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1. The cohort of elite cyclists 
Blood samples were collected by puncture of the antecubital vein in fasting conditions between 7:30 

a.m. and 9:30 a.m. They were centrifuged and the serum divided into aliquots and stored at -20°C for 

biochemical analysis done in a single laboratory (centralized testing) or at -80°C for achieving 

hormonal analyses (centralized testing)  and delayed metabolomic studies. Serum cortisol was 

determined with the chemiluminescent assay Ready Pack Advia Centaur Cortisol (Bayer Diagnostic® 

France). Serum testosterone was determined with the chemiluminescent assay Ready Pack Advia 

Centaur Testosterone (Bayer Diagnostic® France). Serum IGF1 was determined with the RIA IBC-IGF-1 

assay comprising an ethanol extraction step (Immunotech, Marseille, France). 

For cortisol, normal serum concentrations were comprised between 90 and 220 ng/mL, values which 

corresponded in the present cohort to the respective quantiles: 0.105 and 0.561. For IGF1, the 

normal serum concentrations were comprised between 200 and 420 ng/mL, values which 

corresponded in the present cohort to the respective quantiles: 0.116 and 0.832. For testosterone, 

the normal serum concentrations were comprised between 3.0 and 8.3 ng/mL, values which 

corresponded in the present cohort to the respective quantiles: 0.123 and 0.867.  

Minimal, median and maximal ages of subjects were 19.9, 24.3 and 41.0 yrs. (Table S1). For the 

subgroup of subjects who were submitted to a longitudinal follow-up and were repeatedly collected, 

their median minimal and maximal ages at blood collection time were estimated to 24.4 and 27.6 

yrs., respectively, when their median age was calculated to 24.8 yrs. (Table S1).  

For the cortisol phenotype, the Low class contained only 66 samples, when the Normal and the High 

classes contained 303 and 277 samples, respectively (Table S2). For IGF1 and testosterone, the size of 

the Normal class was much higher (respectively, 491 and 500 samples) than sizes for Low and High 

classes of these two endocrine phenotypes. Nevertheless, these two latter classes were more or less 

balanced with for IGF1 respectively 71 and 84 samples in these two abnormal classes and for 

testosterone 78 and 57 samples in these same classes (Table S2). Few missing concentration values 

were found in these endocrine phenotypes: 9 for cortisol, 9 for IGF1 and 20 for testosterone (Table 

S2). Non-hormonally phenotyped (NP) samples were discarded from the cohort for the given 

endocrine trait.  

A special attention was given to the constitution of the control classes for cortisol, IGF1 and 

testosterone for which the normality of endocrine and haematological profiles of subjects has been 

detected simultaneously for the three hormones assayed one time for 67 subjects on a total of 90 

fully hormonally normal subjects and twice for 17 additional subjects (Table S3). These sets of fully 

hormonally normal samples represented 18.6% of the total biobank of the study. Samples of some 

numerous disrupted endocrine phenotypes such as the High cortisol class or the High testosterone 

one were randomly selected from the FFC biobank. By contrast, all samples belonging to rare 

disrupted endocrine phenotypes were included in the study.  

In a first exploration of the variation of hormonal concentrations with age in Normal classes, no 

significant dependency was detected between 20 and 34 yrs., excepted for IGF1 where a significant 

decrease was revealed (Figure S1). This observation was in agreement with prior studies (Brabant et 

al. 2003; Bidlingmaier et al. 2014; Elmlinger et al. 2004; Landin-Wilhelmsen et al. 2004; Rosario 

2010). However in practice, in this latter case, no need for a prior correction of hormonal range to 
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define an age-corrected normality of IGF1 values was necessary given the large range of normal IGF1 

values when assayed in such a restricted age range [20-34 yrs.].  

2. Materials and Methods 

2.1. 1H NMR fingerprinting 

Fingerprinting was performed by 1H NMR spectroscopy after a rapid sample preparation performed 

as following. D2O (500 µl) was added to serum (100 µl). After mixing the sample, it was transferred to 

a 5-mm NMR vial for 1H NMR analysis. 

Because serum contains heavy molecules, which display a large signal and hide narrow metabolite 

signals, the Carr-Purcell-Meiboom-Gill (CPMG) NMR sequence was used to discard this type of 

interfering signal.  

The 1H signal was acquired by accumulating 256 transients with a 12-ppm spectral width typically 

collecting 32 K data points. A spin-spin relaxation total delay of 43.9 × 10-3 s and a 3-s relaxation delay 

were applied. The Fourier transform (FT) was calculated on 64 K points. The total experiment was run 

for 23 min by sample. All 1H NMR spectra were phased and the baseline corrected. A representative 

spectrum is given in Figure S2. The 1H chemical shifts were calibrated on the resonance of lactate at 

1.33 ppm. Then, serum spectra were data-reduced prior to statistical analysis using AMIX software 

(Analysis of Mixtures v 3.6.4) from Bruker Analytische Messtechnik (Karlsruhe, Germany). The 

spectral region δ 0.5-10.0 ppm was segmented into consecutive non-overlapping regions (buckets) of 

0.01 ppm and normalized against the total signal intensity. The region around δ 4.8 ppm 

corresponding to the water resonance was excluded from the pattern recognition analysis to 

eliminate residual water artifacts. 

