
HAL Id: hal-03257350
https://hal.science/hal-03257350v2

Preprint submitted on 17 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theoretical proposals for the experimental detection of
electrodynamic interactions between biomolecules

Matteo Gori, Elena Floriani, Pettini Marco

To cite this version:
Matteo Gori, Elena Floriani, Pettini Marco. Theoretical proposals for the experimental detection of
electrodynamic interactions between biomolecules. 2021. �hal-03257350v2�

https://hal.science/hal-03257350v2
https://hal.archives-ouvertes.fr


Theoretical proposals for the experimental detection of

electrodynamic interactions between biomolecules

Matteo Gori∗

Department of Physics and Sciences of Materials,

University of Luxembourg, Luxembourg and

Quantum Biology Lab, Howard University, 2400 6th St NW, Washington, DC 20059, USA

Elena Floriani† and Marco Pettini‡
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Abstract

The present work follows a series of investigations of ours aimed at understanding whether long-

range intermolecular electrodynamic forces could play a role in accelerating the encounter of the

cognate partners of biochemical reactions in living matter and by which experimental methods and

available techniques these forces could be detected. After the experimental detection of collective

intramolecular oscillations of protein molecules [that we reported in Phys. Rev.X8, 031061 (2018)]

the possibility of observing the mentioned electrodynamic interactions appears more realistic and

thus deserving a deeper theoretical investigation of possible experimental detection of these forces

with new data at hand.
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I. INTRODUCTION

From the physics point of view, one of the most striking and challenging problem aris-

ing from molecular biology stems from the observation that biochemical reactions - which

commonly involve a huge number of actors - are coordinated simultaneously to be achieved

in due time, thus granting the reality of well organized dynamic systems. The spatial di-

mensions of these systems are much larger than the ”action radii” of chemical reactions, of

electrostatic and quasi-electrostatic interactions (which are strongly shielded both by the

large static value of water dielectric constant and by freely moving ions), and of van der

Waals-London dispersion interactions. Yet the interactions between cognate molecular part-

ners in living matter (eg, nucleic acids and transacting nuclear proteins; cytoskeleton and

signaling membrane proteins, etc..) produce a highly specific and efficient spatial-temporal

biochemical pattern of encounters, which can hardly be explained by taking into account

random diffusion only. A longstanding proposal [1–4] surmised that the encounters of distant

cognate partners of biomolecular reactions could be actively driven by selective (resonant)

attractive forces of electrodynamic nature. The implications of an experimental confirma-

tion of the actual activation of electrodynamic interactions among biomolecules could have

a revolutionary impact on our understanding of the functioning of the molecular machinery

at work in living matter. This would open new avenues of fundamental research in bio-

physics, both theoretical and experimental. We have revisited Fröhlich’s proposal [5] and

started a series of studies [6–9] aimed at understanding how these forces could be detected

experimentally. We recently made two important experimental steps forward, the first con-

sisted in checking how the diffusion properties of biomolecules in solution can be affected

by long-range interactions, and this was successfully tested by means of Fluorescence Cor-

relation Spectroscopy (FCS) with built-in long-range forces (electrostatic ones) [10]. The

second major leap forward was the excitation and detection through THz spectroscopy of a

Fröhlich-like phonon condensation occurring in BSA proteins under external energy pump-

ing [11], this second achievement paves the way to the possibility of activating the above

mentioned intermolecular electrodynamic forces [4, 5]. In what follows we shall thoroughly

investigate two different physical phenomena that can be univocally affected by the activa-

tion of long-range electrodynamic interactions. We shall explicitly refer to the BSA protein

and to R-PE (Red-Phycoerythrin) protein, the former already studied in [11] and the latter
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under investigation by the same research group in which the authors of the present paper

participate. Also the R-PE molecules have been found to undergo collective oscillations

under external energy pumping.

II. EFFECTS OF ELECTRODYNAMIC INTERACTIONS ON MOLECULAR

DIFFUSION

In this section we introduce three different theoretical and numerical models in order to

predict the possible outcomes of FCS experiments on the BSA or R-PE proteins that are

expected to undergo a clustering transition [7]. In the following, we provide quantitative

predictions concerning the occurrence of experimental outcomes of this kind due to the

presence of long range dipole-dipole electrodynamic intermolecular interactions.

Some simplifications are assumed to define a model that can be studied at least semi-

analytically. We are interested in the behaviour determined by long-range interactions for

values of the R-PE concentration in solution such that the intermolecular average distance

is much larger than the characteristic size of the molecule. For this reason the particles are

considered as spherical in our models. All the spheres are assumed to have the same radius.

The radius of the spherical particles has been chosen such that their volume is equivalent to

the volume VRPE of the R-PE estimated from the mass MRPE ≈ 2.5×102Da,

a =

(
3

4π

MRPE

ρBM

)1/3

' 42 Å (1)

where the density of the biomolecule has been set to ρBM = 1.27 g cm−3 [12][13] .

A. The effective potential

The interaction potential among resonant oscillating electric dipoles is supposed to take

the effective form

Ueff(rij) = −3ceffkBTR
3
0

r3
ij + 2R3

0

(2)

where rij = ‖rj−ri‖ is the distance between the i-th and j-th molecules, kB is the Boltzmann

constant, T is the temperature and R0 is a length scale. The form of the potential in Eq.(2)
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has been chosen such that

Ueff(R0) = ceffkBT and U ′′eff(R0) = 0 . (3)

The regularization in the denominator has been introduced in order to avoid the diver-

gence in ‖ri − rj‖ = 0. The parameter R0 has been chosen to be the sum of two molecular

radii R0 = 2a = 84 Å. The strength of the potential in kBT units at the distance R0 between

the particle centers is given by the parameter ceff which can hardly be assessed a priori. The

dynamical electric dipole moment can be estimated by equating the effective potential with

the quasi-static dipole-dipole interaction energy

Udd(rij) ' −
p2

4πε0εW (ω)r3
ij

(4)

at the distance rij = r∗, i.e. Udd(r∗) = Ueff(r∗). The relative dielectric constant of the

medium is assumed to be εW (ω) = |ε(ωCVM)|, where the suffix CVM stands for Collective

Vibrational Motion, the relation between the strength of the potential and the electric dipole

moment of the biomolecules is given by p = α(r∗, T )c
1/2
eff , where the calibration constant α

depends on the distance r∗ at which the two potentials are set equal and T is the temperature.

The results for different choices of T and r∗ are reported in Table I for R-PE (νCVM =

71 GHz).

r∗[Å] T [K] α[D]
82 293 7.10× 102

950 293 1.23× 103

82 303 1.25× 103

950 303 1.30× 103

TABLE I: Different values of the factor α.
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B. Semi-Analytical Model

The discussion of this semi-analytical model is adapted from an analogous calculation

for the clustering transition in a self-gravitating system [14] where the long-range attractive

interaction potential among particles scales with the distance r as r−1. The model developed

in this section aims at verifying the possible existence of a clustering transition in the

FCS experiments when the translation degrees of freedom of the molecules are at thermal

equilibrium and the interparticle electrodynamic interaction potential scales as r−3. The

experimental setting is represented in a simplified way as a system of N spherical particles

of radius a = 42 Å confined in a sphere of radius R of volume equal to the FCS confocal

effective volume as defined in [15]

Veff = (2)3/2Vconf = π3/2w2
0z0 . (5)

In real experiments two typical sizes w0 and z0 can be assumed to be w0 = 2.8×103Å and

z0 = 5w0 = 1.4×104Å, yielding a volume-equivalent spherical system of radius

R =

(
3π1/2

4
w2

0z0

)1/3

' 5.265×103Å (6)

The configuration of a system of N particles is in principle described by the probability den-

sity function in configuration space ρN(r1, ..., rN). In the simplified model here considered,

the volume, the temperature and the number of molecules inside the volume are fixed so that

the thermodynamic equilibrium is defined as the probability distribution that minimizes the

free energy functional F [ρN ](N, V, T )

F [ρN ](N, V, T ) = U [ρN ]− TS[ρN ] . (7)

where U [ρN ] is the average potential energy

U [ρN ] =

∫
S3(R)

d3r1...

∫
S3(R)

d3rN U(r1, ...rN)ρN(r1, ..., rN) (8)
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while the entropy S[ρN ] is defined as

S[ρN ] = −
∫
S3(R)

d3r1...

∫
S3(R)

d3rN ρN(r1, ..., rN) log [ρN(r1, ..., rN)] . (9)

The distribution ρN,eq such that δF [ρN,eq]/δρN = 0 and δ2F [ρN,eq]/δρ2
N > 0 corresponds

to the probability distribution at thermodynamic equilibrium in the canonical ensemble.

We point out that such a description does not coincide with the real experimental setting

because in FCS experiments the particles can freely enter into and exit out of the confocal

volume, so that the hypothesis of a fixed number of particles holds only in the average. The

control parameter in real experiments is the concentration of biomolecules, or, equivalently,

the intermolecular average distance 〈d〉: in our model this corresponds to a different choice

of the number of molecules in the total volume

N(〈d〉) =

⌊
4π

3

(
R

〈d〉

)3
⌋

(10)

where b·c is the floor operator. It is convenient to introduce adimensionalized quantities,

choosing the effective radius as the length scale of the model so that R̃ = R/a ' 1.25× 102.

We consider a mean field approximation for the probability density distribution of the

biomolecules in the volume, i.e.

ρN(r1, ..., rN) =
N∏
i=1

ρ1(ri) (11)

We make the following ansatz about the functional form of ρ1(r), i.e.

