it contains few material parameters and a simple fixed-point algorithm is effective for solving the coupled system of equations. The model combines some existing fundamental features such as elasticity, plasticity and brittle damage. The combination of them is based on thermodynamics that ensures the positivity of the dissipation and the Onsager symmetry. Moreover, thermodynamics allows to point out the link between thixotropy and damage in the context of elastoviscoplastic (EVP) fluids. Theoretical results on the Drucker-Prager plasticity criterion are completed in order to use it here. Preliminary results with the proposed BEVP model are very encouraging: it is able to represent the pre-failure, failure and post-failure behavior of quasi-brittle materials.

Introduction

Materials that present microstructure of particles with frictional contacts and a large scale rearrangements are very common in nature. Typical examples are dry or wet granular flows and concentrated suspensions. Also, rocks and cements undergoing large and unbounded deformations share this microstructural aspect. At a larger scale, the dynamic of earthquakes and the sea ice, for predicting the climate evolution, are potential applications of the present work. The development of efficient rheological models for the flow of dense granular maters and suspensions is also a challenge for continuous models, where discrete simulations are still more relevant for applications, but limited in terms of the particle number. The most popular continuous description of granular flows is certainly the viscoplastic µpIq rheology [START_REF] Jop | A constitutive law for dense granular flows[END_REF], despite its mathematical issues [START_REF] Barker | Well-posed and ill-posed behaviour of the µpIq-rheology for granular flows[END_REF][START_REF] Saramito | Progress in numerical simulation of yield stress fluid flows[END_REF]. The µpIq pressure-dependent yield stress feature was recently revisited by Daviet and Bertails [START_REF] Daviet | Nonsmooth simulation of dense granular flows with pressure-dependent yield stress[END_REF][START_REF] Daviet | Modèles et algorithmes pour la simulation du contact frottant dans les matériaux complexes. Application aux milieux fibreux et granulaires[END_REF], based on the elegant de Saxcé mathematical formalization [START_REF] Hjiaj | A complete stress update algorithm for the nonassociated Drucker-Prager model including treatment of the apex[END_REF] of the Drucker-Prager plasticity criterion [START_REF] Drucker | Soil mechanics and plastic analysis or limit design[END_REF]. The present paper is a contribution in this direction, in order to develop continuous models that take into account microstructural frictional contacts and large scale rearrangements. For that purpose, theoretical results on the Drucker-Prager plasticity criterion are completed in order to use it for general elastoviscoplastic (EVP) fluids.

During the flow, the properties of these materials are likely to develop. Indeed, large stresses tend to break grains. For instance, during the sea ice flow, the floes are broken, as shown on Fig. 1.left, but a healing process due to freezing tends to collapse neighbors floes with a time scale of few days [START_REF] Dansereau | Ice bridges and ridges in the Maxwell-EB sea ice rheology[END_REF]. A similar effect is observed with earthquakes, where faults could slowly heal. Developed in the context of elastoplastic solids, the damage theory [START_REF] Lemaitre | A continuous damage mechanics model for ductile fracture[END_REF][START_REF] Murakami | Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture[END_REF] is widely used from years, with ˚Corresponding author

Email address: Pierre.Saramito@imag.fr (Pierre Saramito) applications to rocks, concretes and steels. Damage mechanics for modeling strongly elastic, but not brittle, solid materials such as bread dough was also used by Phan-Thien et al. [START_REF] Phan-Thien | Non-linear oscillatory flow of a soft solid-like viscoelastic material[END_REF]. Conversely, thixotropy [START_REF] Barnes | Thixotropy -a review[END_REF]42,[START_REF] Larson | A review of thixotropy and its rheological modeling[END_REF] is a different kind of approach, used mostly in the context of viscoelastic fluids, such as suspensions of colloidal and non-colloidal particles that form flocculated systems, as well as gels that form cross-linked systems. Such materials are handled in the food, petroleum and cosmetic industries. One of the main characteristics of both damage and thixotropic effects is the time-dependent change in the material parameters associated to elasticity, viscosity and plasticity.

Thus, the proposed brittle-elastoviscoplastic (BEVP) model, represented on Fig. 1.right, shares some structural similarities with some existing thixo-elastoviscoplastic models (TEVP, see e.g. [START_REF] Larson | A review of thixotropy and its rheological modeling[END_REF][START_REF] Dimitriou | A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid[END_REF][START_REF] De Souza Mendes | Modeling the thixotropic behavior of structured fluids[END_REF]). By introducing an abstract mathematical model suitable for such soft-solids and complex fluids, the present paper points out these similarities. Using this abstract model, three main features, namely elasticity, plasticity and damage could be combined together, as a Lego game, with the fundamental viscous effects. This abstraction is first illustrated with the BMP [START_REF] Bautista | Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model[END_REF] thixotropic model before to develop the present BEVP model. Our abstract framework bases on the thermodynamics with internal variables and a potential of dissipation, known as the generalized standard materials (GSM). GSM was introduced by Halphen and Nguyen [START_REF] Halphen | Sur les matériaux standards généralisés[END_REF] in the context of elastoplasticity of solids and previously used by the present author for the development of elastoviscoplastic (EVP) fluids [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF][START_REF] Saramito | A new elastoviscoplastic model based on the Herschel-Bulkley viscoplasticity[END_REF]. While thermodynamics is popular in the elastoplastic solid's community, observe that its usage is much less advanced in the complex fluid's community.

Remarkable contributions are those of Leonov [START_REF] Leonov | Nonequilibrium thermodynamics and rheology of viscoelastic polymer media[END_REF], which was based on thermodynamics to propose a viscoelastic fluid and Beris and Edwards [START_REF] Beris | Thermodynamics of flowing systems with internal microstructure[END_REF], who proposed the Poisson bracket tool for the development of new fluid models. Thus, to the author's best knowledge, the present theoretical approach is new in the context of these TEVP and BEVP complex fluids.

The outline of the paper is as follows: section 1 presents the thermodynamic framework that leads to the mathematical expression of the rheological model. At this stage, the obtained model still contains three black-boxes, namely the elasticity, the plasticity and the damage, that will be chosen in section 2 for obtaining the new BEVP model. Section 3 presents preliminary results on the uniaxial compression benchmark. The paper contains two appendices. The first one is the complete and self-contained proof of a theoretical result on the Drucker-Prager plasticity criterion in order to use it for general EVP fluids. The second one is the details of the numerical method used in section 3.

Abstract problem statement

In this section, the thermodynamic framework is defined. First, the free energy and the potential of dissipation are introduced. Next, constitutive equations are obtained by differentiation of these two previous fundamental functions. A thorough discussion about the dissipation is developed before to expand the abstract problem statement. This section closes with a practical example: the thixotropic BMP model and its dissipative effects are discussed. Recall that the abstract mathematical model still contains three black-boxes, namely the elasticity, the plasticity and the damage, that will be chosen in a forthcoming section for obtaining the new BEVP model.

The impatient reader -and the reader who is unfamiliar with the thermodynamic frameworkcould jump directly to section 1.4 where the complete set of equations governing such a flow is presented, before reading section 1.5 where the BMP model is discussed. The total deformation tensor γ is assumed to split as the sum of γ e , the elastic deformation, and γ p , its complement:

Thermodynamic framework

γ " γ p `γe (1) 
Following Kachanov [START_REF] Kachanov | Foundations of the theory of plasticity[END_REF], let us introduce the progressive damage variable d: it quantifies the density of micro-cracks and comminution of the fractured material at the macroscopic level (see Fig. 1.left). It evolves between d " 0 for an undamaged and d " 1 for a completely damaged material. As in most previous progressive damage models [START_REF] Kachanov | Foundations of the theory of plasticity[END_REF][START_REF] Tang | Numerical simulation of progressive rock failure and associated seismicity[END_REF][START_REF] Zapperi | Plasticity and avalanche behaviour in microfracturing phenomena[END_REF][START_REF] Amitrano | From diffuse to localised damage through elastic interaction[END_REF], and based on the notion of effective stress, we choose to let the elasticity operator Apdq of the material vary with the level of damage.

The thermodynamic framework of standard generalized materials [START_REF] Halphen | Sur les matériaux standards généralisés[END_REF] (see also [51, p. 222]) is considered here. Let pγ, γ p , dq be the three independent thermodynamic state variables of our material. At any time, we assume that we are able to impose some arbitrarily value to the rate variables p 9 γ, 9 γ p , 9 dq without changing the values of the state variables pγ, γ p , dq, so state variables and rate variables are considered as independent thermodynamic variables. The specific Helmholtz free energy ψ and the dissipation potential φ are defined by In (2a), the density of the material is denoted by ρ and is assumed to be constant. The notations used all along the paper are summarized in , where N ě 1 is the physical space dimension, and R NˆN s the space of symmetric N ˆN real matrix. For any matrix δ, τ P R NˆN s , the associated dot product is δ : τ " ř N i,j"1 δ i,j τ i,j . For convenience, the notation |δ| Apdq represents the tensor norm in the A metric: |δ| 2

Apdq " pApdqδq : δ. The elasticity operator Apdq is assumed to be symmetric definite positive and thus it is invertible: its inverse is called the compliance operator. The term I kerptrq p 9 γq in (2b) imposes the incompressibility of the material: kerptrq denotes the set of traceless tensors. For any convex set C, the indicator function I C is defined by:

I C pξq " " 0 when ξ P C `8 otherwise
The indicator function of a convex set is also convex but not differentiable.

In (2b), the notation with square brackets r.s, as in φprγ, γ p , ds; 9 γ, 9 γ p , 9 dq indicates a dependence of the dissipation potential upon the state variables γ, γ p and d as parameters: it is distinct from 9 γ, 9 γ p and 9 d which are the thermodynamic rate variables of the dissipation potential.

Finally, the potentials φ p and φ d describe respectively the viscoplasticity and the damage and η s is the bulk viscosity. We assume that both φ p and φ d are positive, convex and vanish in zero. Some practical choices for them will be discussed in details in the next paragraph. We are now able to prove the following major result.

Theorem 1 (second principle of thermodynamics and Onsager symmetries).

Assume that the dissipation potential φ is convex, positive and vanishes when the rate variables are zero. Then, the rheological model defined by (2a)-(2b) satisfies both the second principle of thermodynamics and a generalized Onsager symmetry principle.

Proof: The second principle of thermodynamics is directly obtained from [51, p. 223]. From [23, p. 40], the generalized Onsager symmetry principle is obtained as a direct consequence of the present formalism based on the dissipation potential.

Constitutive equations

The constitutive equations are obtained by derivation of the specific free energy and the potential of dissipation by (see [51, p. 223 γ p " Apdqγ e . Then (3b) writes equivalently σ e P Bφ p prds, 9 γ p q or also equivalently 9 γ p P Bφ p prds, σ e q thanks to the Fenchel-Young theorem 4 and where φ p denotes the convex conjugate of φ p , defined for any τ P R NˆN s by the Legendre transformation (see definition 18). We assume that φ p is continuously differentiable, which is the case for our practical choices of this potential. Thus (3b) becomes 9 γ p " ∇φ p prds; σ e q, or equivalently, using (1):

9 γ e `∇φ p prds; Apdqγ e q " 9 γ (3d)

Note that, for some given d and 9 γ, relation (3d) appears to be an explicit nonlinear time-differential equation in terms of γ e , which is suitable to numerical computations. Thanks to the continuity of ∇φ p , the existence of a solution for (3d), for some given d and 9

γ, is guaranteed by the Cauchy-Peano-Arzelà theorem.

