N
N

N

HAL

open science

PseuToPy: Towards a Non-English Natural
Programming Language
Patrick Wang

» To cite this version:

Patrick Wang. PseuToPy: Towards a Non-English Natural Programming Language.
national conference on Computing Education Research, Aug 2021, Virtual Event, United States.

10.1145/3446871.3469787 . hal-03257379

HAL Id: hal-03257379
https://hal.science/hal-03257379

Submitted on 10 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

ACM Inter-


https://hal.science/hal-03257379
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

archives-ouvertes

PseuToPy: Towards a Non-English Natural
Programming Language
Patrick Wang

» To cite this version:

Patrick Wang. PseuToPy: Towards a Non-English Natural Programming Language. ACM Inter-
national conference on Computing Education Research, Aug 2021, Virtual Event, United States.
10.1145/3446871.3469787 . hal-03257379

HAL Id: hal-03257379
https://hal.archives-ouvertes.fr/hal-03257379

Submitted on 10 Jun 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0
International License


https://hal.archives-ouvertes.fr/hal-03257379
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

PseuToPy: Towards a Non-English Natural Programming
Language

Patrick Wang
patrick.wang@isep.fr
ISEP - Institut Supérieur d’Electronique de Paris
Issy-les-Moulineaux, France

ABSTRACT

Most text-based programming languages found in introductory
programming courses use English words. This fact alone can deter
non-English speakers who wish to learn to program: how can we
expect them to learn a programming language if they do not even
understand the meaning of the keywords they are manipulating?
In addition, the syntax and semantics of programming languages
are also known causes of learners’ mistakes. In this paper, we high-
light these difficulties and then present PseuToPy, a programming
language which can be localized in several tongues on the one hand
and produce instructions close to these natural languages on the
other. PseuToPy is still a work in progress: we have developed a
version in French and hope to study its use in an educational con-
text to see whether or not programming beginners find it easier
to learn programming by implementing algorithms in their native
tongues.

CCS CONCEPTS

» Theory of computation — Grammars and context-free lan-
guages; « Human-centered computing — Accessibility systems
and tools; « Applied computing — Education.

KEYWORDS

programming education, programming language, formal grammar,
pseudocode

ACM Reference Format:

Patrick Wang. 2021. PseuToPy: Towards a Non-English Natural Program-
ming Language. In Proceedings of the 14th ACM Conference on International
Computing Education Research (ICER 2021), August 16—19, 2021, VirtualEvent,
USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3446871.
3469787

1 INTRODUCTION

Learning to program frequently relies on the introduction of algo-
rithmic notions followed by their application using a programming
language. The literature identifies difficulties originating both from
the syntax and semantics of programming languages. For example,
and regarding the syntactic aspect, Altadmri and Brown [1] have an-
alyzed 37 million code compilations in Java and have found that the

most common mistakes were mismatched parentheses. On another
note, Portnoff [3] suggests that programming languages should
be taught as a language course. However, and while introductory
programming courses naturally emphasize on the vocabulary and
semantics of a programming language, grammar rules are less likely
to be presented to programming beginners due to their possibly
overwhelming aspects [2]. To illustrate this last claim, the Python
3.8 grammar specification defines the following rule to characterize
if statements. One would need to refer to the namedexpr_text and
suite rules (and so on if other rules are used) to fully understand
the intricacies of this if_stmt rule.

suite
':' suite)x

if_stmt: 'if' namedexpr_test ':
('elif' namedexpr_test
['else' ':' suitel]

But one could also think of modifying this rule. For example
and as suggested below, the first line could be edited to add more
semantics to it. A potential benefit of this modification could be
that this rule would now guide learners in what is expected from
the programming language when writing if statements.

if_stmt: 'if' 'the' 'condition' namedexpr_test
'is' 'true' ':' suite
However, an obstacle remains: most of the time, programming
languages are written in English, which might exclude non-English
speakers. This observation is striking for two reasons. The first
reason, quite obviously, concerns the fact that a design decision
potentially puts aside a large part of the world’s population. The
second reason is related to the conclusion drawn by Qian and
Lehman [5] that English proficiency seems to be a strong predictor
of students’ performances in introductory programming courses.
In this paper, we introduce PseuToPy: a programming language
aimed at producing almost natural instructions while also providing
support for multiple different tongues. This is done by designing a
formal grammar based on the Python grammar specification and
editing its rules by adding keywords in the targeted languages. As a
result, PseuToPy allows learners to write instructions that resemble
natural language sentences in their native tongue if supported.
The following sections detail the design and implementation of
PseuToPy as well as leads for future work.

2 PSEUTOPY

2.1 Design of PseuToPy

The design of PseuToPy follows five aspects: (1) the formal gram-
mar of PseuToPy is based on the grammar specification for Python,
(2) this formal grammar is modified to add alternative instructions
in another language, (3) the alternative instructions can help disam-
biguate symbols or emphasize on programming concepts, (4) the


https://doi.org/10.1145/3446871.3469787
https://doi.org/10.1145/3446871.3469787

ICER 2021, August 16-19,2021, Virtual Event, USA

n_n

?assign: (testlist_star_expr (

nonan

| ("assigner" "a" testlist_star_expr ("la

non

Patrick Wang

(yield_expr|testlist_star_expr))*)

valeur" (yield_expr | testlist_star_expr))*)

Figure 1: The assign rule with the specification for Python and for the French version of PseuToPy.

instructions produced resemble almost grammatically-correct natu-
ral language sentences, and (5) instructions written in PseuToPy
can be converted into Python code and then ran to show learners
the results of its execution.