ρ1(r̃, η) = ηΘ(R̃∗(η)− ‖r̃‖)ρc(r) + (1− η)Θ(‖r̃‖ − R̃∗(η))Θ(R̃− ‖r̃‖)ρh(r) =

= ηΘ(R̃∗(η)− ‖r̃‖) 3

4πR̃3
∗(η)

+ (1− η)Θ(‖r̃‖ − R̃∗(η))Θ(R̃− ‖r̃‖) 3

4π
[
R̃3 − R̃3

∗(η)
]

(12)

which means that a particle is found with probability η in a spherical cluster of radius R∗

located at the center of the ambient spherical space. The radius of the cluster is determined

by considering the random close packing for spheres g = 0.637 (maximum volume fraction
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for a randomly packed 3D system) such that

R̃∗(η, 〈d〉) = R∗/a = 3
√
g−1ηN(〈d〉) (13)

where a is the effective radius of the considered molecules in the cluster, taking into account

all short range interactions (dispersive forces, hydrodynamic forces, etc.). In what follows, we

denote by a tilde superscript the adimensionalized length expressed in units of the particles

radius a.

Remark. The mean field approximation and the form of the one-particle distribution in

Eq.(12) is a sort of ”fluid approximation”: the more the volume of the particles is negligible

with respect to the total volume, the better the approximation.

An estimation of the excluded volume effects is provided by the following parameter

γ(〈d̃〉, R̃) =

{∏N(〈d̃〉,R̃)
i=1 [V − (i− 1)4πa3/3]

V N(〈d̃〉,R̃)

} 1

N(〈d̃〉, R̃)
=

N(〈d̃〉,R̃)

√√√√N(〈d̃〉,R̃)∏
i=1

[
1− (i− 1)R̃−3

]
(14)

In the limit of large R̃, γ is a function only of the (adimensionalized) intermolecular average

distance, in fact

log γ =
1

N(〈d̃〉, R̃)

N(〈d̃〉,R̃)∑
i=1

log
[
1− (i− 1)R̃−3

]
≈ − R̃−3

N(〈d̃〉, R̃)

N(〈d̃〉,R̃)∑
i=1

(i− 1) =

=
1

2

[
N(〈d̃〉, R̃)− 1

]
R̃3

≈ − 2π

3〈d̃〉3
+

1

2R̃3
≈ − 2π

3〈d̃〉3
= log γapp .

(15)

As a first approximation, we can assume that in the FCS experiments the degrees of

freedom relative to the centers of the biomolecules are at thermal equilibrium, and that

the number of particles in the confocal volume is constant. These assumptions allow to

tackle the system of interacting biomolecules in the canonical ensemble framework. The

adimensional specific free energy functional is defined as

F [ρN ]

NkBT
=
U [ρN ]

NkBT
− S[ρN ]

kBN
= u[ρN ]− s[ρN ] . (16)
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FIG. 1: Effective accessible volume γ, for intermolecular distances 〈d〉 in the range 90÷ 600 Å. In

red circles the numerical values of γ calculated using the exact expression in Eq.(14), the blue line

representing the data obtained using the approximated function. In this case, the effective radius

of the molecule is a = 42 Å and the radius relative to the total volume R = 5246 Å.

The (adimensional) specific entropy s[ρN ] is given by

s[ρN ] =
S[ρN ]

NkB
= − 1

N

∫
S3(R̃)

ρN log ρN

N∏
i=1

dr3
i . (17)

and substituting Eq.(12) in the previous expression we obtain

s(η, 〈d〉) = s[ρN ] = −

[
η log

(
3η

4πR̃3
∗(η, 〈d〉)

)
+ (1− η) log

(
3(1− η)

4π(R̃3 − R̃3
∗(η, 〈d〉))

)]
.

(18)

The expected specific potential energy u[ρN ] is given by three separate contributions:

u[ρN ] = uc−c[ρN ] + uc−h[ρN ] + uh−h[ρN ] (19)

the self-interaction of the molecules contained in the central cluster

uc−c(η, 〈d〉) = uc−c[ρN ] = −η2N(〈d〉)− 1

2

∫
S(R̃∗)

d3r̃i

∫
S(R̃∗)

d3r̃j ρc(r̃i)ρc(r̃j)
24ceff

‖r̃i − r̃j‖3 + 16
,

(20)

the interaction among the halo and the cluster
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uc−h(η, 〈d〉) = uc−h[ρN ] = −η(1− η)
N(〈d〉)− 1

2
(21)

×
∫
S(R̃∗)

d3r̃i

∫
C(R̃,R̃∗)

d3r̃j ρc(r̃i)ρh(r̃j)
24ceff

‖r̃i − r̃j‖3 + 16
,

and the self-interaction of the halo

uh−h(η, 〈d〉) = uh−h[ρN ] = −(1− η)2N(〈d〉)− 1

2

×
∫
C(R̃,R̃∗)

d3r̃i

∫
C(R̃,R̃∗)

d3r̃j ρh(r̃i)ρh(r̃j)
24ceff

‖r̃i − r̃j‖3 + 16
.

(22)

where S(x) is a sphere with radius x centered at the origin and C(x, x′) is a spherical shell

centered at the origin and with external and internal radii x and x′ respectively. The fraction

of clustered molecules at equilibrium is obtained by minimizing the specific free energy with

respect to η at fixed 〈d〉, i.e.

ηmin(〈d〉) =

{
η ∈ [0, 1] |F (ηmin) = min

η∈[0,1]

F (η, 〈d〉)
N(〈d〉)kBT

for any fixed 〈d〉
}
. (23)

As it can be observed in Figure 2, there exists a range of values of the effective dipole-

dipole potential strength ceff such that the specific free energy F/(NkBT ) has a relative

minimum for a certain value of the clustered fraction η′ ∈ (0, 1), for any fixed value of the

intermolecular average distance 〈d〉. In these cases, the value of the relative minimum of the

specific free energy decreases with the intermolecular average distance 〈d〉. This means that

it is possible to find a value of the parameter ceff such that F (η′) < F (0). In our case, we

have empirically found that by setting ceff = 0.325, it is F (η′) . F (0) for 〈d〉 . 950 Å (see

Figure 2). Moreover, almost all the molecules are in the clustered phase as η′ = ηmin > 0.93

for ceff = 0.325 and 〈d〉 . 950 Å (see Figure 2), while for 〈d〉 & 975 Å the equilibrium of the

system is in the disperse phase. We conclude that long range attractive interactions scaling

as r−3 with the intermolecular distance r can induce an experimentally observable clustering

phase transition. According to Table I the estimated value of the dynamic dielectric dipole

is |p| = 400 ÷ 740D. We remark that such a value constitutes an underestimation of

the real dynamical dielectric dipole because the electrodynamic interactions can be either
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FIG. 2: Specific free energy F/(kBTN) vs. clustered fraction η for different values of the inter-

molecular average distance 〈d〉 at ceff = 0.325. Upper left panel : 〈d〉 = 900 Å; upper right panel:

〈d〉 = 950 Å; lower panel: 〈d〉 = 975 Å.

attractive or repulsive, and this depends on the mutual oscillation phase and orientation of

the dipoles, whereas in the mean field model considered in this section, the interactions are

always attractive.
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FIG. 3: Clustered fraction η as a function of the intermolecular average distance 〈d〉 for a system

of particles interacting through the potential in Eq.(2) with ceff = 0.325. ηmin ' 1 corresponds to

the clustered phase whereas ηmin ' 0 corresponds to the dispersed (gaseous) phase.

C. Molecular Dynamics Study of the clustering transition

Molecular dynamics simulations have been done in order to estimate the effect of long-

range electrodynamic interactions, described by the effective potential in Eq.(2), on the

self-diffusion coefficient D of a system of interacting molecules defined by

D = lim
t→+∞

〈‖∆ri(t)‖2〉i
6t

(24)

where ∆ri(t) is the displacement at time t of the i-th molecule with respect to its initial

position, and 〈·〉i is the average over all the particles in the system. This is the physical

quantity measured by means of FCS experiments thus allowing a direct comparison between

the outcomes of numerical simulations and the outcomes of lab experiments.

We considered a system made of a fixed cubic box of volume equal to the effective volume

in Eq.(5), hence of side L = (Veff)1/3 = 8486 Å. Given an intermolecular distance 〈d〉, the

corresponding number of particles in the box is determined through Eq.(10).

The dynamics is given by the Langevin equations in the overdamped limit (without
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inertial terms):

dri
dt

= −1

γ
∇ri

∑
j 6=i

U(‖ri − rj‖) +

√
2kBT

γ
ξi(t) ∀i = 1, .., N (25)

where γ is the viscous friction constant, T is the temperature of the solution and ξi(s) is a

noise term, s.t.

〈ξA,i(t)〉t = 0 〈ξA,i(t)ξB,j(t′)〉t = δ(t− t′)δABδi,j ∀i, j = 1, ..., N ∀A,B = 1, ..., 3 .

(26)

As we have assumed that the molecules are represented by spherical particles, we use Stokes’

formula for the viscous friction constant of a sphere in a viscous fluid, i.e.

γ =
1

6πRHηW (T )
(27)

where RH is the hydrodynamic radius in water and ηW (T ) is the dynamical viscosity of

water at the temperature T . As we are more interested in a qualitative rather than a

quantitative description of the diffusive dynamics and of the clustering transition, we can

reasonably assume that RH = a = 42 Å while the water dynamical viscosity as a function

of temperature at the atmospheric pressure is estimated using the following formula [16]

ηW (T ) = A exp[B/(T − C)] (28)

where A = 2.407×10−5Pa · sec, B = 571.5 K and C = 139.7 K. The water dynamical vis-

cosity is η(Texp) = 0.7915×10−3 Pa · sec at the experimental value Texp = 30 ◦C = 303.15 K,

according to Eq.(28). The potential energy used for these molecular dynamics simulations

is given by

U(r) =

Ueff(r) + UDebye(r) r > 2(1.01)a

USC(r) r ≤ 2(1.01)a
(29)

where Ueff is the effective potential energy of Eq.(2) due to electrodynamic interactions.
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UDebye is the Debye potential [17] due to electrostatic interactions

UDebye(r) =

Z2e2 exp

[
− r

λD

]
4πε0εW (1 +R/λD)r

. (30)

Here Z is the net charge of the molecule, e is the electric charge of the electron, ε0 is the

vacuum permittivity, εW is the water relative dielectric constant and λD is the Debye length

λD =

(∑
i ρ∞,ie

2z2
i

ε0εWkBT

)−1/2

, (31)

where ρ∞,i is the concentration of the i-th electrolyte species and T is the temperature of

the solution. In our case, this results in a Debye length λD ≈ 9.74 Å. The net charge for

R-PE molecules has been fixed to Z = +10.