The third relation (3c) also appears as an implicit evolution equation for d. The strain energy release rate Y is defined as the dual variable associated to the state variable d, i.e. Y " ´ρ Bψ{Bd " p´A 1 pdqγ e q : γ e . This concept, set forth by Erdogan and Sih [START_REF] Erdogan | On the crack extension in plates under plane loading and transverse shear[END_REF], is a natural and obvious generalization of Griffith's [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] original energy release rate that explains the extension of cracks in a material (see e.g. [37, p. 41] Let us choose the damage potential φ d " 0. Then, from (3e), assuming d " 0 at t " 0, the material remains undamaged at any time. Moreover, choosing the elasticity operator Aγ e " Gγ e and the viscoplastic potential φ p pδq " η|δ| 2 for any γ e and δ P R NˆN s , with G ą 0 and η ą 0, then the rheological model (2a)-(2b) coincides with the Maxwell viscoelastic model [START_REF] Maxwell | On the dynamical theory of gases[END_REF], as extended by Oldroyd [START_REF] Oldroyd | Rectilinear flow of non-Bingham plastic solids and non-Newtonian viscous liquids[END_REF] in a tensor framework, and with a characteristic relaxation time equal to η{G.

Clausius-Duhem inequality

An equivalent expression of the second principle of thermodynamics, stated in theorem where we have used (3b) and (3c). Note that the positivity of both w p and w d is a direct consequence of the convexity of the two positive potentials φ p and φ d vanishing in zero. Then w " w p `wd ě 0. The first term w p represents the dissipation due to viscoplastic effects and the second one w d , the dissipation due to damage. For the present mathematical model, we finally obtain a stronger proposition than the second principle (theorem 1): each of the two contributions to the dissipation are separately positive.

General problem statement

The three constitutive equations (3a), (3d) and (3e) are coupled here with the conservation of mass and momentum. The deformation rate 9 γ is identified as the symmetric part of the velocity gradient tensor Dpuq " p∇u `∇u T q{2, where u denotes the velocity of the material and ∇u " pBu i {Bx j q 1ďi,jďN is the gradient of velocity tensor. Conversely, the time derivative 9 γ e is replaced by the upper-convected tensor derivative ∇ γ e . Assuming a constant density ρ, the mass conservation coincides with the incompressibility constraint. The problem expresses as a system of four equations for four unknowns: pP q: find the elastic deformation γ e , the damage d, the velocity u and the pressure p satisfying

$ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' %
∇ γ e `∇φ p prds; Apdqγ e q ´Dpuq " 0 Bd Bt `pu.∇qd " ∇φ d `rγ e , ds; p´A 1 pdqγ e q : γ e ρ ˆBu Bt `pu.∇qu ˙´div p´pI `2η s Dpuq `Apdqγ e q " f div u " 0

(5a) (5b) (5c) ( 5d 
)
where f is some given external force applied. This set of equations is closed by suitable initial and boundary conditions. The material functions A, φ p and φ d are still quite general. In the rest of the paper, possible choices for these material functions are discussed.

Remark 2 (objective tensor derivatives). Note that, in (5a), a Gordon-Schowalter [START_REF] Gordon | Anisotropic fluid theory: a different approach to the dumbbell theory of dilute polymer solutions[END_REF] tensor derivative could be used instead of the upperconvected one (see also [51, p. 150])). The Gordon-Schowalter derivative introduces an additional material parameter that interprets as a control of the slip of the micro-structure with respect to the macro-scale frame. Recall that both the upper-convected and the Jaumann tensor derivatives are obtained as a special case of it. See e.g. [START_REF] Gurtin | The mechanics and thermodynamics of continua[END_REF] for some discussion about material derivatives in the context of plasticity of solids in large deformations and [START_REF] Saramito | Efficient simulation of nonlinear viscoelastic fluid flows[END_REF][START_REF] Bhat | Beads-on-string formation during filament pinch-off: dynamics with the PTT model for non-affine motion[END_REF] for some numerical experiences of the Gordon-Schowalter derivative in the context of viscoelastic fluids.

Remark 3 (plastic strain rate). Observe that (1) leads to 9 γ e `9 γ p " 9 γ, i.e. a decomposition of the deformation rate. Since the deformation rate 9

γ is identified as the symmetric part of the velocity gradient tensor Dpuq while the elastic deformation rate 9 γ e is replaced by ∇ γ e , then, from the constitutive equation (5a), the plastic deformation rate 9 γ p coincides with ∇φ p prds; Apdqγ e q. Remark that this plastic deformation rate mainly depends upon the elastic stress σ e " Apdqγ e . See e.g. [START_REF] Hütter | What is behind the plastic strain rate?[END_REF] for a discussion on the plastic deformation rate for elastoviscoplastic materials and its possible dependence upon other fields.

Example: the BMP thixotropic model

This model, first introduced in [START_REF] Bautista | Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model[END_REF], combines the Maxwell viscoelatic model with the kinetic equation proposed by [START_REF] Fredrickson | A model for the thixotropy of suspensions[END_REF], for destruction and construction of structure. It presents three independent thermodynamic variables: the total deformation γ, the plastic deformation γ p , and the fluidity ϕ, that has the dimension of the inverse of a viscosity. The fluidity acts here similarly to the previous damage variable d: indeed, it describes the microscopic state of the material. The free energy and the dissipation potential are given by

ψpr 9 γs; γ, γ p , ϕq " G ρ ˇˇγ ´γp ˇˇ2 `α ρ ˆϕ2 2 ´ϕ0 ϕ ˙`β ρ ˆϕ2 2 ´ϕ8 ϕ ˙pγ ´γp q : 9 γ φ `rϕs; 9 γ, 9 γ p , 9 ϕ ˘" I kerptrq p 9 γq `ϕ´1 ˇˇ9 γ p ˇˇ2 `cf 2 9 ϕ 2
where G, ϕ 0 , ϕ 8 , α, β and c f are given positive constants with 0 ď ϕ 0 ă ϕ 8 . Recall the notation with square brackets: it indicates the dependence of the free energy and the dissipation potential upon parameters. The I kerptrq term imposes a traceless rate of deformation 9 γ, i.e. an incompressible fluid (see proposition 17 in appendix).

Observe that theorem 1 applies and then both the second principle of thermodynamics and the Onsager symmetry are satisfied. Moreover, results of paragraph 1.3 apply and, from (4a)-(4b), the dissipation writes w " 4G 2 ϕ|γ e | 2 `cf 9 ϕ 2 ě 0. Note that Y " Bφ{B 9 ϕ " c f 9 ϕ is the dual variable associated to the fluidity 9 ϕ. The first term in the expression of w represents the dissipation due to viscoelastic effects and the second one, those due to changes in the microstructure. Note that both are positive. To our best knowledge, these results was not yet stated for the BMP model.

Next, let us expand the constitutive equations. Using γ e " γ ´γp , the constitutive equations write (see [51, p. 223]):

σ " ´pI `2Gγ e 0 " ´2Gγ e `2ϕ ´1p 9 γ ´9 γ e q 0 " αpϕ ´ϕ0 q `βpϕ ´ϕ8 q pγ ´γp q : 9 γ `cf 9 ϕ where p is the pressure that acts as a Lagrange multiplier for imposing the fluid incompressibility (see proposition 17 in appendix). These equations write equivalently

σ " ´pI `τ 9 τ G `ϕτ " 2 9 γ 9 ϕ `ϕ ´ϕ0 λ `kpϕ ´ϕ8 q τ : 9 γ " 0
where we have introduced the notations τ " 2Gγ e , λ " c f {α and k " β{pc f Gq. Finally, replacing 2 9 γ by Dpuq and 9 τ by the upper-convected tensor derivative, we exactly obtain relations (1)-( 2) of the BMP model, as formulated in [START_REF] Bautista | Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model[END_REF]. See also [START_REF] Manero | A thermodynamic approach to rheology of complex fluids: the generalized BMP model[END_REF] for a different thermodynamic approach of the BMP model and [START_REF] Frigaard | Stability of flows with the BMP model in the yield stress limit[END_REF] for an investigation of the yield stress limit ϕ 0 " 0.

Practical choices for the material functions

In this section, the previous theoretical framework is instantiated for building a practical rheological model that combines viscous effects with elasticity, plasticity and damage. The elasticity is presented first, with a discussion on the Poisson ratio. Then, plasticity effects are introduced, with a in-depth exploration of the Drucker-Prager criterion which describes at the macroscopic level the friction between grains at the microscopic one. Damage evolution is then introduced, with a yield criterion similar to the plasticity one. Merging all together, the obtained rheological model is compared with previous existing models and could be considered an extension of several of them.

Choosing the elasticity operator A versus the damage

Here, we assume the material to be isotropic. Then, from [START_REF] Jog | A concise proof of the representation theorem for fourth-order isotropic tensors[END_REF], the linear elasticity operator Apdq expresses, for any δ P R NˆN s , as:

Apdqδ " 2Gpdqδ `λpdqptr δqI (6a)
where λpdq and Gpdq are the Lamé coefficients of the damaged material and trp.q denotes the trace of a matrix. The Lamé coefficients express equivalently in terms of the elastic modulus Epdq and the Poisson ratio νpdq (see e.g. [34, p. 107]):

λpdq " Epdq νpdq p1 `νpdqqp1 ´2νpdqq

and Gpdq " Epdq 2p1 `νpdqq (6b)

Kachanov [START_REF] Kachanov | Foundations of the theory of plasticity[END_REF] defined the damage variable d from the elastic modulus Epdq, assumed to vary linearly versus 1´d, i.e.

Epdq " p1´dqE 0 (6c)

where E 0 ą 0 is the elastic modulus associated to the undamaged material. The simplest choice for the Lamé coefficients would be to choose them proportional to p1´dq, with the proportionality constants i.e. λpdq " p1´dqλ 0 and Gpdq " p1´dqG 0 where λ 0 and G 0 are the Lamé coefficients associated to the the undamaged material. With this choice, observe that Apdq " p1´dqAp0q and then p´A 1 pdqγ e q : γ e " 2|γ e | 2 Ap0q ě 0. This quantity, involved in the right-hand-side of the damage equation (3e), represents the elastic energy of the undamaged material. This simple choice leads to a constant Poisson ratio νpdq, which is in disagreement with many experimental observations, as pointed out by Ju [START_REF] Ju | Isotropic and anisotropic damage variables in continuum damage mechanics[END_REF]. Indeed, the Poisson ratios is expected to increase under increasing damage [START_REF] Heap | Quantifying the evolution of static elastic properties as crystalline rock approaches failure[END_REF][START_REF] Heap | The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from Mt. Etna volcano[END_REF], as a result of micro-cracking. For this reason, this author suggested extending the damage variable d from a scalar to a tensor quantity (see also [START_REF] Hansen | A thermodynamically consistent framework for theories of elastoplasticity coupled with damage[END_REF]). See [START_REF] Saramito | Linking bulk modulus to an unilateral damage yield criterion: a thermodynamic modeling approach[END_REF] for a discussion about the variation of the Poisson ratio versus damage. We consider here the Poisson ratio to depends linearly upon d i.e νpdq " ν 0 `pν 1 ´ν0 qd (6d) with ´1 ă ν 0 ď ν 1 ă 1{2. Observe also that when ν 1 " ν 0 , this choice coincides with the previous one, when are simply λpdq and Gpdq proportional to 1 ´d. Otherwise, when ν 1 ą ν 0 , then the Poisson ratio is an increasing function of the damage, which is the expected behavior.

Choosing the viscoplastic potential φ p

The Drucker-Prager [START_REF] Drucker | Soil mechanics and plastic analysis or limit design[END_REF] plasticity criterion considers the translated cone defined by

T µ,σy " tτ P R NˆN s ; |dev τ | ´σy ď µ ? N tr τ u . - √ N σ y µ 0 |dev σ e | σ y θ T µ,σ y -tr σ e -150 0 250 0 σ y 200 -tr(σ e ) = -σ 1 -σ 2 (kPa)
T µ,σ y compression traction where σ y is the cohesion and µ P r0, 8r is the friction coefficient. The notation dev δ " δ ´p1{N qptr δqI represents the deviatoric part of any matrix δ. This cone is represented in the stress plane on Fig. 2.left. Its boundary defines a straight line that intercepts the vertical axis at ´?N σ y {µ and has slope ? N {µ. The angle θ that this line makes with the vertical axis is given by θ " tan ´1pµ{ ? N q and is known as the angle of internal friction [29, p. 90]. Fig. 2.right represents in-situs sea ice observation [START_REF] Weiss | Coulombic faulting from the grain scale to the geophysical scale: lessons from ice[END_REF] together with the Drucker-Prager cone. When the elastic stress goes outside of this cone, the material develops irreversible deformations, and then the elastic stress relaxes and goes back inside of the cone. Observe for N " 2 that µ « 1{ ? 2 and θ " tan ´1p1{2q « 27 ˝.

|dev σ e | = (σ 1 -σ 2 )/ √ 2 (kPa)
The viscoplastic part φ p of the total dissipation potential φ is then defined for all δ P R NˆN s by φ p prds; δq " ηpdq |δ| 2 ``I ´Tµ,σy ˘˚pδq (6e)

The first term represents viscous effects. The second term is the expression in terms of convex analysis of the classical Drucker-Prager plasticity criterion [START_REF] Drucker | Soil mechanics and plastic analysis or limit design[END_REF] with cohesion [START_REF] Alejano | Drucker-Prager criterion[END_REF]. This formalism was first introduced by Saxcé and coworkers [27, p. 1116] for applications to solid elastoplastic materials. Here, I ´Tµ,σy denotes the indicator to the translated Drucker-Prager cone (see proposition 41). Note that the evolution equation (3d) for the elastic deformation γ e involves ∇φ p which is provided by the following result.