The first two aspects present the benefits of offering a complete
compatibility with Python while allowing for the construction of
instructions in a language other than English. For example, if we
consider an implementation in French, the two following instruc-
tions would be identical: “x = True” and “assigner a x la
valeur vrai”l. With this example, we can also see the interest of
the third aspect. The “=” symbol is a common source of misconcep-
tion found in the literature [4] which, in PseuToPy, can be replaced
to emphasize on the actual meaning of this statement: a variable
assignment. As we can also see with the example above, PseuToPy
can also produce instructions that are close to natural language
sentences while complying to the strict rules of a formal grammar.
And finally, these instructions can be converted into the equivalent
Python program and then ran to allow learners to see the Python
implementation and check the correctness of their algorithms.

2.2 Implementation of PseuToPy

The implementation of PseuToPy is a three-step process. First, Pseu-
ToPy specifies its formal grammar and implements a parser in order
to produce a syntax tree. This is done thanks to the lark-parser
Python package?. The second step consists in taking this syntax
tree and generating the equivalent Python instructions. And finally,
the last step consists in modifying this grammar specification by
adding keywords in the targeted language. For example, the assign
rule illustrated in Fig. 1 shows on its first line the Python rule and
on the second line the equivalent rule with French words.

With this example, we can also easily see how other languages
could be supported in PseuToPy, which we have done for Chinese
and Arabic on the assign rule as proof of concept [2]. These two
languages were selected to determine whether PseuToPy could
work with non-ASCII characters and with right-to-left languages.

At the time of writing, PseuToPy is still under active develop-
ment and a preliminary version of the French grammar has been
implemented. In particular, we have targeted grammar rules which
specify instructions that beginners would commonly write. This
comprises arithmetic and boolean operations, comparisons, vari-
able assignments, control structures, and function definitions and
calls. In the future, we wish to provide support for more statements
such as class definition and object instantiation.

PseuToPy is an open source project which the authors see as
a community effort. It is only with the help of a diverse group of
researchers and educators that more languages can be supported.
More information on how to contribute to this project can be found
here: https://github.com/PseuToPy/PseuToPy.

In English, this instruction would translated into “assign to x the value true”.
Zhttps://lark-parser.readthedocs.io/

3 CONCLUSION AND FUTURE WORKS

PseuToPy wishes to offer the opportunity to any non-English speaker
to learn to program, using their own native tongue. This task is
ambitious, clearly. This is why this article is also a call to the commu-
nity interested in broadening access to programming to contribute
to this project by proposing a grammar specification in their native
non-English language.

In parallel to this community effort, our next step consist in exper-
imenting with learners in educational contexts with two research
questions in mind. First, would the use of a natural programming
language help learners to produce less syntax errors? And second,
what would be the effects of using a natural programming language
on the design and implementation of algorithms by programming
beginners?

With the first research question, we hope to improve the design
of PseuToPy and its underlying grammar specifications. As a first
step towards providing an answer to this question, we plan to
adopt a design-based research methodology to specify the French
keywords to be used in the grammar with the help of researchers,
experts, and practitioners. We then hope to conduct experiments
in ecological settings to determine if using one’s native tongue
reduces the risk of making syntax errors when writing programs.

With the second research question, we then wish to study the
possible effects of using PseuToPy to learn programming and algo-
rithmic notions. In particular, we plan to conduct a comparative
study with French high school students, whose English proficiency
should be good enough to be introduced to either PseuToPy or
Python, to evaluate how fast or how easily they convert their al-
gorithms into written programs and if we can distinguish learning
gains between the two configurations. Follow-up studies would
then concern the learners’ appropriation of PseuToPy: would a
mastery of PseuToPy help learners when switching to Python? Or
would they perhaps prefer to use both at the same time?

REFERENCES

[1] Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations: Investigating
Novice Programming Mistakes in Large-Scale Student Data. In Proceedings of
the 46th ACM Technical Symposium on Computer Science Education (SIGCSE ’15).

Association for Computing Machinery, New York, NY, USA, 522-527. https:

//doi.org/10.1145/2676723.2677258

Yassine Gader, Charles Lefever, and Patrick Wang. 2021. PseuToPy: Vers Un

Langage de Programmation Naturel. In Atelier "Apprendre La Pensée Informatique

de La Maternelle a I'Université", Dans Le Cadre de La Conférence Environnements

Informatiques Pour I’Apprentissage Humain (EIAH), Julien Broisin, Christophe

Declercq, Cédric Fluckiger, Yannick Parmentier, Yvan Peter, and Yann Secq (Eds.).

Fribourg, Switzerland, 87-95.

[3] Scott R. Portnoff. 2018. The Introductory Computer Programming Course Is
First and Foremost a Language Course. ACM Inroads 9, 2 (April 2018), 34-52.
https://doi.org/10.1145/3152433

[4] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Transactions
on Computing Education 18, 1 (Oct. 2017), 1:1-1:24. https://doi.org/10.1145/3077618

[5] Yizhou Qian and James D. Lehman. 2016. Correlates of Success in Introductory
Programming: A Study with Middle School Students. Journal of Education and
Learning 5, 2 (2016), 73-83.

i


https://github.com/PseuToPy/PseuToPy
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/3152433
https://doi.org/10.1145/3077618

	Abstract
	1 Introduction
	2 PseuToPy
	2.1 Design of PseuToPy
	2.2 Implementation of PseuToPy

	3 Conclusion and Future Works
	References