The effect of Pauli’s repulsion among the electronic clouds of molecules is described through

a Buckingham-like soft core potential USC

USC(R) = ASC exp

(
− r

λB

)
(32)

where λB = 2a. The parameter ASC fixing the strength of the potential has been chosen

such that if the molecules overlap for the 10% of their radii they are brought back to be

tangent to one another, i.e.

‖∆SCx1 + ∆SCx2| =
2‖Fsc(1.9 a)‖

γ
∆t = 0.1 a (33)

yielding

ASC = 0.05γa exp [−0.95] ≈ 1.93× 10−3 γa

∆t
. (34)

A soft-core potential has been preferred with respect to an hard-core potential because

the latter would require a very small integration time step (i.e. of the same order as in

all-atoms simulations, 10−12s) to avoid nonphysical large displacements. Moreover, using

a very small time step would be at odds with the hypothesis of overdamped Brownian

dynamics. And the dynamics would require a prohibitively large number of time steps.

Periodic boundary conditions have been assumed for the positions of the particles but not
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for the long-range interactions that are computed without taking into account the images of

the particles (due to the periodic boundary conditions). This latter choice is due to the fact

that the long range electrodynamic interactions are supposed to be active only for particles

in the effective volume of FCS, simulated by the cubic box.

The numerical simulations have been performed using the Heun predictor-corrector al-

gorithm with a time step ∆t = 5×10−4µs and for a total number of steps Nsteps = 2× 107,

corresponding to a total simulation time Ttot = 104µs. In order to assess the ade-

quacy of this integration time, let us first notice that with the present choice of pa-

rameters the Brownian diffusion coefficient of the spherical molecules in simulations is

D = kBTγ
−1 = kBT (6πaηW )−1 ' 6.68×103Å

2
µs−1. Then considering a sphere circum-

scribing the box, thus of radius Rcirc =
√

3l/2 ' 7.35×103Å, the characteristic time scale

expected for a molecule to explore all the volume is tVol = R2
circ/(6D) ' 1.35×103µs, largely

contained in the total integration time of 104µs.

FIG. 4: Molecular dynamics simulations. Snapshots of spatial distributions of 500 molecules

corresponding to an intermolecular average distance of 〈d〉 = 1000 Å. Left box: the initial condition.

Right box: the final configuration after 104µs.

Molecular Dynamics simulations of equations (25) yield the results for the diffusion co-

efficient D, normalized by the Brownian value D0, reported in Figure 6 as a function of the

average intermolecular distance 〈d〉. The sudden drop of D/D0 is a clear effect of the cluster-

ing phase transition. The same pattern of D/D0 versus 〈d〉 is displayed by the experimental

outcomes of FCS experiments reported in Figure 3 of the Main text.
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FIG. 5: Molecular dynamics simulations. Snapshots of spatial distributions of 700 molecules

corresponding to an intermolecular average distance of 〈d〉 = 950 Å. Left box: the initial condition.

Right box: the final configuration after 104µs.
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FIG. 6: Relative self diffusion coefficient D/D0 vs. intermolecular average distance 〈d〉 for a system

of mutual interacting particles in a cubic box of size length L = 8486 Å and the strength of the

dipole interaction potential fixed at ceff = 2.25.

D. MonteCarlo simulations for the clustering transition

Equation (2) provides a first rough approximation of the electrodynamic potential derived

in Ref.[5] for the interaction among two oscillating electric dipoles, as it does not take into

account their mutual orientation nor their relative oscillation phase. At first, taking into

account these degrees of freedom results in an interaction potential of indefinite sign, i.e.
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the long-range electrodynamic force between oscillating biomolecules can be attractive or

repulsive as well. Therefore, it is important to check whether or not the clustering transition

takes place also in presence of an orientation-dependent dipole-dipole interaction. If this is

the case, we need to determine the value of the oscillating electric dipole moment that

is necessary to explain prospective experimental observations, that is, the value of 〈d〉 at

which the clustering transition is expected. To achieve this aim, Monte Carlo simulations

have been performed.

1. Potential Energy

In order to have a better approximation of the interaction, the following form for the

potential energy is considered:

UTot(pi,pj, rij) =

 +∞ rij < 2a

UHmk(rij) + UDby(rij) + UEDdip(pi,pj, rij) rij ≥ 2a
(35)

where rij is the vector joining the centers of the i-th and the j-th molecule, UDby is the

screened electrostatic potential of the force exerted between net charges of biomolecules,

UEDdip is the electrodynamic potential between resonant oscillating giant dipoles and UHmk

is the pairwise Hamacker dispersive interaction energy. In more details:

• the electrostatic screened potential due to the presence of counterions has the form

of the Debye-Hückel potential [17] UDebye(r) in eq. (30) with the same choice of

parameters;

• the Hamacker potential energy describes dispersive interactions among extended spher-

ical bodies and takes the form [17]

UHmk(r) = −A
6

[
2R1R2

(2R1 + 2R2 + r)r
+

2R1R2

(2R1 + r)(2R2 + r)
+

+ ln
(2R1 + 2R2 + r)r

(2R1 + r)(2R2 + r)

] (36)

where A = 3 − 10 kBT is the typical value of the Hamacker constant for proteins

[18, 19], and Ri is the radius of the i-th particle. In our simulations the Hamacker
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constant has been set to A = 10 kBT with the radii R1 = R2 = a = 42 Å.

• The electrodynamic interaction is assumed to be pairwise and of the form

UEDdip(pi,pj, rij) = freg(rij)
pi · pj − 3(pi · r̂ij)(pj · r̂ij)

4πε0εW (ωCVM)r3
ij

(37)

where pi is the dynamical electric dipole moment of the i-th molecule, r̂ij = rij/rij is

the unit vector directed from the i-th particle to j-th one. The details of the derivation

of this potential will be provided in Section III A.

The interaction energy of a system of oscillating dipoles is generally speaking a function

of time. Nevertheless, following the derivation in [5], the interaction energy has been

averaged over a time scale much larger than the typical period of dipole oscillation.

In so doing, the interaction energy depends only on the position of the dipoles, their

orientations and their relative phase of oscillation ∆αij = αj − αi. The effect of this

relative phase can be included in the relative orientation of the dipoles, so that the

system of interacting oscillating resonant dipoles is mapped into a system of static

dipoles. A regularization provided by the function freg(rij) has been introduced to

make the electrodynamic potential smoothly smeared out for r −→ R0 = 2a and

equivalent to the non regularized potential at infinity, i.e. lim
r→+∞

freg(r) = 1. To

comply with these requirements, the regularizing function is chosen of the form

freg(r) = − tanh

(
R0 − r
R0σreg

)
. (38)

where the parameter σreg = 0.679 is determined after the assumption that freg(2R0) =

0.9 (see Figure 7 for the effect of the regularization over a generic potential U(r) =

−r−3). The introduction of this regularization is physically motivated on the one side

by the short distance repulsion of molecular electron clouds due to the Pauli exclusion

principle, and on the other side by the imaginable hydrodynamic friction effects that

could dump the collective oscillations responsible for electrodynamic interactions.
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FIG. 7: Effects of the damping function freg(r) on a potential U = −r−3. In blue the non

regularized potential −r−3, in orange the regularized potential Ureg(r) = freg(r)U(r).

2. Details of the simulations

The simulations have been performed by considering a cubic box of side L = 8486 Å, with

spherical particles of radius a = 42 Å. As for the molecular dynamics simulations described

in Section II C, the dimensions of the fixed simulation box are chosen so that Veff = L3, and

the number of particles in the box is changed in order to vary the intermolecular average

distance 〈d〉, i.e.

N =

⌊
L3

Veff

⌋
(39)

The degrees of freedom updated by the Monte Carlo Dynamics are the three Cartesian

coordinates (xi, yi, zi) and the polar angles (φi, θi) defining the position of the center of

mass and the orientation of the dynamical electric dipole of each molecule, respectively.