Theorem 2 (viscoplastic Drucker-Prager). Let φ p be the viscoplastic Drucker-Prager potential defined by (6e). Its convex conjugate φ p is continuous and differentiable, and its gradient ∇φ p is also continuous and expresses, for all τ P R NˆN s , as ∇φ p pτ q " κ µ,σy pτ q 2η p1 `µ2 q ˆτ ´ξµ,σy pτ q ? N µ I ˙(6f) where

κ µ,σy pτ q " $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % 1 `µ2 when ´µ2 |dev τ | ě σ y ´µ ? N tr τ 1 ´σy ´µ ? N tr τ |dev τ | when ´µ2 |dev τ | ă σ y ´µ ? N tr τ ă |dev τ | 0 otherwise (6g) ξ µ,σy pτ q " min ˆσy , µ tr τ ? N ´µ2 |dev τ | ˙(6h)
While the expression (6f) of ∇φ p is quite concise, the proof of theorem 2 requires some technical developments and is postponed in Appendix A. The elevation view on Fig. 3.bottom-left shows that κ µ,σy is continuous except at the junction between the three cones and is differentiable except along the cone boundaries. At this junction, the second factor in (6f) vanishes and finally, ∇φ p is continuous everywhere. Recall that the potential φ p involves three parameters: η, σ y and µ. Note that, for simplicity, the dependence of the coefficients η and σ y upon the damage d has been omitted in the statement of this result. When µ " 0, the present potential describes the viscoplastic Bingham constitutive equation (see e.g. [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF], eqn (2)):

∇φ p pτ q " $ ' ' & ' ' % ˆ1 ´σy |dev τ | ˙τ 2η when |dev τ | ą σ y 0 otherwise
and then, the cohesion σ y coincides with the usual yield stress. Finally, in the case µ " 0, the evolution equation (3d) for 9 γ e coincides with the elastoviscoplastic model, as introduced in [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF].

When µ ą 0, from theorem 2, the constitutive equation 9 γ p " ∇φ p pσ e q develops three flow regimes, as represented on Fig. 3.top-left. As expected, in compression and when the elastic stress σ e belongs to the Drucker-Prager translated cone (in red on Fig. 3.right), the material behaves as a solid i.e. the irreversible deformation rate 9 γ p " 0 and this is the sticking regime. In that case, the material behaves as an incompressible Kelvin-Voigt viscoelastic solid and, from ( 1) and (3a) we get σ " ´pI `2η s 9 γ `Aγ. When the elastic stress σ e lives outside of the Drucker-Prager translated cone, material behaves as a fluid, i.e. the irreversible deformation rate 9 γ p ‰ 0. In that case, the situation is here more subtle than for Bingham viscoplasticity as there are now still two distinct flow regimes. When the elastic stress σ e belongs to the blue cone on Fig. 3.right, i.e. when the traction is sufficient, this is the losing contact regime. We then have σ e " 2η 9 γ p `pσ y {p ? N µqqI " Aγ e i.e. the material is a viscoelastic fluid of Oldroyd kind. Indeed, from ( 1) and (3a) we obtain σ " ´pI `2η s 9

γ `Aγ e and, from (5a):

∇ γ e `1 2η ˆAγ e ´σy ? N µ I ˙" 9 γ
Observe that, in that case, the elastic stress σ e " Aγ e relaxes to σ y {p ? N µqI which locates on the vertical axis, exactly at the junction between the three cones on Fig. 3.right. Finally, when the elastic stress σ e lives in the white cone between the sticking and the losing contact regions, the material behaves as a complex nonlinear viscoelastic fluid. This material could be interpreted in terms of a granular microstructure suspended in a bulk fluid (see Fig. 3.top-left). In the sticking regime, the grains are sticking together and the collective behavior is a solid one. For the sliding regime, the grains are moving while maintaining frictional contacts. For the losing contact regime, the microstructure corresponds to a granular gas suspended in a bulk fluid.

Note that the viscoplastic potential φ p introduced here shares many similarities with the viscoplastic model developed by Daviet and Bertails [START_REF] Daviet | Nonsmooth simulation of dense granular flows with pressure-dependent yield stress[END_REF] (see also [START_REF] Daviet | Modèles et algorithmes pour la simulation du contact frottant dans les matériaux complexes. Application aux milieux fibreux et granulaires[END_REF]). These authors introduced a truncated cone (see [11, p. 18], Fig. 2) while the cone T µ,σy is here not truncated, similar to those of Saxcé and coworkers [27, p. 1116]. For instance, when µ " 0, these authors obtained a variant of the Bingham model with a dilatancy constraint div u ě 0.

Finally, let us turn to damage effects. While µ is considered here as constant, the viscosity η and the cohesion σ y are assumed to vary upon the damage as ηpdq " p1 ´dqη 0 (6i)

σ y pdq " p1 ´dqσ y0 (6j) 
where η 0 ą 0 is the viscosity of the undamaged material and σ y0 ě 0 its cohesion. The next paragraph develops the evolution equation for the damage.

Choosing the brittle-damage potential φ d

A simple damage function -The simplest choice for the damage potential would be φ d prds; 9 dq " η d 9 d 2 {p1´dq where η d ě 0 has the dimension of a viscosity. Recall that d and 9 d are considered as independent variable: here, the rate 9 d acts as a variable while d is a parameter of the potential. Then φ d prds; Y q " p1´dqY 2 {p4η d q is such that the Fenchel-Young relation Y " ∇φ d p 9

dq ðñ 9 d " ∇φ d pY q is satisfied. Replacing in (3c), we would obtain:

9 d " p1´dq 2η d p´A 1 pdqγ e q : γ e
Note that the ratio η d {E 0 represents a characteristic time associated to the damage while the 1´d prefactor assures that ∇φ d smoothly vanishes at the limit d " 1. Others expressions of d that vanishes at d " 1 could be considered similarly. See e.g. [40, p. 211] for alternative power-law index or [37, chap. 3].

Brittle damage based on a yield criterion -Experimental observations showed that the previous damage criterion is unrealistic: damage develops only when the stress goes outside of a given cone. See again Fig. 2.right that represents in-situs sea ice observation [START_REF] Weiss | Coulombic faulting from the grain scale to the geophysical scale: lessons from ice[END_REF]. The proposed criterion bases again on the translated Drucker-Prager cone. We now consider that the brittledamage potential φ d is expressed by defining its convex conjugate:

φ d prγ e , ds; Y q " p1´dq κ µ,σc pApdqγ e q 4η d p1 `µ2 q Y 2 (6k) 
where κ µ,σc is expressed by (6g). Here, σ c is the yield stress in pure shear, or material cohesion, µ is the friction coefficient, as for the Drucker-Prager cone. and η d ą 0 is a constant that has the dimension of a viscosity. Observe that φ d is differentiable and ∇φ d prγ e , ds; Y q " p1´dq κ µ,σc pApdqγ e q 2η d p1 `µ2 q Y

The evolution equation (3e) becomes:

9
d " p1´dq κ µ,σc pApdqγ e q 2η d p1 `µ2 q p´A 1 pdqγ e q : γ e (6l

)
where Y has been replaced by its expression. Note that the ratio η d {E 0 still represents a characteristic time associated to the damage. This damage criterion is represented on Fig. 2.right together with in-situs sea ice observation [START_REF] Weiss | Coulombic faulting from the grain scale to the geophysical scale: lessons from ice[END_REF]. When the elastic tensor σ e " Apdqγ e belongs to the translated Drucker-Prager cone ´Tµ,σc , then κ µ,σc pσ e q " 0 and, from (6l), the damage do not develop. Otherwise, κ µ,σc pσ e q ą 0 and some damage will occur. For the damage to nicely interact with plasticity, we also assume σ c ě σ y0 . Note that, for bidimensional problems, the Drucker-Prager criterion coincides with the Mohr-Coulomb one, defined in terms of the two real eigenvalues σ 1 , σ 2 of the elastic stress (see e.g. [START_REF] Alejano | Drucker-Prager criterion[END_REF]). Indeed |dev σ e | " ? 2pσ 1 ´σ2 q and tr σ e " σ 1 `σ2 . This criterion is widely used in models representing the progressive failure of brittle materials (see e.g. [START_REF] Weiss | Coulombic faulting from the grain scale to the geophysical scale: lessons from ice[END_REF]). It recently has been used in the sea-ice coupled viscoelastic-damage model [START_REF] Dansereau | A Maxwell-elasto-brittle rheology for sea ice modelling[END_REF][START_REF] Dansereau | Ice bridges and ridges in the Maxwell-EB sea ice rheology[END_REF].

The new brittle-elastoviscoplastic model

Let us group the previous choices (6b) for the elasticity operator and (6e) and (6l) for the viscoplastic and damage the dissipation potentials, respectively. The rheological model is represented on Fig. 1.right. It shares many similarities with a previous elastoviscoplastic (EVP) model [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF]: it consists in a dash-pot and a dry-friction elements connected in parallel, together with a spring connected in series. The main differences are (i) the dependence of the rheological parameters upon the damage variable d, (ii) the introduction of a Coulomb friction coefficient µ and (iii) the Poisson ratio νpdq for an elastic compressibility. This model shares some similarities with several existing ones, as shown on Fig. 4. When the damage effects are not considered, the present model reduces to an elastoviscoplastic model that extends with a Coulomb friction the authors' previous one [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF], and represented on the center axis of Fig. 4. When cohesion and friction are not considered (σ y " µ " 0), the present model reduces to a brittle-viscoelastic one, similar to the MEB one [START_REF] Dansereau | A Maxwell-elasto-brittle rheology for sea ice modelling[END_REF], and represented on the left side of Fig. 4. Note that the mathematical structure then shares some similarities with the BMP model, the damage variable being replaced by the fluidity for the description of thixotropic effects. Both MEB and BMP reduce to the Maxwell viscoelastic model by neglecting damage or thixotropy, respectively. Conversely, on the right side of Fig. 4, when elastic effects are not considered (1{E " 0), the present model reduces to a brittle-viscoplastic material (BVP). This BVP model bases on a new Drucker-Prager viscoplastic (DP-VP) model by including damage effects. This new DP-VP model itself extends the usual Bingham viscoplastic model and shares many similarities with the Daviet and Bertails [START_REF] Daviet | Nonsmooth simulation of dense granular flows with pressure-dependent yield stress[END_REF] viscoplastic model based on a truncated translated Drucker-Prager cone (see [11, p. 18], Fig. 2). When neglecting Coulomb friction (µ " 0), the present model then reduces to the usual incompressible Bingham model while the Daviet and Bertails one reduces to a dilatant Bingham (div u ě 0 while here div u " 0).

Results and discussion

This last section is dedicated to a preliminary exploration of the previously obtained model: the uniaxial compression benchmark is considered. The boundary conditions are described and the material parameters are chosen in order to be representative of applications in geosciences. Next, numerical approximation parameters, such as meshes and time step, are introduced. This section closes with an exploration of the time-dependent solution.

Material parameters and flow conditions

Our aim is to study the interplay between the main nonlinearities introduced by the two dissipation potentials φ p and φ d , expressed by (6e) and (6k), respectively, while the elasticity operator A is given by (6a). In that purpose, let us consider the transition between an elastic solid to a damaged elastoviscoplastic material that undergoes permanent deformations. A simple test-case is considered: the uniaxial compression of a rectangular sample of an initially undamaged elastic solid. This benchmark permits to point out both the pre-and post-failure behavior of materials. Since the flow is slow, inertia terms could be neglected. Since deformations are small, convective and tensor upper derivative terms are also neglected. See Appendix B.1 for the complete problem statement after these simplifications.

u 2 = 0 and σ 12 = 0 The horizontal dimensions of the sample are taken much larger than its thickness, hence the problem could be considered as two-dimensional. Let Ω " s0, L{2rˆs0, Lr be the computational domain where L ą 0 is the characteristic length (see Fig. 5.left) and p0, x 1 , x 2 q denotes the Cartesian coordinate system. Compression is applied by prescribing at any time t ą 0 a constant vertical velocity, ´U , where U ą 0, on the top edge of the plate, while, on the bottom edge, the plate is maintained by imposing a vertical velocity to zero and no confinement is applied on the lateral edges:

σ 11 = σ 12 = 0 σ 11 = σ 12 = 0 L/2 L x 1 u 2 = -U and σ 12 = 0 x 2 h " L{20 h " L{40 h " L{80 h " L{160
u 2 pt, x 1 , Lq " ´U and σ 12 pt, x 1 , Lq " 0, @x 1 P r0, L{2s u 2 pt, x 1 , 0q " 0 and σ 12 pt, x 1 , 0q " 0, @x 1 P r0, L{2s σ 11 pt, x 1 , x 2 q " σ 12 pt, x 1 , x 2 q " 0, @x 1 P t0, L{2u, x 2 P r0, Ls

The initial conditions for both the elastic deformation γ e and the damage d are zero. Recall that the practical choices for A, φ p and φ d are given by (6k), (6e) and (6k), respectively. A dimensionless analysis (see Appendix B.2) shows that there are eight dimensionless numbers involved in the problem: W e, W e d , γ y , γ c , ν 0 , ν 1 , µ and α, given in Table 2 together with practical values for the dimensional parameters. Dimensional values are chosen in order to be representative of a natural quasi-brittle material (rock or ice). Indeed, such large values for L and U correspond to geophysical applications. Values for both the friction coefficient µ and the damage yield stress parameter σ c base on experimental measurements on the Baltimore in-situ sea ice station presented on Fig. 2. The viscoplastic cohesion σ y0 is about 10% smaller than σ c in order for the viscoplastic cone T µ,σy to be included in the damage one T µ,σc . The elastic modulus E 0 and the Poisson ratio ν 0 are also representative of some undamaged rocks and ice, while ν 1 , associated to a fully damaged one, is close to 1{2. See [START_REF] Saramito | Linking bulk modulus to an unilateral damage yield criterion: a thermodynamic modeling approach[END_REF] for a thorough discussion about the variation of the Poisson ratio versus damage. The characteristic time for damage propagation η d {E 0 is much smaller than both the time scale L{U of loading and the time scale η 0 {E 0 of viscoelasticity and the viscosities η 0 and η d are chosen accordingly. This large separation of scales ensures quasi-static conditions for damage. Finally, note that the fully damaged material pd " 1q is represented here by a Newtonian fluid with a very weak viscosity η s , i.e. η s is small compared to η 0 .

parameter value dimension L 200ˆ10 3 m U 2ˆ10 ´3 m.s ´1 E 0 28ˆ10 6 Pa σ y0 50ˆ10 3 Pa σ c 56ˆ10 3 Pa η 0 1.4ˆ10
Observe that the geometry of the material is symmetric: this uniaxial compression problem admits several solutions, e.g. left-or right-shaped solutions. Conversely, asymmetric geometries or the presence or material heterogeneities suppress this indetermination. A typical example of such non-unicity of the solution is the buckling of a beam. Here, both the viscoplastic σ y0 cohesion and its damage counterpart σ c are assumed to contain an uniform random spatial heterogeneity of 30% around their respective mean values. The final computational time t f is chosen sufficiently large for the post-failure to be reached: pU {Lqt f " 3ˆ10 ´2. The flow domain is discretized by a family of quasi-uniform unstructured meshes composed of triangular elements and generated by the gmsh mesh generator [START_REF] Geuzaine | Gmsh reference manual[END_REF]. The characteristic mesh size is denoted as h: L{h is the number of elements along the vertical edge of the dimensionless computational domain. Computations are performed with both h " L{20, L{40, L{80 and L{160 (see Fig. 5.right). The time step ∆t is chosen in order to solve the smallest dimensionless time scale associated to damage. For the first mesh, associated with h " L{20, we choose pU {Lq∆t " 1.2ˆ10 ´5.

Then, the time step is divided by two for each mesh refinement, as shown on Table 3. The system of equation is then solved by a numerical algorithm postponed in Appendix B and implemented by using the Rheolef finite elements [START_REF] Saramito | Efficient C++ finite element computing with Rheolef[END_REF]. Note that the mesh size grows by a factor four at each mesh refinement while the number of time steps grows by a factor two. Thus, the computing time is expected to grow at least by a factor eight at each refinement. Indeed, the resolution on a workstation running ten CPUs (Intel-9 at 3.70GHz) requires about 7 mn on the first mesh and about 70 hours for the fourth one: the effective growth factor of computing time for each refinement is of about 8.4.

Interpretation of the solutions

Recall that the dissipation splits as w " w p `wd , where w p and w d are its two positive contributions, associated respectively to viscoplasticity and damage and defined by (4a)-(4b). Fig. 6 plots the averaged value of these two terms during all the process. The averaged quantities, denoted as w p and w d , are simply defined by

w β ptq " 1 measpΩq ż Ω w β pt, xq dx, β P tp, du
For convenience, a dimensionless time γ " pU {Lqt is introduced. Note that, in the context of the present uniaxial compression benchmark, γ interprets as the amplitude of the deformation on the top boundary, which justifies the notation. Also η tot " η s `η0 denotes the total viscosity. Observe first on Fig. 6 that w p and w d present similar global variations, while the maximums differ by about one order of magnitude. Let us study with details the different flow regimes. i) For small times, the elastic stress σ e is still small, it belongs to the translated Drucker-Prager cone T µ,σy . Thus, the viscoplastic deformation rate 9 γ p is zero (Fig. 6.bottom-left) and, from (1), we get 9

γ " 9 γ e . Then, from its definition (4a), the viscous dissipation w p reduces to bulk viscous effects i.e. w p " 2η s | 9 γ| 2 , which is small, as shown on Fig. 6.top-left, since both η s and 9 γ are small. Next, observe on Fig. 6.top-right that w d " 0. Indeed, since σ y ă σ c , we have σ e P T µ,σy Ă T µ,σc and then damage is not yet able to develop. It means that, during this first regime, the material behaves as an undamaged solid Kelvin-Voigt viscoelastic one. Moreover, since the bulk viscosity η s is small, the behavior is close to those of a pure solid elastic and undamaged material: this is the quasi-elastic flow regime.

ii) This first regime stops at the dimensionless time γ 1 « 5.16ˆ10 ´3 when a first plastic even appears and a viscoplastic deformation 9 γ p starts to develop. Indeed, the elastic stress σ e goes outside of the translated Drucker-Prager cone T µ,σy . Note that, during this second flow regime, σ e still lives inside second translated Drucker-Prager cone T µ,σc associated to damage. Recall that σ c ą σ y and then w p " 0 i.e. the material is still undamaged. This regime stops at γ 2 « 5.73ˆ10 ´3 when a first damage even appears (Fig. 6.top-right). Here, σ c is only 10% larger than σ y and then, this second flow regime is short. Since 9 γ p ‰ 0 the material behaves as an undamaged elastoviscoplastic one. Both the two quasi-elastic and elastoviscoplastic flow regimes correspond to a global pre-failure regime.

iii) The third flow regime starts at γ 2 , when a first damage even appears. Now, the elastic stress σ e lives outside of the second translated Drucker-Prager cone T µ,σc . Observe on Fig. 6 the fast grown of both the damage dissipation w d and the damage rate 9 d. Both viscoplastic w p and damage w d dissipation grow in this third flow regime: this is the failure regime.

iv) The fourth and last flow regime starts at γ 3 « 1.83ˆ10 ´2 when both w d and w p reach a maximum and start a fast decrease: this is the post-failure regime.

After this interpretation of the process in terms of global flow regimes, let us turn to a local representation of the solution. Fig. 7 shows the isocontours of the damage d at γ 3 , when the damage rate is maximum, and of the deformation rate | 9 γ| at the end of the process (γ " 0.03). Observe the correspondence of the localization for these two quantities: damage develops where stress and deformation are important and, correspondingly, the deformation rate localizes in damaged regions. For all the four meshes, the corresponding numerical solution are represented.

First, observe that the damage d develops a dense network of fracture at all scales: the finer the mesh is, the denser the fracture network appears, with new small scales features. As a result, the network of fracture presents a fractal-like pattern. See [8, p. 1354] for a thorough analysis of scale invariance for such damage processes. Simultaneously, observe on the | 9 γ| maps that the deformation rate localizes and tends to collapse on few main fractures that enforce the existing damage in a coupled mechanism. Second, observe that the main localization of the deformation rate 9

γ develops from top-right to bottom-left for the second mesh h " L{40, while solutions based on other meshes present an alternative direction. The mesh-based space discretization introduces an additional heterogeneity that induces a different direction for the main failure. Recall that the behavior of approximate solutions depends upon all local heterogeneities, including the mesh discretization. Third, observe on Fig. 7.right the direction of the localization for both the damage and the deformation: the present model predicts an angle of about 30 ˝with the vertical axis, which is in good agreement with experimental observations (see e.g. [START_REF] Jaeger | Fundamentals of rock mechanics[END_REF], pages 76 and 88). This could be considered as an improvement of a previous work on the MEB model, where an angle of about 40 ˝was predicted (see [START_REF] Dansereau | A Maxwell-elasto-brittle rheology for sea ice modelling[END_REF], Fig. 5 p. 1352).

The behavior of the material on the top boundary, where the normal velocity is imposed, is of major importance: the normal stress component σ yy on the top boundary of the domain is averaged as

σ n ptq " 2 L ż L{2
x"0 σ 22 pt, x 1 , Lq dx 1 Fig. 8.left shows that σ n grows linearly during the first regime, as expected. In the second flow regime, the stress continues to increase, and reaches a maximum in the third flow regime. The last regime is related to a fast decrease of the normal stress: cracks collapse and the deformation localizes on global directions that cross all the domain.

Finally, Fig. 8.right shows the deformed geometry at the end of the process (γ " 0.03) together with the isoline separating the fluid and solid regions. Recall that, in the solid regions, the material is not rigid: it behaves as a Kelvin-Voigt viscoelastic solid. Observe that the geometry is now spitted in several bricks separated by cracks. The grayscale represents the norm | 9 γ| of the deformation rate.

The results presented on Figs. 6, 7 and 8.left show a convergence versus mesh refinement that looks random to a certain extent, e.g. for the location of fluid regions during the last flow regime. Recall that the geometry of the material is symmetric: this uniaxial compression problem admits several solutions, e.g. left-or right-shaped solutions and a typical similar problem is the buckling of a beam. The introduction of material heterogeneities suppresses this indetermination: here, both the viscoplastic σ y0 cohesion and its damage counterpart σ c are assumed to contain an uniform random spatial heterogeneity of 30% around their respective mean values. Finally, note that others kind of data heterogeneities could be introduced similarly: instead of σ y0 and σ c cohesions, we could consider varying e.g. boundary conditions. The unstructured mesh-based discretization also introduces an additional kind of heterogeneity. Observe first that global quantities such as those shown on Fig. 6 clearly converge with mesh refinement until time γ 3 : during the last flow regime, Figs. 6 and8.left show that the behavior is only qualitatively similar when changing the mesh. Indeed, during the last flow regime, the process is characterized by the formation of local bricks separated by cracks, as shown on Fig. 8.right, and these features are sensible to the local heterogeneities of both σ y0 and σ c . Nevertheless, some mesoscale features, such as the 30 ˝angle for the direction of the localization for both the damage and the deformation, appear to be robust with mesh refinement, as shown on Fig. 7.