The domain for the coordinates of the center of mass is defined by xi, yi, zi ∈ [0, L] and

φ ∈ [0, 2π), θ ∈ [0, π] for the angular coordinates. The m-th Monte Carlo step is performed

according to the Metropolis algorithm prescriptions. In a system consisting of N particles,

N random extractions of a particle are performed. At the k-th extraction of the m-th

step, a test configuration {(x̃ik(m), φ̃ik(m), θ̃ik(m)} is created for the chosen particle labeled

by ik through a random displacement in configuration space with respect to a reference
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configuration, i.e. 
x̃ik(m) = xik(m− 1) + ∆x ξik(m)

φ̃ik(m) = φik(m− 1) + ∆φ ξφ,ik(m)

θ̃ik(m) = θik(m− 1) + ∆θ ξθ,ik(m)

(40)

where each ξα,i(m) is a Gaussian-distributed random variable with zero mean and unit

variance:

〈ξα,i(m)ξβ,j(m+m′)〉 = δm′,0δi,jδα,β (41)

where the average 〈·〉 is intended over many realizations of the random process. The prob-

ability to accept a trial configuration is given by

Tx→x̃ = min

{
exp[−βV (x̃)]

exp[−βV (x)]
, 1

}
. (42)

If the trial configuration is accepted and a particle exits from the box, it is reinjected into

the volume using the following prescription: the distance of the center of the particle from

the box is calculated as:

di =

√√√√ 3∑
k=1

[
x2
k,iΘ(−xk,i) + (xk,i − l)2Θ(xk,i − l)

]
, (43)

then the particle is reinjected into the box at a distance di from a randomly chosen side of

the box. More precisely, two random numbers η1, η2 are chosen in the interval [0, L] and a

third random number ηsel is extracted in order to determine the reinjection side, i.e. if xi

are the coordinates of the reinjected particle:

xi =



(di, η1, η2) for 0 ≥ ηsel > 1/6

(L− di, η1, η2) for 1/6 ≥ ηsel > 1/3

(η1, di, η2) for 1/3 ≥ ηsel > 1/2

(η1, L− di, η2) for 1/2 ≥ ηsel > 2/3

(η1, η2, di) for 2/3 ≥ ηsel > 5/6

(η1, η2, L− di) for 5/6 ≥ ηsel > 1 .

(44)
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This particular choice for the boundary conditions has been made in order to mimic the

continuous flow of particles in and out of the confocal volume taking place in FCS experi-

ments. As long-range interactions are assumed to be activated by the blue light only in the

confocal volume and to be absent outside it, no correction of the long-range electrodynamic

potential is needed (this would be in general the case with long range interactions requiring

corrections to account for the contributions of the images of the system due to periodic

boundary conditions).

3. Results of the simulations

The simulations have been performed choosing random positions and orientations for the

particles in the box which represents the confocal volume. The number of Monte Carlo steps

has been fixed to NMCsteps = 2×106 with δx = ∆x/a = 2 and δang = ∆θ/π = ∆φ/(2π) = 0.1.

FIG. 8: Clustering transition: snapshots corresponding to the clustered phase in a cubic system of

side L = 8486 Å, with intermolecular average distance 〈d〉 = 950 Å, obtained by setting the number

of particles to N = 713 and the dynamic electric dipole to |p| = 2900D at T = 303.15K = 30 ◦C.

Left box: the initial condition. Right box: the final configuration after 2× 106 Montecarlo steps.

This makes the square root of the mean square displacement of each particle
√

MSD ≈
√

3∆x
√

2× 106 ≈ 2.05×105Å ≈ 24L, that is, large enough. In order to optimize the

convergence rate of the dynamics to the stationary state of the system, an adaptive method

has been introduced. Each 102 Monte Carlo steps the running acceptance ratio ηAR is

calculated: if ηAR < 0.33 the relative displacements δx, δang are halved (up to 5 times) while

20



FIG. 9: Absence of clustering: snapshots of the disperse phase in a cubic system of side L = 8486 Å,

with intermolecular average distance 〈d〉 = 1000 Å, obtained by setting the number of particles to

N = 611 and the dynamic electric dipole to |p| = 2900D at T = 303.15K = 30 ◦C. Left box: the

initial condition. Right box: the final configuration after 2× 106 Montecarlo steps.

if ηAR > 0.85 the relative displacements are doubled one time. The results reported in

Figures 8 and 9 correspond to a value |p| = 2900 D of the modulus of the dynamic electric

dipolar momentum. This value of |p| has been found to produce a clustering transition for

〈d〉 . 950 Å (see Figure 8) that disappears for 〈d〉 & 1000 Å (see Figure 9).

III. EFFECTS OF ELECTRODYNAMIC INTERACTIONS ON THE FRE-

QUENCY OF MOLECULAR COLLECTIVE VIBRATIONS

A. Preliminaries

In THz spectroscopy experiments, the absorption peaks corresponding to collective in-

tramolecular vibrations of both R-PE and BSA proteins can be expected to undergo a

frequency shift [9] proportional to molecular concentration.

In [11] it has been argued that these absorption peaks are the spectroscopic signature

of a classical Fröhlich condensation-like phenomenon, i.e. when the energy injection rate

exceeds a threshold value the energy pumped into a molecule is almost entirely channelled

into its lowest frequency mode, and this entails a collective vibration of the whole molecule.

Recently, it has been suggested that a full and deeper understanding of the experimental

results reported in [11] requires a quantum treatment of the Fröhlich condensation mecha-
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nism (see [20]). Even if this proposal is very interesting and robust, for the purposes of the

present work we can proceed in the conceptual framework of a classical description.

In what follows, a biomolecule of mass M is represented by two spheres, each one of mass

Mcrg = M/2 (where crg stands for center of charge) and effective charge Zeff , connected by

a spring of elastic constant kCVM = Mω2
CVM/4, where ωCVM = 2πνCVM is the characteristic

angular frequency of a collective vibrational mode (CVM).

The spring is actually a doughnut-like extended elastic object (the R-PE protein) mainly

made of α-helices each one behaving like a spring. In its extension modes, because of

geometric constraints, we can reasonably assume that the velocity of each mass element of

the molecule is larger at the external parts and lower at the interior. A common assumption

is a linear dependence of the velocity of a mass element passing from the slower part to the

faster part. This means that the velocity u of a mass element dM is taken as u(r) = vr/R,

where R is the larger radius of the molecule and r is the radial coordinate from the center.

Assuming a uniform mass distribution we have dM = M dr/R. The kinetic energy of the

molecule then reads

K =

∫
molecule

1

2
u2(r)dM(r) =

Mv2

2R3

∫ R

0

r2dr =
1

2

M

3
v2

where M is the rest mass of the molecule and M/3 (known as the Rayleigh limit) is the

effective mass contributing to the kinetic energy of the spring consisting of an extended

elastic object.

Due to the Equipartition Theorem, at thermodynamic equilibrium the amplitude ∆x of

the oscillations of the charge barycenters around the equilibrium position is given by

kBT = Meff ω
2
CVM〈(∆x)2〉 ⇒ σ∆x,Th =

√
〈(∆x)2〉 =

1

2πνCVM

√
kBT

Meff

=
7.99×10−2Å

[νCVM]
√

[Meff]
(45)

where Meff = Mcrg/6 = M/12, the experimental temperature is assumed T = 30 ◦C =

303.15K, the frequency [νCVM] is expressed in THz and the reduced mass [Meff] is expressed

in KDa. For R-PE the observed peak of lowest frequency is at [νCVM] = 0.71 × 10−1

and [Meff] ' 20, so that the amplitude of the oscillation is σ∆x ≈ 2.5×10−1Å. For BSA,

the observed collective vibrational mode is [νCVM] = 3.14 × 10−1 and the characteristic

mass [Meff] ' 5.5 so that the expected relative distance between the charge barycenters is
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σ∆x ≈ 1.85×10−2Å.

The R-PE has a strong absorption at λAB,RPE ' 488 nm and the emission peak is around

λEM,RPE ' 580 nm: it follows that for a number nflc of fluorochromes the quantity of energy

absorbed is

∆ERPE < η nflchc(λ
−1
AB,RPE − λ

−1
EM,RPE) '

' η nflc × 15.4× (kB 303.15 K) ' η nflc × 6.457×10−13erg ,
(46)

where η is the efficiency of the energy transfer from the fluorochrome to mechanical vibra-

tional (phonon) modes of the biomolecule. The description of the details of such a process

goes far beyond the purpose of this paper, but an efficiency around 10% can be expected (for

further details on a possible mechanism describing the conversion of electronic excitation

into mechanical excitation see [21]). It follows that the maximum extension amplitude for

the oscillating molecules is estimated to be:

σ∆x,Fc =
√
〈(∆x)2〉 < 1

2πνCVM

√
η(nflc × 15.4)× kBT

Meff

' √η nflc × 5.6×10−1Å (47)

assuming for R-PA nflc = 38 and η = 0.1 we obtain σ∆x,Fc ≈ 1.08 Å. The activation of a

coherent excitation due to Fröhlich-like condensation is represented in the simple model here

considered as a phase-defined oscillation maintained for a coherence time τcohr � ν−1
CVM. So

we can assume that the time evolution of the distance between the charge barycenters is

given by

xi(t) = x0,i +
1

2
{xω,i exp[−i(ωCVMt+ φi)] + c.c} , (48)

where xω0,i =
√

2σ∆x and ωCVM is the angular frequency of oscillation of the single molecule

in the limit of high dilution. In real experiments with R-PE, the Q-factor of the absorption

peak at the resonant frequency can be expected in the range 50÷ 90, so the coherence time

can be estimated through:

τcohrνCVM ≈
Q

π
≈ 16÷ 30⇒ τcohr ≈

Q

πνCVM

≈ 2.2÷ 4.0×10−1ns (49)

Considering the possibly largest experimentally expected (at high temperature) diffusion

coefficient of R-PE D0 ≈ 250 µm2s−1 the displacement of the particle during the interval of
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coherent oscillations is of the order

√
〈|∆ri|2〉 ≈

√
6D0τcohr ≈ 5.8÷ 8 Å (50)

which is much less than the intermolecular average distance and the characteristic dimension

of the protein.

In this limit we can consider the positions and the orientations of the molecules as fixed

for a time tint such that τcohr ≥ tint � ν−1
CVM. We can assume that the electric dipole of a

single molecule in a reference frame attached to the molecule takes the form

pi(t) ' pstat,i + pdyn,i(t) =
{
p0 +

pω
2

exp [−i(ωt+ φi)] + c.c.
}
p̂i =

= Zeffe
{
x0 +

xω
2

exp [−i(ωt+ φi)] + c.c.
}
p̂ x0, xω ∈ R+

(51)

where p̂ is the normal vector that indicates the direction of the dipole, Zeff can be defined

as the equivalent charge of a symmetric dipole, i.e.