Conclusion and perspectives

A new brittle-elastoviscoplastic (BEVP) fluid model is presented in this paper. This model is relatively simple to use, as it contains few material parameters and a simple fixed-point algorithm is effective for solving the coupled system of equations. The model combines some existing fundamental features such as elasticity, plasticity and brittle damage. The combination of them bases on thermodynamics that ensures the positivity of the dissipation and the Onsager symmetry. Moreover, thermodynamics points out the link between thixotropy and damage in the context of elastoviscoplastic (EVP) fluids. Theoretical results on the Drucker-Prager plasticity criterion are completed in order to use it for general EVP fluids. Preliminary results with the proposed BEVP model are very encouraging. Indeed, the model allows both the representation of the pre-failure, failure and post-failure behavior of quasi-brittle materials. Future works will consider applications in geosciences, namely sea ice flows and earthquake modeling. Finally, the new theoretical results on Drucker-Prager plasticity presented in this paper open new paths for the mathematical modeling of a large class of materials that presents microstructure of particles with frictional contacts h and large scale rearrangements, e.g. dry or wet granular flows, concentrated suspensions and rocks and cements undergoing large and unbounded deformations.

10 -3 10 -2 10 -1 1 10 10 2 3×10 -3 10 -2 3×10 -2 L 2 η tot U 2 w p γ 1 γ 2 γ 3 γ = (U/L) t h = L/20 L/40 L/80 L/160 10 -3 10 -2 10 -1 1 10 10 2 10 3 3×10 -3 10 -2 3×10 -2 L 2 η tot U 2 w d γ 2 γ 3 γ = (U/L) t h = L/20 L/40 L/80 L/160 10 -4 10 -3 10 -2 10 -1 1 10 3×10 -3 10 -2 3×10 -2 (L/U ) | γp | γ 1 γ 2 γ 3 γ = (U/L) t h = L/20 L/40 L/80 L/160 10 -2 10 -1 1 10 10 2 3×10 -3 10 -2 3×10 -2 (L/U ) ḋ γ 2 γ 3 γ = (U/L) t h = L/20 L/40 L/80 L/160
" L{20 h " L{40 h " L{80 h " L{160 d 30 • L U | 9 γ|
• ϕ is closed

• the set δ P R NˆN { ϕpδq ď z ( is closed for all z P R. 

I C is convex ðñ C is convex I C is proper ðñ C ‰ H I C is closed ðñ C is closed Appendix A.2. Subdifferentials Lemma 12 (differentiable convex function).
Let E Ă R NˆN and ϕ : E Ñ R be a differentiable convex function. Then ϕpδ 0 q `Bϕ Bδ pδ 0 q : pδ ´δ0 q ď ϕpδq, @δ, δ 0 P E (A.2)

Proof: See [15, p. 24], proposition 5.4.

∂ϕ(δ 2 ) 

δ 1 δ 2 δ ∂ϕ(δ 1 ) = {∇ϕ(δ 1 )} ϕ(δ) int(C) ∂C δ δ 2 δ 1 N C (δ)

Definition 13 (subdifferential).

Let ϕ : R NˆN Ñ R be a convex function and δ 0 P R NˆN . If there exists τ P R NˆN such that ϕpδ 0 q `τ : pδ ´δ0 q ď ϕpδq, @δ P R NˆN then τ is a subdifferential of ϕ at δ 0 .

The subdifferential at δ 0 , denoted by Bϕpδ 0 q, is the set of all subdifferentials at δ 0 .

It interprets as a generalization of the usual derivative and it coincides with the convex envelop of all directional derivatives (see Fig. A.9.left).

Proposition 23 (convex conjugate of the indicator to a convex cone).

Let K ‰ H be a convex cone. Then

pI K q ˚" I K Proof:
Following the definition 18 of the convex conjugate, we have, for all δ, τ P R NˆN :

pI K q ˚pτ q " sup δPR NˆN `δ : τ ´IK pδq ˘" sup δPK δ : τ
As K is a non-empty cone, then 0 P K, from proposition 21, and then, from the previous relation, pI K q ˚pτ q ě 0. Moreover, if δ 0 P K such that δ 0 : τ ą 0, then, for all β ě 0, we can choose α " β{pδ 0 : τ q and we have both pαδ 0 q : τ " β ě 0 and αδ 0 P K. By taking the supremum on any β ě 0, we obtain pI K q ˚pτ q " 8. This means . We have:

pI K q ˚pτ q " " 8 
1. 0 P N C pδq ðñ δ P C 2. if C ‰ H then N C pδq " BI C pδq 3. if δ P intpCq then N C pδq " t0u
Proof: 1. is trivial from the definition of the normal cone. Proposition 27 (normal cone to a convex cone).

Let K be a convex cone. Then, the normal cone N K admits the following expression, for all δ P K:

N K pδq " " K ˝X tδu K when δ P K H when δ R K Proof:
The second case holds for any normal cone on any convex set. Let us prove the first one. Let δ P K and τ P N K pδq. By definition, we have pξ ´δq : τ ď 0, ξ P K Choosing ξ " 0 P K we get ´δ : τ ď 0. Next, choosing ξ " 2δ P K we get also δ : τ ď 0. Then δ : τ " 0 or equivalently τ P tδu K . Moreover, for all ζ " 0 P K, we have δ `ζ " 0 P K and then ζ : τ ď 0 i.e. τ P K ˝. Thus, we have N K pδq Ă K ˝X tδu K . Now, let us prove the reciprocal inclusion. Let τ P K ˝X tδu K and ξ P K. Then δ : τ " 0 since τ P tδu K and ξ : τ ď 0 for any ξ P K since τ P K ˝. Then ξ : τ ´δ : τ ď 0 for any ξ P K. By definition, it means τ P N K pδq and then N K pδq " K ˝X tδu K .

Proposition 28 (bipolar and bidual of a convex cone).

For any non-empty closed convex cone K we have For any non-empty closed convex cone K and any δ, τ P R NˆN , we have

K ˚˚" K ˝˝" K Proof: δ P K ˝˝ðñ δ P N K ˝p0q from
K Q δ K τ P K ˝ðñ τ P N K pδq ðñ δ P N K ˝pτ q
where δ K τ denotes δ : τ " 0.

Proof:

τ P N K pδq ðñ τ P BI K pδq from proposition 26.c ðñ I K pδq `IK ˚pτ q " δ : τ from theorem 4

ðñ I K pδq `IK ˝pτ q " δ : τ

The equality is only possible on the effective domain of the left-hand-side, on which I K pδq `IK ˝pτ q " 0. This means I K pδq `IK ˝pτ q " δ : τ ðñ δ P K and τ P K ˝and δ : τ " 0

The rightmost equivalence follows from proposition 28.

Appendix A. . The proof of this result is done in two steps. We first assume that |τ | ď 1 and show that then τ P Bϕp0q. Next, we will show the reciprocal. where σ y ě 0 is the yield stress. Assume next that dev δ " 0. Since we also have tr δ " 0 we get δ " 0 and (A.7) is also trivially satisfied. It means that δ P N ´Bσy pτ q or equivalently τ P B `I´Bσ y ˘˚pδq where we have used the Fenchel-Young theorem 4 and proposition 26. Then the proof of the subdifferentials equality is complete.

the numerator and the denominator, are divided by 1´d, and the corresponding coefficients are denoted with a hat. Relation (3d) writes in dimensionless form:

B t γ e `κµ,γy pp σ e q 2αW e p1 `µ2 q ˆp σ e ´ξµ,γy pp σ e q ? N µ I ˙" Dpuq where p σ e " p Apdqγ e " 2 p Gpdqγ e `p λpdq ptr γ e q I p λpdq " νpdq p1 `νpdqqp1 ´2νpdqq and p Gpdq " 1 2p1 `νpdqq Recall that, from (6d), the Poisson ratio writes νpdq " ν 0 `pν 1 ´ν0 qd. The dimensionless numbers involved in the previous equations are given by W e " U pη s `η0 q LE 0 and γ y "

σ y0 E 0 , α " η 0 η s `η0
Here, W e is the Weissenberg number, γ y is a plastic yield deformation and α is a viscosity ratio. Note that the usual Bingham number, defined by Bi " Lσ y0 {pU pη s `η0 qq is such that γ y " Bi W e. Relation (3e) writes in dimensionless form: Bd Bt " p1´dq κ µ,γc pp σ e q 2W e d p1 `µ2 q p´A 1 pdqγ e q : γ e with the dimensionless elasticity operator Apdq " p1´1q p Apdq and where the dimensionless numbers are defined by κ µ,γy pp σ e q 2p1 `µ2 q p σ e : ˆp σ e ´ξµ,γy pp σ e q ? N µ I ẇd " p1´dq W e W e d κ µ,γc pp σ e q 2p1 `µ2 q p´A 1 pdqγ e q : γ e ( 2

Finally, the present model contains eight independent dimensionless numbers: W e, W e d , γ y γ c , µ, ν 0 , ν 1 and α.

Appendix B.3. Implicit time discretization and fixed-point algorithm

Let ∆t ą 0 be the dimensionless time step and t n " n∆t, n ě 0. The two constitutive equations are discretized with respect to time by using a fully implicit first order scheme. ' The fixed point loop stops when the residual terms drops below a prescribed tolerance and then we set pγ e,n , d n , u n q " pγ e,n,k , d n,k , u n q.

In (B.2a), the notation Vpd, γ e,n,k´1 ; γ e,n,k q stands for Vpd n,k´1 , γ e,n,k´1 ; γ e,n,k q " p κ n,k´1 2αW e p1 `µ2 q ˜p Apd n,k´1 qγ e,n,k ´p ξ n,k´1 ? N µ I where p κ n,k´1 " κ µ,γy ´p Apd n,k´1 qγ e,n,k´1 p ξ n,k´1 " ξ µ,γy ´p Apd n,k´1 qγ e,n,k´1

¯(B.3)

Observe that Vp., .; .q is affine with respect to its last variable: it represents a rearrangement of ∇φ p prds, Apdqγ e,n,k q by re-balancing the evaluation of terms from the k´1 and k iterations of the fixed point. Note that, after this splitting between γ e,n,k´1 and γ e,n,k , the consistency of the fixed point is still satisfied, i.e.:

Vpd, γ e ; γ e q " ∇φ p prds; γ e q, @d P r0, ´1 `2∆t q G n,k´1 ¯γe,n,k `∆t ´q λ n,k´1 ptr γ e,n,k q ´q ξ n,k´1 ¯I " γ e,n´1 `∆tDpu n,k q where q G n,k´1 " c n,k´1 p Gpd n,k´1 q, q λ n,k´1 " c n,k´1 p λpd n,k´1 q, q ξ n,k´1 " c n,k´1 p ξ n,k´1 ? N µ and c n,k´1 " p κ n,k´1 2αW e p1 `µ2 q for convenience.