Zeff = Z+ −
ZTot

2
= Z− +

ZTot

2
(52)

and the relative position x of the charge barycenters is defined by

p(t) = Z+r+(t) + Z−r−(t) = Zeffx(t) . (53)

If the value of the effective separated charge is Zeff e then the electric dynamic dipole has

the following maximum

pωCVM
= Zeff e σ∆x < Zeff ×

√
ηnflc × 2.69 D . (54)

It is known that the charge barycenters of biomolecules are separated by a distance of

∼ 3÷ 10 Å [22], one order of magnitude larger than the estimated xωCVM
. However, we can

argue that in an electrolytic solution with a Debye length comparable to that of living cells,

that is λD ≈ 10 Å, the interaction due to the electrostatic charge distribution is negligible

with respect to the electrodynamic interactions between the dynamical parts pdyn,i(t) of the

oscillating dipoles of two distinct molecules.
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1. The electrodynamic interactions among the oscillating dipoles

According to [5] the large dipole oscillations induced by energy injection and subsequent

Fröhlich condensation are responsible for long-range interactions between biomolecules. Let

us consider a system of N identical molecules, such that each molecule has a total mass M

and a net charge Znet and can be represented as a system of two lumps of mass Meff = M/2

and connected by an harmonic spring of elastic constant k = Meff ω
2
CVM. The dynamical

variables are the distances among the charge barycenters, xi(t) = x0,i + xdyn,i(t) so that the

dipole moment can be written pi(t) = Zeffx(t)ep̂i. As the measured frequency shift due to

the interactions is expected to be a perturbation we can assume that the vibrational mode

with an angular frequency very close to ωCVM has been activated, i.e.

xi(ω) 6= 0 only if |ω ± ωCVM| < εωCVM for ε� 1 (55)

If we consider the systems on a characteristic time scale τint such that τcohr ≥ τint � ν−1
CVM,

we can ignore the dissipation in the oscillation of the dipoles, and the total energy of the

system for the vibrational degrees of freedom can be written as

HdipOs(P i(t),xi(t)) =
N∑
i=1

[
P 2
i (t)

2Meff

+
1

2
Meff ω

2
CVM(xi(t)− x0,i)

2+

− 1

2

N∑
j=1
j 6=i

Zeff,iexi(t)p̂i · Ej(ri, t)

] (56)

where x0,i is the distance between charge barycenters, Pi = Meff ẋi(t) is the conjugate variable

of the charge barycenter distance xi and Ej(ri, t) is the electric field generated by the j-th

particle at the point ri at the time t. In order to derive the equations of motion for the

system of coupled dipoles we need to express the electromagnetic field generated by the

j-th molecule in terms of the charge barycenter separation xj. According to Eq.(50) we can

consider as fixed the positions and the orientations of the dipoles.
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The electric field Ei(r, t) splits into a static and a dynamic component, i.e.

Ei(r, t) = Estat,i(r) + Edyn,i(r, t) = Estat,i(r) +

∫
R\{0}

Edyn,i(r, ω) exp(−iωt) dω =

= Estat,i(r) +

∫
R+\{0}

2|Edyn,i(r, ω)| cos [ωt− θE(ω)] dω

(57)

where the polar representation of the Fourier coefficients of the electromagnetic field has

been used; Estat,i(r) is the static component of the electromagnetic field while Edyn,i(r, ω) is

the dynamical electric field generated by dipole oscillations. The electric fields generated by

static charge distributions are subjected to Debye-Hückel screening due to the freely moving

ions on a characteristic length scale λD

λD =

(∑
i ρ∞,ie

2z2
i

ε0εWkBT

)−1/2

(58)

where ρ∞,i is the concentration of the i-th electrolyte species and T is the temperature of

the solution. In experiments mimicking biological conditions, the ionic strength of the NaCl

solution has to be set at 200 mM, which results in a Debye length λD ≈ 9.74 Å. In this

condition, the electrostatic field Estat,i(r) generated by the i-th charge distribution located

at ri and characterized by a total charge ZNet and electric dipole pi = p0,ip̂i is given by [23]:

Estat,i(r) =
exp[−|r− ri|/λD]

4πε0εW (0)

{
ZNet,ie

|r− ri|

(
1

|r− ri|
+

1

λD

)
n̂rir+

+ p0,i

[(
3

|r− ri|3
+

3

λD|r− ri|2
+

1

λ2
D|r− ri|

)
(n̂rir · p̂i)n̂rir+

−
(

1

|r− ri|3
− 1

λD|r− ri|2

)
p̂i

]} (59)

where n̂rri = (r − ri)/|r − ri| is the unit vector along the direction joining the dipole and

the point r. Assuming a minimal intermolecular average distance among biomolecules to

be considered in THz spectroscopy experiments 〈r〉 ≈ 600 Å, so that in the electrostatic

potential the leading term is

Estat,i(r) ≈
exp[−|r− ri|/λD]

4πε0εW (0)λD|r− ri|

[
ZNete+

p0,i

λD
(n̂rir · p̂i)

]
n̂rir = Estat,i(r)n̂rir (60)

The dynamics of the electromagnetic field is described by D’Alembert equation in Lorenz
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gauge reading [
|k|2 − ω2

v2
c (ω)

]
Ai(k, ω) = µ(ω)Ji(k, ω) (61)

where v2
c (ω) = c2/[εW (ω)µW (ω)] = [ε0εW (ω)µ0µW (ω)]−1 represent the (complex) speed of

propagation of light. In our case we can safely assume that the relative magnetic permittivity

is 1, i.e. µW (ω) = 1 and the solution in real space is given by

Ai(r, ω) = µ0

∫
R3

Ji(k, ω)

|k|2 − k2
0(ω)

exp[+ik · r] d3k (62)

where k2
0(ω) = ω2/v2

c (ω) ∈ C. The Fourier components of the current associated to the

oscillation of the i-th dipole are

Ji(k, ω) =
1

(2π)4

∫
R3

d3k

∫
R

dω Ji(r, t) exp[−i(k ·r−ωt)] =
pi(ω)p̂i
(2π)3

(−iω) exp(−ik ·ri) (63)

where

Ji(r, t) = Zeffe [ṙi,+δ(r− ri,+)− ṙi,−δ(r− ri,−)] p̂i =
Zeffe p̂i
(2π)3

∫
R3

[
ṙi,+ exp (−ik ·∆ri,+) +

− ṙi,− exp (−ik ·∆ri,−)
]

exp [−ik · (r− ri)] d3k ≈ Zeffeẋi p̂i
(2π)3

∫
R3

exp [−i(r− ri)] d3k =

=
ṗi p̂i
(2π)3

∫
R3

exp [−ik · (r− ri)] d3k = δ(r− ri)
dpdyn,i

dt

(64)

where we have introduced the distance ∆r±,i = r± − ri of the positive and negative charge

barycenters from the center of net charges, and the dipole approximation has been consid-

ered, i.e. k ·∆r±,i � 1. Moreover, it has been assumed that the orientation of the dipoles is

fixed ( ˙̂pi = 0). Under these assumptions it follows that the only source of the electromag-

netic field are the oscillating dipoles.

Substituting Eq.(63) in Eq.(62) we obtain

Ai(r, ω) =
µ0(−iω)pi(ω)p̂i

(2π)3

∫
R3

exp[ik · (r− ri)]

|k|2 − k2
0

d3k =

=
µ0(−iω)pi(ω)p̂i

4π|r− ri|
exp[ς i k0(ω)|r− ri|] =

=
µ0(−iω)pi(ω)p̂i

4π|r− ri|
exp[ς i Re(k0)|r− ri|] exp[−|Im(k0)||r− ri|]

(65)
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where k0 =
√
k0(ω)2 ∈ C and ς = sgn[Im(k0)]. According to the conventions adopted in

Appendix A for the dielectric constant of water ς = sgn(ω). Using Maxwell equations, the

expressions of the magnetic field is

Hi(r, ω) =
rotAi(r, ω)

µ0µW (ω)
= (n̂rri × p̂i)

ςωk0(ω)pi(ω)

4π|r− ri|

(
1− 1

iςk0(ω)|r− ri|

)
exp[ς i k0(ω)|r− ri|]

(66)

and of the electric field is

Ei(r, ω) =
1

(−iω)ε0εW (ω)
[rotHi(r, ω)− µW (ω)Ji(r, ω)] . (67)

The Fourier transform in frequency domain of the dynamical part of the electric field gen-

erated by the i-th dipole for r 6= ri reads

Edyn,i(r, ω) =
pi(ω)

4πε0εW (ω)

{
k2

0(ω)

|r− ri|
(n̂rri × p̂i)× n̂rri+

+

(
1

|r− ri|3
− iςk0(ω)

|r− ri|2

)
[3(n̂rri · p̂i)n̂rri − p̂i]

}
exp[iςk0(ω)|r− ri|] .