Tacking the deviatoric and trace parts of the previous equation, it explicitly solves as dev γ e,n,k " a n,k´1 dev `γe,n´1 `∆tDpu n,k q tr γ e,n,k " b n,k´1 ! tr `γe,n´1 `∆tDpu n,k q ˘`N ∆t q ξ n,k´1

) with a n,k´1 " ´1 `2∆t q G n,k´1

¯´1

b n,k´1 " ˆ1 `2∆t ˆq G n,k´1 `N 2 q λ n,k´1

˙˙´1

and then γ e,n,k " dev γ e,n,k `ptr γ e,n,k q I N " a n,k´1 dev `γe,n´1 `∆tDpu n,k q bn,k´1 ! tr `γe,n´1 `∆tDpu n,k q ˘`N ∆t q ξ n,k´1

) I N (B.4)
This explicit expression of γ e,n,k in terms of the unknown velocity u n,k is then replaced in (B.2b), in order to obtain a problem for u n,k only:

(S): find u n,k such that

$ ' & ' %
´div ˆ2η 1,n,k´1 dev Dpu n,k q `2η 2,n,k´1 pdiv u n,k q I N ˙" f pt n q `div χ n,k´1

u n,k " u Γ pt n q on BΩ (B.5a) (B.5b) where η 1,n,k´1 " 1 ´α `p1´d n,k´1 q∆t W e a n,k´1 p Gpd n,k´1 q η 2,n,k´1 " 1 ´α `p1´d n,k´1 q∆t W e b n,k´1 ˆp Gpd n,k´1 q `N 2 p λpd n,k´1 q χn,k´1 " 2p1´d n,k´1 q W e ! a n,k´1 p Gpd n,k´1 q dev γ e,n´1

`bn,k´1 ˆp Gpd n,k´1 q `N 2 p λpd n,k´1 q ˙´tr γ e,n´1 `N ∆t q ξ n,k´1 ¯I N * Remark that χ n,k´1 depends upon both tr γ e,n´1 and tr γ e,n,k´1 via a n,k´1 and b n,k´1 . Assuming α ă 1, observe that η 1,n,k´1 and η 2,n,k´1 are always strictly positive, even in the full damaged case d n,k´1 " 1. Then, subproblem (B.5a)-(B.5b) is always well-posed: this elliptic system can be solved by completely standard methods (see e.g. [52, chap 2]). After this resolution, u n,k is known and then γ e,n,k can be computed explicitly from (B.4). Finally, the right-hand-side of (B.2f) can therefore be evaluated: this leads to an explicit computation for d n,k that solves the second step of the fixed point loop.

For all u b P ´H 1 2 pBΩq ¯N , we also introduce the following function space:

V pu b q " ! v P `H1 pΩq ˘N ; v " u b on BΩ )

Then, the variational formulation of (B.5a)-(B.5b) writes: find u n,k P V pu Γ pt n qq such that a n,k´1 pu n,k , vq " n,k´1 pvq, @v P V p0q

The space for the velocities `H1 pΩq ˘N is approximated by piecewise linear and continuous functions on a finite element mesh of the flow domain Ω. Conversely, the elastic deformation γ e and the damage d are approximated by piecewise constant functions. The numerical resolution is implemented by using the Rheolef finite element library [START_REF] Saramito | Efficient C++ finite element computing with Rheolef[END_REF].

Figure 1 :

 1 Figure 1: (left) The damage variable d P r0, 1s is defined by Kachanov [33] as the density of micro-cracks and comminution of the fractured material at the macroscopic level. The background image is a SPOT satellite aerial picture of a 59 ˆ59 km 2 portion of the Arctic sea ice cover centered around 80.18 ˝N, 108.55 ˝W. (right) The rheological model combines two viscous elements ηpdq and ηs with a dry-friction element including both yield stress and Coulomb friction µ, together with a compressible elastic element with a Poisson ratio νpdq.

Figure 2 :

 2 Figure 2: (left) The viscoplastic Drucker-Prager translated cone Tµ,σ y . (right) The Drucker-Prager translated cone Tµ,σ y together with experimental data represented by circles (from [56], Fig. 13, Baltimore in-situ sea ice station). Adjusted parameters are µ " 1{ ? 2 and σy " 56 kPa for N " 2.

Figure 3 :

 3 Figure 3: Representation of the viscoplastic constitutive equation 9 γ p " ∇φ p pσeq. (top-left) The three flow regimes, depending upon the pressure ´tr σe{N . (right) Representation in the stress plane. (bottom-left) Elevation of the κµ,σ y function in the stress plane.

Figure 4 :

 4 Figure 4: A hierarchy of rheological models, where new models are in blue.

Figure 5 :

 5 Figure 5: (left) The uniaxial compression experiment. (right) Family of quasi-uniform unstructured meshes.

Figure 6 :

 6 Figure 6: Averaged value of (top-left) the viscoplastic dissipation wp ; (top-right) the damage dissipation w d ; (bottom-left) the viscoplastic deformation rate | 9 γ p | ; (bottom-right) the damage rate.

Figure 7 :

 7 Figure 7: Isocontours of the solution for increasing mesh resolution: (top) damage d at the end of the failure regime (γ " γ 3 ) ; (bottom) norm of the deformation rate | 9 γ| at the end of the process (γ " 0.03).

Figure 8 :

 8 Figure 8: (left) Averaged value of normal stress on the top boundary ; (right) On the deformed geometry, separation line of the solid/fluid together with isocontours of | 9 γ| at the end of the process (γ " 0.03).

Proof: See [ 43 ]

 43 , paragraph 4.a. Definition 10 (indicator). Let C Ă R NˆN s . Then, the indicator to C, denoted by I C is defined for all δ P R NˆN s by I C pδq " " 0 when δ P C `8 when δ R C Proposition 11 (indicator).

Figure A. 9 :

 9 Figure A.9: (left) Subdifferential of a convex function. (right) Normal cone N C to a convex set C.

;

  when Dδ 0 P K { δ 0 : τ ą 0 0 othewise * " " 8 when τ P K 0 othewise * " I K from the definition 22 of the polar. Definition 24 (normal cone). Let C Ă R NˆN s be a convex set. Then, the normal cone to C, denoted by N C is defined for all δ P R NˆN s by (see Fig. A.9.right): N C pδq " pξ ´δq : τ ď 0, @ξ P C ( when δ P C H when δ R C Remark 25 (normal cone). The name normal cone takes its origin from the fact that it belongs to the class of convex cones, which possesses interesting properties with respect to the convex conjugate. We can easily check that N C pδq " t0u when δ P intpCq. Conversely, when δ P BC, the normal cone N C pδq interprets as the cone of outward normals to C, as shown on Fig. A.9.right. Proposition 26 (normal cone). Let C Ă R NˆN s be a convex set and any δ P R NˆN s

2 .

 2 if C ‰ H then I C is proper. Assume first δ R C. Then N C pδq " BI C pδq " H. Next, assume δ P C. Then τ P BI C pδq ðñ I C pξq ě I C pδq `pξ ´δq : τ , @ξ P R NˆN s ðñ I C pξq ě pξ ´δq : τ , @ξ P R NˆN s ðñ 0 ě pξ ´δq : τ , @ξ P C ðñ τ P N C pδq 3. Let δ P intpCq. There exists ε ą 0 such that I C pδq is zero on the closed ball Bpδ, εq. Then I C pδq is Gâteaux-differentiable at δ and ∇I C pδq " 0. Then BI C pδq " t0u.

  proposition 27 ðñ δ P BI K ˝p0q from proposition 26.c ðñ δ P B pI K q ˚p0q from proposition 23 ðñ 0 P B pI K q ˚˚pδq from theorem 4 ðñ 0 P BI K pδq from proposition 19 ðñ 0 P N K pδq from proposition 26.c ðñ δ P K from proposition 26.b Proposition 29 (conic complementarity).

step 1 :

 1 assume |τ | ď 1. By definition of the subdifferential: τ P Bϕp0q ðñ ϕp0q `τ : µ ď ϕpµq, @µ P R NˆN s ðñ τ : µ ď |µ|, @µ P R NˆN s From the Cauchy-Schwartz inequality τ : µ ď |τ | |µ| ď |µ| by assumption, and then |τ | ď 1 ñ τ P Bϕp0q.

step 2 :

 2 let us turn to the reciprocal. By contraposition: τ P Bϕp0q ùñ |τ | ď 1 ðñ τ R Bϕp0q ðù |τ | ą 1 By definition of the subdifferential: τ P Bϕp0q ðñ ϕp0q `τ : pµ ´0q ď ϕpµq, @µ P R NˆN s ðñ τ : µ ď |µ|, @µ P R NˆN s τ R Bϕp0q ðñ Dµ P R NˆN s { τ : µ ą |µ| Assume |τ | ą 1. We have τ ‰ 0 µ " τ {|τ |. Observe that |µ| " 1 and then τ : µ ´|µ| " τ : τ |τ | ´1 " |τ | ´1 ą 0 Finally τ P Bϕp0q ùñ |τ | ď 1 and the proof is complete. Definition 31 (von Mises dissipation potential). The von Mises dissipation potential ϕ m : R NˆN s Ñ R is defined for all δ P R NˆN s by ϕ m pδq " σ y |dev δ| (A.3a)

W e d " U η d LE 0 and γ c " σ c E 0

 0 Here, W e d is a damage-related Weissenberg number, and γ c is a damage yield deformation. Conversely, by introducing a damage related Bingham dimensionless number Bi d " Lσ c {pη d U q, we have γ c " W e d Bi d . The dimensionless Cauchy stress writes:σ " 2p1´αqDpuq `p1´dq W e p σ eand the dimensionless dissipation writes w p " 2p1´αq|Dpuq| 2 `p1´dq αW e 2

  1s and γ e P R NˆN s Observe that the first subproblem (B.2a)-(B.2c) is now linear: the two unknowns γ e,n,k and u n,k are highlighted in blue for clarity. The second one (B.2d)-(B.2e) is now explicit. An additional projection on r0, 1s has been introduced, since, after time discretization, there is no more guaranty for dn,k to belongs in r0, 1s. The constitutive (B.2a) and momentum (B.2b) equations are solved simultaneously for the elastic deformation γ e,n,k and the velocity u n,k , using the known damage d n,k´1 . Then, using (B.2d)-(B.2f), the damage is re-evaluated as d n,k , based on this value of γ e,n,k . The linear subproblem (B.2a)-(B.2c) is solved in two steps. First, (B.2a) writes equivalently as

Table 1 :

 1 Table of notations.

	Notation Description	Notation Description
	N dimension of the physical space	ρ density
	R NˆN s	set of real symmetric NˆN matrix	η0, ηs viscosities
	I identity tensor	ηtot " η0 `ηs, total viscosity
	tr τ , dev τ trace and deviator of a tensor τ	η d damage-related viscosity
	d damage (scalar)	σy viscoplastic cohesion (yield stress)
	Y	strain energy release rate (scalar)	σc damage cohesion
	u velocity	µ friction coefficient (dimensionless)
	γ total deformation	ν, E Poisson ratio and elastic modulus
	γ e elastic deformation γ p plastic deformation	G, λ Lamé coefficients A elasticity fourth order operator
	σ Cauchy total stress	ψ Helmholtz free energy
	σe elastic stress	φ dissipation potential
	W e Weissenberg number, viscoelasticity	φp viscoplastic dissipation potential
	γy elastoplastic yield deformation	φ d damage dissipation potential
	W e d for damage relaxation	w total dissipation
	γc elastodamage yield deformation	wp viscoplastic dissipation
			w d damage dissipation
			Kµ Drucker-Prager cone
			Tµ,σ y translated Drucker-Prager cone
			IC indicator function of the set C

Table

  

  denotes the total Cauchy stress tensor and we have used γ e " γ ´γp from (1). Also, A 1 pdq denotes the derivative of the elasticity operator versus d. Here Bφ d ´rγ e , ds; 9 d ¯is the subdifferential of φ d with respect to the variable 9 d. From proposition 17 in appendix: It can be rearranged in a more convenient way, suitable for numerical computations. Let us introduce the elastic stress σ e as the dual variable associated to the state variable 9 γ p , i.e. σ e " ´ρ Bφ p {B 9

	σ " ρ γ 0 P ρ Bψ Bγ pγ, γ p , dq `Bφ B 9 γ ´9 γ, 9 Bψ Bγ p pγ, γ p , dq `Bφ B 9 γ p ´9 γ, 9 γq " t´pI ; p P Ru i.e. the set of spherical tensors. After rearrangements, the three constitutive equations become: σ " ´pI `2η s 9 γ `Apdqγ e (3a) Bφ p prds, 9 γ ´9 γ e q Q Apdqγ e (3b) Bφ d ´rγ e , ds; 9 d ¯Q p´A 1 pdqγ e q : γ e (3c) The first equation (3a) expresses the total Cauchy stress tensor σ as the sum of a pressure term, a viscous one and an elastic extra stress contribution. This third contribution involves both the elastic deformation γ e and the damage d, which are provided by the two last constitutive relations Let us review them. The second constitutive relation (3b) appears as an implicit differential relation for γ e , for any γ BI kerptrq p 9 given 9 γ.