(68)

The attenuation range (by a factor e) of the field is given by λatt(ω) = Im−1[k0(ω)] while the

field wavelength is given by λ(ω) = 2πRe−1[k0(ω)]. In the NaCl water solution condition

to be used in experiments, and in the range of (angular) frequencies ω attributed to the

collective oscillations (CVM) of the biomolecules under consideration (R-PA and BSA) it is

λ(ω) & 10λatt(ω). It follows that the retardation effects can be neglected, leading to

Edyn,i(r, ω) =
pi(ω)

4πε0εW (ω)|r− ri|3
[3(n̂rri · p̂i)n̂rri − p̂i] . (69)

So, the real electric field can be rewritten as

Edyn,i(r, t) =

∫
R+/{0}

pi(ω)

4πε0εW (ω)|r− ri|3
[3(n̂rri · p̂i)n̂rri − p̂i] exp(−iωt)dω =

=
[3(n̂rri · p̂i)n̂rri − p̂i]

4πε0|r− ri|3

∫
R+/{0}

pi(ω) exp(−iφεW (ω)) exp(−iωt)

|εW (ω)|
dω

(70)
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where we have used εW (ω) = |εW (ω)| exp[+iφεW (ω)]. Using the reality condition on the

time dependent dielectric constant εW (t), i.e. φεW (−ω) = −φεW (ω), we obtain

Edyn,i(r, t) =
[3(n̂rri · p̂i)− p̂i]

4πε0|r− ri|3
Pi(t) , (71)

where the effective generating dipole Pi(t) is defined as

Pi(t) =

∫
R+/{0}

2|pi(ω)| cos [ωt− φi(ω)− φεW (ω)]

|εW (ω)|2
dω =

∫ t

−∞
χ(t− t′)pi(t′) dt′ , (72)

and the response function χ(t−t′) depends on the dielectric properties of the water solution.

The interaction energy between the i-th dipole and the electric field generated by the j-th

dipole Pj is given by

Vdyn,ij =
p̂i · p̂j − 3(p̂i · n̂rirj)(p̂i · n̂rirj)

4πε0|ri − rj|3
Pj(t)pi(t) =

=
p̂i · p̂j − 3(p̂i · n̂rirj)(p̂i · n̂rirj)

4πε0|ri − rj|3

∫ t

−∞
dt′ χ(t− t′)pj(t′)pi(t) .

(73)

The dispersion effects do not allow to provide a straightforward Hamiltonian formulation

of the dynamics of the oscillating dipoles; for this reason we introduce an effective dipole

P̃i(t) = Cpi(t) with no phase mismatch effects due to the dispersion properties of the aqueous

solution, i.e. √
〈P2〉[0,+∞) =

√
〈P̃2〉[0,+∞) (74)

where 〈·〉[0,T ] stands for the time average on the interval [0, T ]. The condition in Eq.(74) can

be rewritten as √∫ +∞

0

2|pi(ω)|2

|εW (ω)|2
dω = C

√∫ +∞

0

2|pi(ω)|2 dω (75)

and assuming that the modulus of the complex dielectric constant is almost constant on the

support of |pi(ω)|, centered around ωCVM, we obtain

C =
1

|εW (ωCVM)|
. (76)

We verify that, in the case of study, we can effectively expect that the variation of the

modulus of the dielectric constant is negligible. According to what is reported in Appendix
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A about the dielectric properties of salty water, we can expect that in conditions analogous

to the experimental ones the maximum variation of the modulus of the (complex) dielectric

constant is given by

∆|ε(ω)| ≈
∣∣∣∣d|ε(ωCVM)|

dω
(∆ω)FS

∣∣∣∣ (77)

where (∆ω)FS is the maximum of the experimentally expected frequency shift of the ab-

sorption peak in the THz spectrum of a protein. For R-PE d|ε(ωCVM)|/dω = −43.6 ps

and (∆ω)FS ≈ 2.6 × 10−3THz, from which it follows that (∆|ε(ω)|)RPE ≈ 1.2 × 10−1 and

(∆|ε(ω)|)RPE/|ε(ωCVM)| ≈ 5.1 × 10−3. This means that at the level of accuracy expected

by the current theoretical interpretation of the possible experimental results, the approx-

imation of a constant absolute value of the dielectric constant is a good one. In the case

of BSA we have that d|ε(ωCVM)|/dω = −1.91 ps and (∆ω)FS ≈ 0.81 × 10−1THz; accord-

ing to Eq.(77) the estimated variation of the modulus of the relative dielectric constant is

(∆|ε(ω)|)RPE ≈ 1.6× 10−1, whence (∆|ε(ω)|)RPE/|ε(ωCVM)| ≈ 2.1× 10−2.

From the above considerations, it follows that the potential between oscillating dipoles

can be rewritten as

Vdyn,ij(t) =
p̂i · p̂j − 3(p̂i · n̂rirj)(p̂i · n̂rirj)

4πε0|εW (ωCVM)||ri − rj|3
pj(t)pi(t) =

= ZiZje
2 p̂i · p̂j − 3(p̂i · n̂rirj)(p̂i · n̂rirj)

4πε0|εW (ωCVM)||ri − rj|3
xi(t)xj(t) .

(78)

This is the electrodynamic potential between two biomolecules when collective giant dipole

oscillation are activated by an external source of energy.

We are now able to describe the dynamics of the hamiltonian system of dipole oscillators.

Let us introduce the variables xdyn expressing the dynamical part of the separation between

the barycenters of charge , i.e.

xi(t) = xeq,i + xdyn,i(t) = xeq,i +

∫
R/{0}

2xi(ω) cos[ωt+ φi(ω)] dω (79)

where xeq,i is the static equilibrium elongation of the dipole associated with the i-th molecule,

i.e.

∂xdyn,iH
∣∣
xdyn=0

= 0 ∀i = 1, ..., N . (80)
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From Eq.(79) it follows that the canonical conjugate momenta associated to the variables

xdyn,i(t) remain unchanged with respect to the momenta Pi associated to the variables xi.

According to Eqs.(60) and (71), we can rewrite the electric field generated by the i-th

molecule using the variables introduced in Eq.(79)

Ei(r, t) = χ(s)(r; ri, p̂i)p0,i + χ(d)(r; ri, p̂i)pdyn,i(t) (81)

where

χ(s)(r; ri, p̂i) =
exp[−|r− ri|/λD]

4πε0εW (0)λD|r− ri|
n̂rir

λD
(n̂rir · p̂i)

χ(d)(r; ri, p̂i) =
[3(n̂rri · p̂i)− p̂i]

4πε0εW (ωCVM)|r− ri|3
.

(82)

With the notations introduced in Eqs.(79) and (82) the equations of motions become

ẋi =
Pi
Meff

Ṗi = −Meffω
2
CVMxdyn,i +

Zeff,iZeff,je
2

2
×

×
N∑
j=1
j 6=i

[
peq,j

(
p̂i · χ(s)(ri; rj, p̂j) + p̂j · χ(d)(rj; ri, p̂i)

)
+ 2pdyn,jp̂i · χ(d)(ri; rj, p̂j)

] (83)

where we have used p̂i · χ(d)(ri; rj, p̂j) = p̂j · χ(d)(rj; ri, p̂i). As we are interested in the

long range behaviour when |ri − rj| � λD we can neglect terms containing χs in Eq.(83).

Introducing the geometric coupling parameter ζij = −p̂i · χ(d)(ri; rj, p̂j) we can rewrite the

equations of motion for xdyn,i in terms of its Fourier components yielding

∫
R/{0}

[−ω2 + ω2
CVM]xω,i cos(ωt+ φi,ω) +

N∑
j=1
j 6=i

Zeff,iZeff,jζij
Meff

xω,j cos(ωt+ φj,ω)

 dω+

+ ω2
CVM(xeq,i − x0,i) +

∑
j=1
j 6=i

Zeff,iZeff,je
2ζij

Meff

xeq,j = 0

(84)
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The condition for xeq,i can be rewritten as

Mijxeq,j = x0,i with Mij = δij +
Zeff,iZeff,je

2ζij
Meffω2

CVM

(1− δij) (85)

while the condition for the solutions of the dynamics can be rewritten as a set of equations

for the normal modes of the system, i.e.

(Mij − ω̃2δij)xω,j = 0 (86)

where ω̃ = ω/ωCVM. The set of eigenvalues of the matrix M defines the square of the

angular frequencies of the normal modes {ω̃A}A=1,...,N . The eigenfrequencies are well defined

as ω̃2
A > 0 for all A = 1, ..., N in the perurbative regime, i.e.∣∣∣∣Zeff,iZeff,je

2ζij
Meffω2

CVM

∣∣∣∣� 1 . (87)

Within this theoretical framework it is possible to provide a prediction for the observable

frequency shifts. The Hamiltonian of the system can be rewritten as

HdipOs({Rij}ij) = Heq({Rij}ij)+
N∑
A=1

J̃Aω̃A({Rij}ij)ωCVM ≈
N∑
A=1

J̃Aω̃A({Rij}ij)ωCVM . (88)

where Heq({Rij}ij) is the energy contribution of the static dipoles that we assume to be

negligible with respect to the other term representing the contribution of the dynamics of

the coupled oscillators. In order to define the interaction energy among dipoles as a function

of their relative positions Rij, the energy of the oscillators in the limit of infinite mutual

distances is considered. In fact, a parameter ε = min
ij
|Rij|−1 representing the inverse of a

length scale can be introduced such that Rij = R̃ij/ε where R̃ij ≥ 1. It follows that the

Hamiltonian describing the energy of the coupled oscillators depends on ε and that the case

of decoupled oscillators can be obtained in the limit

HfreeOs = lim
ε→0+

HdipOs(R̃ij/ε) =
∑
i=1

JiωCVM .
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In this framework, the interaction energy is defined as

∆Uint =

∫ 1

0

dHdipOs

dε
dε . (89)

Assuming an adiabatic process ideally connecting the asymptotic state of non-interacting

dipoles ε = 0 and the state of interacting dipoles ε = 1, the action J is an adiabatic invariant,

i.e. Ji ≈ JA|ε=0. The interaction energy takes the form

∆Uint({Rij}ij) =
N∑
A=1

JA

∫ ω̃A

1

ωCVM dηA =
N∑
A=1

JAωCVM[ω̃A({Rij}ij)− 1] . (90)

This form of the interaction energy is the generalization to the case of N oscillating dipoles

of the results derived in [5] for a pair of oscillating resonant dipoles. In fact, the frequency

shift in a system of two coupled identical oscillating dipoles is given by

ω̃± = 1± Z2
effe

2

8πε0ε(ωCVM)|R12|3MeffωCVM

(91)

and, consequently, the interaction energy in that case scales as |R12|−3. In the general case of

N interacting dipoles, the frequency shift of each normal mode with respect to the reference

frequency ωCVM is a non trivial function depending on the position of all the particles in

the system. For such a reason we performed numerical simulations in order to provide a

theoretical explanation of the possible experimental outcomes.