]): p , 9 d ¯" Apdqγ e `BI kerptrq p 9 γq `2η s 9 γ p , 9 d ¯" ´Apdqγ e `Bφ p prds, 9 γ ´9 γ e q 0 P ρ Bψ Bd pγ, γ p , dq `Bφ B 9 d ´9 γ, 9 γ p , 9 d ¯" pA 1 pdqγ e q : γ e `Bφ d ´rγ e , ds; 9 d where σ

  1, is the Clausius-Duhem inequality (see e.g. [51, p. 221]), that writes here, since the process is isothermal,

	as:							
			w " ´ρ 9 ψ `σ : 9 γ ě 0	
	where w denotes the total dissipation. From (1) and (2a), the first term expands as:
	´ρ 9 ψ "	´ρ Bψ Bγ	: 9 γ	´ρ Bψ Bγ p	: 9 γ p	´ρ Bψ Bd	9 d " ´σe : 9 γ e	`Y 9 d
	where σ e is the elastic stress and Y the strain energy release rate. Then, using (3a), the dissipation
	becomes w " 2η s | 9 γ| 2 `σe : 9 γ p	`Y 9 d. Observe that		
	w p " 2η s | 9 γ| 2 `σe : 9 γ p " 2η s |σ e | 2 | 9 γ| 2 `σe : ∇φ p prds, σ e q ě 0	(4a)
	w d " Y 9 d " Y ∇φ d prγ e , ds; Y q ě 0	(4b)

Table 2 :

 2 

				number	value	expression
				W e	5ˆ10 ´4 U pη s `η0 q{pLE 0 q
				W e d	10 ´7	U η d {pLE 0 q
				γ y	1.8ˆ10 ´3	σ y0 {E 0
				γ c	2ˆ10 ´3	σ c {E 0
				ν 0	0.30	
		12	Pa.s	ν 1	0.49	
	η s	1.4ˆ10 8	Pa.s	µ	0.7	
	η d	2.8ˆ10 8	Pa.s	1 ´α	10 ´4	η s {pη s `η0 q

Table of physical dimensional (left) and dimensionless (right) parameters.

Table 3 :

 3 Table of numerical parameters.

	3.2. Space and time discretizations	
	h{L	# elements pU {Lq∆t # time steps
	1{20	508 1.2ˆ10 ´5	2500
	1{40	2 064 0.6ˆ10 ´5	5000
	1{80	8 518 0.3ˆ10 ´5	10000
	1{160	33 858 1.5ˆ10 ´6	20000

  5. Von Mises plasticity criterionLemma 30 (subdifferential of the matrix norm). The subdifferential of the function ϕ : R NˆN We have ϕ 0 pδq " f ˝gpδq with f pξq " ? ξ, for all x P R, and gpδq " |δ| 2 . Observe that f 1 pξq " 1{p2 ? ξq and g 1 pδq " 2δ. Assume first that δ ‰ 0. Then, ϕ is differentiable in δ and ∇ϕpδq " f 1 ˝gpδq g 1 pδq " δ{|δ|

	Next, assume δ " 0 and let us show that Bϕp0q " τ P R NˆN s	{ |τ | ď 1	(
	writes	Bϕpδq "	$ ' &	" τ "	δ |δ|	*	when δ ‰ 0
			' %	τ P R NˆN	

s Ñ R is defined for all δ P R NˆN s by ϕpδq " |δ| s { |τ | ď 1 ( otherwise Proof:

  Proposition 32 (subdifferential of the von Mises dissipation potential).Let ϕ m denotes the von Mises viscoplastic dissipation potential, as introduced in definition 31. Its subdifferential expresses, for all δ P R NˆN Definition 33 (von Mises set). For all σ y ě 0, the von Mises set is defined by Note that the von Mises set is a convex cone, that corresponds to a vertical band of width σ y in the deviatoric-trace stress plane representation.Proposition 34 (von Mises set).For all σ y ě 0, we have ´I´Bσ y ¯˚" I kerptrq `ϕm Proof: From corollary 15, the equality could be shown from the equality of the subdifferentials. From definition 24 and proposition 26, a necessary condition for BI kerptrq pδq to be non-empty is δ P kerptrq i.e. tr δ " 0. Next, proposition 17, gives BI kerptrq pδq " kerpdevq.Let any τ P kerpdevq `Bϕ m pδq with tr τ N I P kerpdevq and dev τ P Bϕ m pδq. Then, from proposition 32, we have |dev τ | ď σ y and thus, by definition 40 we obtain τ P B σy . From definition 24, note also that N ´Bσy pτ q ‰ H. Assume first that dev δ ‰ 0. Then, from proposition 32, and since τ P Bϕ m pδq we get dev τ " σ y dev δ |dev δ| . Note that τ : δ " σ y |dev δ|. For all ξ such that |dev ξ| ď σ y we have

					B σy "	τ P R NˆN s	; |dev τ | ď σ y	(
								(A.4)
								(A.5)
								(A.6)
	First, observe that	tr τ			
							s	, as
	Bϕ m pδq "	$ ' &	" τ " σ y	dev δ |dev δ|	*	when dev δ ‰ 0	(A.3b)
		' %	τ P R NˆN s	{ tr τ " 0 and |dev τ | ď σ y	(	when dev δ " 0
						$ ' &	"	τ " σ y	dev δ |dev δ|
						'
						%

Proof: Observe that the von Mises potential writes also as ϕ m pδq " σ y ϕpdev δq where ϕpδq " |δ| is the matrix norm. Then, applying proposition 16 and lemma 30, we get Bϕ m pδq " σ y dev Bϕpσ y dev δq " * when dev δ ‰ 0 σ y dev τ ; τ P R NˆN s and |τ | ď 1 ( otherwise which leads to (A.3b) after rearrangements. ' forward inclusion: B `I´Bσ y ˘˚Ă kerpdevq `Bϕ m

Let τ P B `I´Bσ y ˘˚pδq or equivalently δ P BI ´Bσy pτ q " N ´Bσy pτ q where we have used the Fenchel-Young theorem 4 and proposition 26. From definition 24, for N ´Bσy pτ q to be non-empty, we necessarily have τ P ´Bσy i.e., by definition 40, |dev τ | ď σ y . Expanding definition 24 of a normal cone, we have tr δ " 0 |dev τ | ď σ y pξ ´τ q : δ ď 0, @ξ { |dev ξ| ď σ y N I P kerpdevq. Assume first that dev δ " 0, which means from (A.4) that δ " 0, then, from proposition 32, we obtain dev τ P Bϕ m pδq. Next, assume dev δ ‰ 0. Suppose, by reductio ad absurdum that τ R Bϕ m pδq. Since we necessarily have |τ | " σ y for (A.6) to be satisfied, there exists δ 2 such that dev τ " σ y dev δ 2 |dev δ 2 | and pdev δ 2 q : pdev δq ă |dev δ 2 | |dev δ| i.e. dev δ and dev δ 2 are not aligned. Then, choosing dev ξ " σ y dev δ |dev δ| in (A.6) leads to pdev δ 2 q : pdev δq ě |dev δ 2 | |dev δ| which is impossible. Then τ P Bϕ m pδq and the forward inclusion is complete. ' backward inclusion: B `I´Bσ y ˘˚Ą kerpdevq `Bϕ m ξ : δ " pdev ξq : pdev δq ď |dev ξ| |dev δ| ď σ y |dev δ| " τ : δ ðñ pξ ´τ q : δ ď 0 (A.7)

  At time step t n , n ě 1, assume that γ e,n´1 , u n´1 and d n´1 are known. Then, the first order time discretization of the problem leads to compute γ e,n , d n and u n by a fixed-point inner loop for solving the nonlinearities. Let k denotes the index of this inner loop. The fixed point algorithm writes:' When k " 0, let `γe,n,0 , d n,0 , u n,0 ˘" `γe,n´1 , d n´1 , u n´140' When k ě 1, assume that pγ e,n,k´1 , d n,k´1 , u n,k´1 q are known. step 1: find γ e,n,k and u n,k such that Vpd n,k´1 , γ e,n,k´1 ; γ e,n,k q ´Dpu n,k q " 0 Apd n,k´1 qγ e,n,k ˙" f pt n q u n,k " u Γ pt n q on BΩ Y n,k´1 " p´A 1 pd n,k´1 qγ e,n,k q : γ e,n,k dn,k " d n´1 `∆t p1´d n,k´1 q κ µ,γc ´p Apd n,k´1 qγ e,n,k

	$ ' ' ' ' ' & ' ' '	γ e,n,k ´γe,n´1 ∆t `´div ˆ2p1´αqDpu n,k q	`p1´dq W e	p		(B.2a) (B.2b)
	'				
	' %					(B.2c)
	step 2: compute explicitly			
						(B.2d)
					2W
			e d p1 `µ2 q	Y n,k´1	(B.2e)
		d n,k " maxp0, minp1, dn,k qq			(B.2f)
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Appendix A. Convex analysis applied to viscoplasticity

The aim of this appendix is to present the complete proof of theorem 2, page 2, in a self-contained way. This appendix starts with several well-known results from convex analysis due to Rockafellar [START_REF] Rockafellar | Convex analysis[END_REF] and Moreau [START_REF] Moreau | Fonctionnelles convexes[END_REF]. Next, new results are established concerning von Mises and Drucker-Prager plasticity criteria. These new results extend previous works from Saxcé and coworkers [START_REF] Hjiaj | A complete stress update algorithm for the nonassociated Drucker-Prager model including treatment of the apex[END_REF] and Daviet [10, app. A] on Drucker-Prager plasticity.

Appendix A. [START_REF] Alejano | Drucker-Prager criterion[END_REF]

. Notations and definitions

Let N ě 1 be the physical space dimension. The space of symmetric real N ˆN matrix is denoted by R NˆN s . Its scalar product is δ : τ for all δ, τ P R NˆN s and |δ| " pδ : δq 1 2 is the associated norm.

Definition 4 (convex set).

A set C Ă R NˆN is convex when θδ 1 `p1 ´θqδ 2 P C, @δ 1 , δ 2 P C, @θ P r0, 1s

The set C is strictly convex if and only if θδ 1 `p1 ´θqδ 2 P intpCq, @δ 1 , δ 2 P C, δ 1 ‰ δ 2 , @θ P s0, 1r

where intpSq " SzBS denotes the interior of S.

Definition 5 (convex function).

A function ϕ : R NˆN Ñ R is convex if and only if ϕpθδ 1 `p1 ´θqδ 2 q ď θϕpδ 1 q `p1 ´θqϕpδ 2 q, @δ 1 , δ 2 P R NˆN , @θ P r0, 1s

The function ϕ is strictly convex if and only if ϕpθδ 1 `p1 ´θqδ 2 q ă θϕpδ 1 q `p1 ´θqϕpδ 2 q, @δ 1 , δ 2 P R NˆN , δ 1 ‰ δ 2 , @θ P s0, 1r Definition 6 (proper function). For any function ϕ : R NˆN Ñ R, let dompϕq " δ P R NˆN { ϕpδq ă 8 (

Then, ϕ is said to be proper if and only if dompϕq ‰ H and ϕpδq ‰ ´8, δ P R NˆN Definition 7 (closed function).

For any function ϕ : R NˆN Ñ R, let us introduce the epigraph of ϕ, defined by epipϕq " pδ, zq P R NˆN ˆR { ϕpδq ď z ( Then, ϕ is said to be closed if and only if the set epipϕq is closed.

Definition 8 (lower semi-continuous function).

A function ϕ : R NˆN Ñ R is said to be lower semi-continuous at δ 0 P R NˆN if and only if @ε ą 0, Dα ą 0 such that |δ ´δ0 | ă α ñ ϕpδq ě ϕpδ 0 q ´ε, @δ P R NˆN Proposition 9 (lower semi-continuous).

The following propositions are equivalent

• ϕ is lower semi-continuous Theorem 3 (subdifferential of a sum).

Let ϕ 1 , ϕ 2 : R NˆN Ñ R be two convex functions.

If there exists δ 0 P dompϕ 1 q X dompϕ 2 q such that ϕ 1 is continuous at δ 0 , then Bpϕ 1 `ϕ2 q " Bϕ 1 `Bϕ 2

Proof: See [START_REF] Moreau | Fonctionnelles convexes[END_REF], proposition 10.7, page 62. It always holds Bpϕ 1 `ϕ2 q Ă Bϕ 1 `Bϕ 2 , but the additional condition is required for the equality to be achieved.

Corollary 14 (subdifferential of sum).

Let ϕ, ψ : R NˆN Ñ R be two convex functions with ϕ proper and closed.

If intpdompϕqq X dompψq ‰ H then Bpϕ `ψq " Bϕ `Bψ Proof: From theorem 3.

Corollary 15 (subdifferentials and equality).

Let ϕ, ψ : R NˆN Ñ R be two convex functions such that Bϕpδq Ă Bψpδq for all δ P R NˆN . Then ϕ and ψ differ from a finite constant.

Proof: See [START_REF] Moreau | Fonctionnelles convexes[END_REF], paragraph 10.j, page 70.

Proposition 16 (subdifferential and affine map).

Let F : R NˆN Ñ R NˆN be and affine map, i.e. Fpδq " A : δ `F ˚, for all δ P R NˆN and where A is a fourth-order tensor and F ˚P R NˆN . Let ϕ : R NˆN Ñ R be a convex function.

' Then, for all δ P R NˆN Bpϕ ˝Fqpδq Ą A T : BϕpFpδqq where A T denotes the transpose of A. ϕpδq `ϕpτ q " δ : τ ðñ τ P Bϕpδq ðñ δ P Bϕ ˚pτ q

Proof: From the definition 18 of the convex conjugate: ϕpδq `ϕ˚p τ q " ϕpδq `sup µPR NˆN `µ : τ ´ϕpµq ˘ě ϕpδq ``δ : τ ´ϕpδq ˘" δ : τ Then ϕpδq `ϕ˚p τ q " δ : τ ðñ ϕ ˚pτ q " δ : τ ´ϕpδq ðñ µ : τ ´ϕpµq ď δ : τ ´ϕpδq, @µ P R NˆN ðñ ϕpδq `pµ ´δq : τ ď ϕpµq, @µ P R NˆN ðñ τ P Bϕpδq

The second part of the equivalence is obtained, when ϕ is proper and closed, by replacing ϕ by ϕ ånd using ϕ ˚˚" ϕ from proposition 19.

Appendix A.4. Convex and normal cones

Definition 20 (convex cone).

A subset K Ă R NˆN is a convex cone if and only if a 1 δ 1 `a2 δ 2 P K for all δ 1 , δ 2 P K and a 1 , a 2 ě 0.

Proposition 21 (convex cone).

Let K Ă R NˆN be convex cone. Then 0 P K if and only if K ‰ H.

Proof: Assume that K ‰ H. Then, from the definition of the convex cone and taking zero coefficients, we obtain 0 P K.

Definition 22 (polar and dual cones).

For all convex cone K Ă R NˆN , we define the polar cone K ˝and the dual cone K ˚by

Appendix A.6. Drucker-Prager plasticity criterion Definition 35 (Drucker-Prager cone). For all µ P r0, 8s, the Drucker-Prager cone, denoted by K µ is the second-order cone defined by:

Proposition 36 (Drucker-Prager cone is convex). For all µ P r0, 8s, the Drucker-Prager cone K µ is a convex cone.

Proof: Consider any τ 1 , τ 2 P K µ and β 1 , β 2 ě 0. Assume first µ P r0, 8r. We have:

and then β 1 τ 1 `β2 τ 2 P K µ . Next, assume µ " 8. We have:

Then, from definition 20, K µ is a convex cone for all µ P r0, 8s.

Proposition 37 (polar and dual Drucker-Prager cones). For all µ P r0, 8s, the polar and dual of the Drucker-Prager cone K µ are respectively:

Proof: When µ " 0, from proposition 17 we have pker devq ˝" kerptrq and from definition 35 we deduce immediately K 0 " ´K8 . Tacking the polar of the previous relation and using proposition 28, we get K 8 " ´K˝0 " ´K0 which completes the proof for µ " 8. The rest of the proof is devoted to the case µ P s0, 8r.

' forward inclusion K μ Ă ´K 1 µ . Let δ P K μ and let us prove that δ P ´K 1 µ . If δ " 0 then δ P ´K 1 µ . Next, assume δ ‰ 0. By definition 22, for all τ P K µ , the inequality δ : τ ď 0 holds. Then, let us choose:

µ tr τ ? N and then τ P K µ . With this choice, we get:

δ : τ ď 0 ðñ ptr δq ptr τ q N `pdev δq : pdev τ q ď 0 by expansion

µ and let us prove that δ P K μ. For all τ P K µ we have:

Then δ : τ " pdev δq : pdev τ q `ptr δq ptr τ q N by expansion in deviatoric and spherical parts ď |dev δ| |dev τ | `ptr δq ptr τ q N from the Cauchy-Schwartz inequality ď ´tr δ ? N µ ˆµ tr τ ? N `ptr δq ptr τ q N since δ P ´K 1 µ and τ P K µ " 0 By definition 22, it means that δ P K μ. Thus, we have K μ " ´K 1 µ for all µ P r0, 8s. Finally, from definition 22, pK µ q ˚" ´pK µ q ˝" K 1 µ and the proof is complete. pdev δq : pdev τ q `ptr δq ptr τ q N " 0

It is easy to check, from the definition of the Drucker-Prager cone, that any of the three case of the disjunctive formulation is a sufficient condition for τ P BI K 1 pδq. So, let us turn to show that it is a necessary condition.

' Let us first assume δ " 0. Then (A.9c) directly gives the sticking case (A.8a).

' Next, assume δ ‰ 0 and tr δ " ?

N µ |dev δ|. Then dev δ ‰ 0. From (A.9b) and (A.9c), we have: pdev δq : pdev τ q " ´ptr δq ptr τ q N from (A.9b)

and from the Cauchy-Schwartz inequality, the equality occurs. Thus, there exists a constant k P R such that dev τ " k dev δ. From (A.9b) and since dev δ ‰ 0, we obtain an expression for k k " ´ptr δq ptr τ q N |dev δ| 2 "

´?N µ tr τ N |dev δ| since tr δ " ? N µ |dev δ| Note that k ě 0 since tr τ ď 0 from (A.9c) and finally, the sliding case (A.8b) is complete.

' Finally, assume δ ‰ 0 and tr δ ‰ ? N µ |dev δ|. From (A.9a), we then have tr δ ą ? N µ |dev δ| and thus tr δ ‰ 0. From (A.9c), we obtain tr τ ď 0 and suppose, by reductio ad absurdum that tr τ ă 0. Then, from the Cauchy-Schwartz inequality:

This implies δ : τ ă 0 which is in contradiction with (A.9b). Then tr τ " 0. Again from (A.9c) we obtain dev τ " 0 and finally τ " 0. Then, the losing contact case (A.8c) is complete.

Appendix A.7. Translated Drucker-Prager plasticity criterion

This criterion extends the original Drucker-Prager one [START_REF] Drucker | Soil mechanics and plastic analysis or limit design[END_REF] by incorporating the cohesion σ y ě 0 (see e.g. [START_REF] Alejano | Drucker-Prager criterion[END_REF]).

Definition 40 (translated Drucker-Prager cone). For all µ P r0, 8s and σ y ě 0, the translated Drucker-Prager cone, denoted by T µ,σy , is defined by: Proof: Note that when σ y " 0, we have T µ,σy " K µ which is a convex set and the result is given by proposition 38. Thus, the present result extends proposition 38.

Let us turn now to the general case σ y ě 0. The convexity of T µ,σy is established by using an argument similar to those of the proof of proposition 36. For establishing the main result, we then successively consider the three cases µ " 0, µ " 8 and µ P s0, 8r. When µ " 0, since T 0,σy " B σy , the result is directly obtained from proposition 34. When µ " 8, from definition 35, we have ´T8,σy " kerptrq and then, from proposition 17 we get pI ´T8,σy q ˚" I kerptrq " I kerpdevq and then, the proof is also complete when µ " 8. The rest of the proof is dedicated to the case µ P s0, 8r.

From corollary 15, the equality could be shown from the equality of the differentials. Assume first that δ R K 1 µ then both BI K 1 µ and B `I´Tµ,σ y ˘˚are empty and the equality is satisfied. Then,

For the equality, we successively prove the forward and reverse inclusions of the subdifferentials.

' forward inclusion: B `I´Tµ,σ y ˘˚Ă BI K 1 µ `σy ? N µ I Let τ P B `I´Tµ,σ y ˘˚pδq or equivalently δ P BI ´Tµ,σy pτ q " N ´Tµ,σy pτ q where we have used the Fenchel-Young theorem 4 and proposition 26. From definition 24, we necessarily have τ P ´Tµ,σy for N ´Tµ,σy pτ q to be non-empty. Expanding δ P K " 0 Thus pξ ´τ q : δ ď 0 for all ξ P ´Tµ,σy while (A.15) means that τ P ´Tµ,σy . Recalling the definition 24 of the normal cone, this means that δ P N ´Tµ,σy pτ q. From proposition 26, we have N ´Tµ,σy " BI ´Tµ,σy and then δ P BI ´Tµ,σy pτ q or, thanks to the Fenchel-Young theorem 4, τ P B `I´Tµ,σ y ˘˚pδq which proves the backward inclusion and then completes the proof when µ P s0, 8r. Let δ P Bφ p pτ q or equivalently τ P Bφ p pδq, thanks to the the Fenchel-Young theorem 4. Then, from the definition (6e) of φ p , we have τ P 2ηδ `B`I ´Tµ,σy ˘˚pδq.

Assume first µ P s0, 8r. Using proposition 41, for expanding `I´Tµ,σ y ˘˚, we get τ ´2ηδ ´σy ? N µ

Next, let us turn to the expansion of BI K 1 µ by using proposition 39: the three cases of the disjunction are successively considered.

' sticking. Injecting (A.18a) in (A.8a) and rearranging, we get

From (A.18b), the subdifferential Bφ p pτ q " t0u. Since it contains exactly one element, φ p is differentiable in that case and ∇φ p pτ q " 0. Let us check that the right-hand-side of (6f) coincides with the expected result. Using (A.18c) we obtain σ y ´µ tr τ ? N ě |dev τ | ě 0 ě ´µ2 |dev τ | and then (6g) gives κ µ,σc pτ q " 0. Finally (6f) leads to ∇φ p pτ q " 0 which is the expected result since δ " 0. Such simplifications allow us to focus on the interplay between the main nonlinearities introduced by the two dissipation potentials φ p and φ d , expressed by (6e) and (6k), respectively, while the elasticity operator A is given by (6a). Note that the numerical procedure developed in this appendix could be easily adapted to others choices of the dissipation potentials and to the reintroduction of incompressibility and full time derivatives. While the final numerical algorithm is relatively simple, its correct derivation requires some technical computations.

Appendix B.2. Dimensionless procedure

Let L and U be characteristic length and velocity, respectively. The characteristic time is L{U and the characteristic stress is pη s `η0 qU {L. The dimensionless variables and unknown are denoted with tildes and defined by

x " x L , t " U t L , ũ " u U , σ " L σ pη s `η0 qU , w " L 2 pη s `η0 qU 2 w while d and γ e , which are already dimensionless, are unchanged. In the rest of this appendix, only dimensionless variables are considered. Thus, for simplicity and since there is no ambiguity, tildes are omitted on the dimensionless variables.

Recall that E, η and σ y are defined by (6c), (6i) and (6j) respectively, and all of them present a singular factor 1´d. Thus, in expression(6f) of ∇φ p , both the numerator and the denominator involve this 1´d factor that is zero at the limit of a fully damaged material. The expression of ∇φ p could be nicely extended by continuity at this limit: for this, all expressions, both in