2. Theoretical prediction of the magnitude of frequency shift of the absorption peak in THz

spectroscopy experiments

In THz absorption spectroscopy experiments, the external monochromatic reading THz

field Eread(t) = Eread(t)Êread couples with the system of mutually interacting excited oscil-

lating dipoles, i.e.

Uread = −Eread(t) · pTot = Eread(t)
N∑
i=1

Ziexi(t)
(
−p̂i · Êtest

)
= (92)

Eread(t)
N∑
i=1

N∑
A=1

(
−p̂i · Êtest

)
ZieOAi x̃0,A cos(θA + φA) = Eread(t)

N∑
A=1

Ccpl(ω̃A) cos
[
θ̃A(t) + φA

]
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where we have used xi =
N∑
A=1

OAi x̃A =
N∑
A=1

OAi x̃0,A cos
[
θ̃A(t) + φA

]
.

We assume that the major contribution to THz absorption in experiments is due to the

normal mode maximally coupled with the external probing field, i.e.:

CMcpl({ri, p̂i}i) = max
A
|Ccpl(ω̃A)| = |Ccpl(ω̃Mcpl({ri, p̂i}i))| (93)

where ω̃Mcpl is the angular frequency of the collective mode with the largest absolute value

of dipole-field coupling constant.

In Eq.(93) we stressed that the mode with the maximal coupling constant depends on

the (fixed) positions and orientations of the molecules. In order to establish the value of

the amplitude of each normal mode x̃0,A we assume that x̃0,A ' x̃0,B ' x̃0. The value of

the coefficients x̃0,A has been chosen assuming that 〈(∆xi)2〉 =
x2

CVM

2
, where x2

CVM is the

amplitude of the oscillation of the barycenters of electric charge and 〈·〉 is the time average

over a time much larger than the ν−1
CVM. Under these hypotheses, we deduce that

〈(∆xi)2〉 =
∑
A,B

OAi OBi x̃0,Ax̃0,B〈cos(ω̃At+ φA) cos(ω̃Bt+ φB)〉 =
∑
A,B

OAi OBi x̃0,Ax̃0,B
δA,B

2
=

=
x̃2

0

2

∑
A

(OAi )2 =
x̃2

0

2
(94)

where we have used the properties of the orthogonal matrix
N∑
A=1

(OAi )2 = 1. From Eq.(94) it

follows that the total dipole associated to each normal mode is given by

Ccpl(ω̃A) =
∑
i

(−p̂i · Êread)ZieOAi
√

2σi =
∑
i

(−pA,i · Êread) (95)

where we have introduced the electric dipole moment

pA,i = ZieOAi
√

2σip̂i (96)

as the effective electric dipole amplitude at the frequency ω̃A of the i-th molecule. The

(absolute value) of the frequency shift can be defined as
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‖∆ω‖ = ω̃Mcpl − ωCVM . (97)

We can analytically estimate the frequency shift for a system of two oscillating dipoles

representing two excited biomolecules with fixed positions and orientations

∆ω =
ZiZje

2

2Meffω0

[p̂i · p̂j − 3 (p̂i · r̂ij) (p̂i · r̂ij)]
4π|εW (ωCVM)|ε0r3

ij

. (98)

In preliminary THz spectroscopy experiments on R-PE, a relative frequency shift

‖∆ω(600 Å)‖/ωRPE,CVM ≈ 6 × 10−3 has been measured. Assuming |εW (ωRPE)| ≈ 22.7,

Meff 'MRPE/12 ≈ 0.2×102kDa, the geometric factor |p̂i · p̂j − 3(p̂i · r̂ij)(p̂j · r̂ij)| ≈ 1, then

the effective electric charge is estimated to be

Z ≈

√
8Meffω

2
0ζπεW (ω0)ε0

(
600 Å

)3

e2
= 1.3× 103 (99)

The spatial power density of energy injection in THz spectroscopy experiments is much

smaller than the spatial power density of energy injection in FCS experiments. In fact, if

we assume that the strength of the dynamic dipole (and consequently of the interaction)

is proportional to the amount of the energy injection rate into the protein, we can expect

that the oscillating dipole strength (and the strength of the interaction) is smaller in THz

spectroscopy experiments than in FCS experiments. This means that in estimating the

mean squared elongation of the dipole σ2
i we have to consider a smaller value than the one

estimated in (47). Assuming that σ∆x ∼ 0.5 × σ∆x,Fc ≈ 0.5 Å as in the case of R-PE, we

derive a value of pω ≈ 5.3×103D to explain the frequency shift observed in preliminary THz

experiment.

This value of the estimated oscillating dipole strength seems to contradict the previous

assumption of a smaller dipole strength than the one we have evaluated for FCS experiments

|p| ∼ 2900D. However, in the previous estimation of the frequency shift we have considered

only two oscillating dipoles: as the electrodynamic interactions among resonating oscillating

dipoles are supposed to be long-range (scaling as r−3), we are underestimating the effect of

long range dipole-dipole electrodynamic interactions in a many-body system. So we expect

that such a value of the dynamical electric dipole is an overestimation of the real value in
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experiments.

In real spectroscopic experiments the situation is different with respect to the ideal two

body case because the number of R-PE molecules contained in a typical observation volume

(≈ 1µL) is of the order 1015−1018. So, numerical simulations have been performed in order

to investigate how the frequency shift of the absorption peak depends on the intermolecular

average distance for a system of interacting dipoles, with fixed positions and orientations,

linearly coupled through a quasi-static dipole-dipole potential.

We assume that the testing field of the experiments is linearly polarized along the ẑ

direction, so that the normal mode of the system that maximizes the coupling with the

reading field is the one having the largest polarization along the z-axis. It follows that

the relative frequency shift ∆ω = ∆ω({p̂i, ri}i) associated to a given configuration for the

position and orientations of the system of dipoles is given by

∆ω({p̂i, ri}i) = 1−
√
ω2
max ω̃2

max = {ω̃2
A | |Ccpl(ω̃A)| = max

B=1,...,N
{|Ccpl(ω̃B|}} . (100)

In order to compare the result of numerical simulations with the expected outcomes of THz

spectroscopy experiments:

• the average over many configurations of the positions and the orientations of the

dipoles has to be considered in order to take into account the thermal and statistical

fluctuations of the orientations and positions;

• the average frequency shift for a fixed intermolecular average distance has to be cal-

culated for systems of different size and extrapolated for large N , as finite size effects

affect systems with long range interactions.

In the following section the protocol to calculate the average over the configurations and to

extrapolate the frequency shift for large N is discussed.

B. Algorithm for numerical simulations

The aim of the simulations is to estimate the frequency shift for an ensemble ofN spherical

molecules of radius a in a cubic box of size L as a function of the intermolecular average

distance 〈d〉. The system of oscillating dipoles consists of three different sets of degrees of
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freedom: the coordinates of the center of mass of each particle, the orientation of the main

dipole and the coordinate which describes the vibration of the dipole. For each fixed value of

the intermolecular average distance 〈d〉, nCMconf = 5×103 configurations of the ensemble of

molecules have been randomly chosen. The position of the center of each molecule has been

randomly set with a uniform probability distribution inside the box, avoiding the overlaps.

The orientation of each dipole is described by a couple of polar angular coordinates (θ, φ)

such that θi ∈ [0, π) and φi = [0, 2π) for i = 1, ..., N . For each fixed configuration of the

centers of mass of the molecules, the orientational degrees of freedom of the molecules have

been thermalized using a Monte Carlo-Metropolis scheme. All the trial configurations for

the orientations have been generated by adding to the angular coordinates of each particle a

randomly chosen number with a uniform distribution. The intervals are [−ηπ, ηπ] for the θi

angles and [−2ηπ, 2ηπ] for the φi angles. In the performed simulations the parameter that

describes the width of the interval has been set to η = 7.5× 10−3. For each configuration of

the centers of mass, ntherm = 2× 103 Monte Carlo steps have been performed to thermalize

the orientations of the dipoles of the system. Then, starting from the final configuration

so obtained, an average value of the frequency shift has been computed over nMCstep = 50

configurations furtherly generated and interspersed with 10 Monte Carlo steps. The relative

frequency shift associated to each intermolecular average distance has been computed as

the overall average on a total number of ntotsamp = nMCstep × nCMconf = 2.5× 105 different

configurations of the dipole orientations and of the positions of the centers of mass. The

potential energy dependence among different configurations has been calculated using the

time average of Eq.(78) assuming xi(t) = xCVM cos(ωCVMt).

C. Numerical results

The numerical simulations were performed for systems of different sizes and different

values of the dipole moment pi and of the effective charge Zi. The entries of the matrix

Mij depend on the value of the effective charge and only indirectly on the value of the

modulus of the dipole moment of each molecule. The value of the dynamic electric dipole

of each molecule enters in the calculation of the total interaction energy among the dipoles

required by Monte Carlo-Metropolis algorithm. The tested values of the effective charge

were empirically chosen in order to provide a relative frequency shift comparable with the

37



one observed in preliminary experimental tests. The value of the amplitude of the dynamic

dipole oscillations has been chosen heuristically in order to reproduce the same data.

The average frequency shift for a fixed intermolecular average distance has been measured

for different sizes of the system. For each fixed number of molecules the relative frequency

shift ∆ν0/ν0 has been plotted as a function of the intermolecular average distance 〈d〉. The

data have been fitted with a power law of the form ∆ν0/ν0 = Ax−k and an inverse cubic

law ∆ν0/ν0 = Bx−3.

In conclusion, the highly remarkable result of our computations is that the frequency shift

of the collective intramolecular oscillations of an ensemble of proteins interacting through a

dipole-dipole electrodynamic force, scales as 1/〈d〉3. By inversion, the experimental obser-

vation of this result is a proof that the molecules under investigation interact through the

electrodynamic dipole-dipole forces above discussed.

N A[106 Å
3
] k B[106 Å

3
]

50 2.04± 0.04 2.65± 0.05 1.79± 0.04
100 1.438± 0.014 2.90± 0.02 1.38± 0.10
200 1.17± 0.02 k = 3.03± 0.04 1.185± 0.005

TABLE II: Table of the fitted parameters for the relative frequency shift as a function of the

intermolecular average distance 〈d〉 and different system sizes (the number of molecules in the box

is N). The parameters {AN , kN}N correspond to the fit ∆ν0/ν0 = ANx
−kN and {BN}N are the

parameters characterizing the inverse cubic distribution ∆ν0/ν0 = BNx
−3. The modulus of each

dipole was chosen to be pi = 2100 D while the effective charge of the dipole is Zi = 850. With

these choices the amplitude of dipole oscillation is xω0 ' 0.51 Å.

N A[106 Å
3
] k B[106 Å

3
]

50 1.55± 0.02 2.67± 0.04 1.37± 0.03
100 1.10± 0.010 2.95± 0.02 1.081± 0.005
200 0.907± 0.009 3.05± 0.02 9.27± 0.04

TABLE III: Table of the fitted parameters for the relative frequency shift as a function of the

intermolecular average distance 〈d〉 and different system sizes (the number of molecules in the box

is N). The parameters {AN , kN}N correspond to the fit ∆ν0/ν0 = ANx
−kN and {BN}N are the

parameters characterizing the inverse cubic distribution ∆ν0/ν0 = BNx
−3. The modulus of each

dipole was chosen to be pi = 1850 D while the effective charge of the dipole is Zi = 750. With

these choices the amplitude of dipole oscillation is xω0 ' 0.51 Å.
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FIG. 10: Relative frequency shift as a function of the intermolecular average distance for N = 50

(top), N = 100 (center) N = 200 (bottom). The coefficients AN and BN are expressed in 106Å
3
.

The modulus of each dipole was chosen to be pi = 2100 D while the effective charge of the dipole

is Zi = 850. With these choices the amplitude of dipole oscillation is xω0 ' 0.51Å.
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FIG. 11: Relative frequency shift as a function of the intermolecular average distance for N = 50

(top), N = 100 (center) N = 200 (bottom). The coefficients AN and BN are expressed in 106Å
3
.

The module of each dipole was chosen to be pi = 1850 D while the effective charge of the dipole is

Zi = 750. With these choices the amplitude of dipole oscillation is xω0 ' 0.51 Å.
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IV. REMARK ON POSSIBLE ACTIVATION MECHANISMS OF ELECTRODY-

NAMIC FORCES IN VIVO

The light-induced activation of electrodynamic forces is expected to be a method to war-

rant a well controllable and reproducible in vitro approach. Even though the R-PE protein

is a natural light harvesting protein, we might wonder which kind of activation mechanisms

might be hypothesised to take place in living cells. A comment on this point is not out

of place because there is no physical reason to consider the activation of electrodynamic

forces limited to the creation of ”hot points” through the excitation of fluorophores. In fact,

the theoretical modelling in Ref.[11] requires an external source of energy injection into a

macromolecule of absolutely generic form.

Actually, in vivo the external energy supply for the activation of electrodynamic attrac-

tive forces between cognate partners could be well provided by the cellular machinery itself

as energy released by adenosine triphosphate (ATP) or guanosine triphosphate (GTP) hy-

drolysis by specific enzymes. It could then be transferred in the form of post-translational

modifications or heat to the other molecules. In fact, the typical intracellular concentra-

tion of ATP molecules is given around 1 mM implying that a protein molecule in the cell

undergoes around 106 collisions with ATP molecules per second [24]. Given the standard

free-energy obtained from ATP hydrolysis estimated around 50 kJ mol-1 = 8.306 · 10−13erg,

we can assume that 1% of the collisions with ATP will provide energy, which corresponds

to a power supply of 8.306 · 10−9erg s-1 potentially available. Besides ATP hydrolysis, other

possible forms of energy supply should be considered in a cellular environment, for example,

the energy released from mitochondria in the course of citric acid cycle with a power supply

given around 10−7erg s-1. This source of energy might well be enough to excite long-range

electrodynamic forces as the corresponding power is around or larger than the power consid-

ered for ATP hydrolysis. Let us also mention the recent experimental evidence for thermally

induced ”protein quakes” to initiate enzymatic catalysis [25] through a solvent-dependent

non isotropic momentum transfer due to the collisions of water molecules or ions.

It is worth mentioning that, for a broad class of physical systems, long-living Quasi

Stationary States (QSS) can be dynamically generated which keep a system out of ther-

modynamic equilibrium. Among many other systems where QSS are produced [26] let us

mention a beam of fast particles interacting with the set of waves describing a physical
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system [27, 28] a situation which is reminiscent, for example, of fast phosphate groups -

produced by ATP hydrolysis - colliding against suitable sites of a biomolecule to create

”hot points” yielding ”protein quakes”. In Ref. [11] ”protein quakes” have been invoked to

explain the activation of collective oscillations through light irradiation of the BSA protein.

Appendix A: Dielectric properties of solution of salt in water

From data reported in [29] we have interpolated the complex dielectric constant of water

solution of NaCl at 200 mM at T = 30 ◦C:

εW (ω) = εW,∞ +
εW (0)− εW,∞

1− iωτW
(A1)

with εW,∞ = 5, εW (0) = 72.7 and τ = 7.01 ps. It follows that for R-PE (ωCVM = 2π ×

71 GHz = 0.446 THz) the value of the electric dielectric constant is

εW (ωCVM) = 11.3 + i 19.6 (A2)

so that the characteristic wavelength corresponding to the angular frequency of the CVM

observed for the R-PE is

k(ωCVM,RPE) = (6.13 + i 3.55)×10−7Å
−1

(A3)

assuming µW (ωCVM) = 1.

εW (ωCVM) |εW (ωCVM)| φεW (ωCVM) ε′W (ωCVM) |εW (ωCVM)|′ φ′ε(ωCVM)
R-PE 11.3 + i 19.6 22.6 1.050 −(25.5 + i35.8) −43.8 0.189
BSA 5.35 + i 4.87 7.24 0.738 −(0.35 + i 2.44) −1.91 −0.217

TABLE IV: Dielectric properties of water in the regime of frequency of the Collective Vibration

Mode (CVM) for R-PE and BSA. The Fourier transform of the relative dielectric constant of water

is expressed using polar form εW (ω) = |εW (ω)| exp[iφεW (ω)]. The derivatives (primed quantities)

of the different adimensional quantities with respect to ω are expressed in ps = THz−1.

An analogous calculation for BSA (ωCVM ' 2π × 0.314 THz = 1.97 THz) gives

εW (ωCVM,BSA) = 5.35132− i 4.8655, and the wavenumber is

k(ωCVM,BSA) = (1.65− i 0.638)×10−6Å
−1

(A4)
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For the biomolecules considered, BSA and R-PE, the characteristic attenuation length scale

κatt = [=(k)]−1 is smaller than both the wavelength λrad = [<(k)]−1 of the radiation and

the characteristic length scale of the observed systems in THz spectroscopy experiments, i.e.

lsys ≈ (1µL)1/3 = 107Å = 10−1cm.

ωCVM[THz] λrad(ωCVM)[×107Å] κatt(ωCVM)[×107Å] κ3
att[µL]

R-PE 0.447 1.02 0.281 0.022

BSA 1.97 0.606 0.156 0.0038

This means that the dissipative properties of the medium define the range of the interac-

tion: inside a volume of κ3
att the dynamical electric field can be considered quasi-static, i.e.

retardation and radiation terms in Eq.(68) can be neglected.

Appendix B: Effective mass for two oscillating charge centers

Here we consider the inner dynamics of a unidimensional oscillator along a fixed axis.

Charge barycenters coordinates x± can be expressed in terms of the relative/center-of-mass

coordinates r = x+ − x− and R = (m+x+ −m−x−) /mTot, where mTot = m+ + m− is the

total mass of the oscillating dipole. The following assumptions have been made:

• the two charge barycenters are associated to the same effective mass m+ and m−;

• the equilibrium position of the system is supposed to correspond to the situation where

the two charge barycenters overlap, i.e. x+ = x− = 0

HintOsc =
1

2
mẋ2

+ +
1

2
mẋ2
− +

1

2
mω2(x+ −R)2 +

1

2
mω2(x− −R)2 (B1)

After the change of coordinates x± = R± r/2, Eq.(B1) reads:

HintOsc =
1

2
(2m)Ṙ2 +

1

2

m

2
ṙ2 +

1

2

m

2
ω2r2 =

=
1

2
mTotṘ

2 +
1

2
mredṙ

2 +
1

2
mredω

2r2
(B2)

Ignoring the contribution to the total energy of the center of mass (R = 0, Ṙ = 0), we

find that the energy contribution deriving from oscillations reduces to

HintOsc =
1

2
mredṙ

2 +
1

2
mredω

2r2 . (B3)
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For the protein R-PE, we have that mTot ∼ 2.4× 102 KDa, so that mred = m/2 = mTot/4 ≈

0.6× 102 KDa.
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