2.2. Statistical analyses 

2.2.1. Pre-processing and non-supervised data explorations 

MAGIC (Markov Affinity-based Graph Imputation of Cells) processing was used to prior remove noisy 

information while highlighting relevant data structures, more particularly complex and non-linear 

interactions between sets of variables (van Dijk et al. 2018). This has resulted in a more contrasted 

network of variable correlations without requiring any dummy variables. PHATE can generate a low-

dimensional embedding easily visualized on a 2D factorial map, and provides an accurate, denoised 

information which represents both the local and global extracted informational structures of a 

dataset (Moon et al. 2019). In most cases, parameters used for processing with MAGIC and PHATE 

were left as their default values. 

2.2.2. Discrimination procedures 

Metabolites were given in a 655 × 419 spectral matrix X for the whole cohort, except the NP subjects 

for their respective endocrine phenotype. For the three classes, a numeric coding factor (either 1, 2 

or 3) represented the class of concentration of either cortisol, IGF1 or testosterone assayed 

respectively in the Low, Normal or High class. These coding values constituted the Y response class 

vector.  

Basically, for any endocrine phenotype, the classification of any unknown subject from his 

metabolomic profile into one of the three classes could be computed according to a prior 

discrimination rule established from a learning (training) set of documented samples. In this aim, we 
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compared the following two approaches for their ability to handle the problem of multicollinearity, 

which typically arose when the explanatory variables are numerous. 

First, partial least squares-discriminant analysis (PLS-DA), a classification method based on partial 

least squares regression (PLSR) (Barker & Rayens 2003), was used. Besides, this method was used 

here either with or without a prior Orthogonal Signal Correction (OSC) to remove on X the variation 

on a component orthogonal to the Y response vector. This unrelated information was filtered out 

using PLSR. OSC of the matrix X combined the nonlinear iterative partial least squares (NIPALS) 

algorithm (Wold et al. 1998) with that of Wise and Gallagher published by Westerhuis et al. (2001) 

(Matlab code available at https://eigenvector.com/resources/matlab-user-area/orthogonal-signal-

correction/).  

Second, a shrinkage discriminant analysis (SDA) (Ahdesmäki & Strimmer 2010) was used to get a 

discrimination rule from the training set of samples in order to apply it to samples from unknown 

classes. SDA trains a linear discriminant analysis classifier using James–Stein shrinkage estimates of 

correlations, variances and priors while predictor variables are ranked using correlation-adjusted t-

scores (cat scores) (Zuber & Strimmer 2009), which also includes a particular feature (variable) 

selection to get a more homogenous variance between all variables. Every endocrine phenotype 

regarding the cortisol, IGF1 and testosterone traits was modelled independently from the two other 

phenotypes. All these statistical procedures were performed using R 3.6.0, the R package sda 

(Ahdesmäki et al. 2015) and home developed code for PLSR and OSC. R code is available on request 

to authors. The final algorithm was then defined from a preliminary comparison of PLS-DA and SDA 

classification performances. 

2.2.3. Validation procedure 

Further validation of the classification process was done considering i) the number NV of ordered 

and selected variables according to their cat score and ii) the number LS of statistical individuals 

(samples) randomly selected in the training dataset.  

Classification performance according to the cohort size and the number of variables  

To assess the performance of the classifier according to parameters LS and NV, the following 

procedure was repeated separately for cortisol, IGF1 and testosterone. In this aim, the classifier was 

evaluated on a total of 104 combinations (13 × 8) across the two sets of candidate values ranging 

respectively from 50 to 650 with a 50-step for statistical individuals, and ranging from 50 to 400 with 

a 50-step for variables (Figure 1, Block 3). Therefore, for every dimension combination, the 

discrimination rules were tested using a bootstrap approach involving 1000 replicates of the initial 

dataset. Variables were added 50 by 50 according to a prior ranking of the median cat score 

calculated thanks to a bootstrap (n = 1000) of the function sda.ranking() of the package sda applied 

for every endocrine phenotype to a set of 500 statistical individuals.  

For every combination of LS and NV, a mean of the classification performances was calculated for 

every individual from bootstrapped results; this was a way to provide, at the sample level, global 

classification statistics which will be then submitted to PCA (Figure 1, Block 3). 

Validation of class assignment predictions by a permutation analysis 

For any endocrine phenotype, the validation of the class prediction was confirmed by using a 

repeated permutation analysis of the dataset (n = 1000). We have used datasets built from the 200 

most informative variables with 400 statistical individuals in the training set. Class information of 

statistical individuals of the training set was randomly assigned and then prediction of the remaining 

https://eigenvector.com/resources/matlab-user-area/orthogonal-signal-correction/
https://eigenvector.com/resources/matlab-user-area/orthogonal-signal-correction/
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statistical individuals present in the test set was compared to true one. More precisely, a multivariate 

analysis of variance (MANOVA) test was done on the two resulting SDA components in function of 

the true class assignment. A Fisher value using the Hotelling-Lawley criterion was obtained at each 

iteration. A log10 transformation of the F-values was achieved to approximate their distribution to a 

seemingly Student one. The F-values of the true model obtained by bootstrap were compared to the 

random distribution.  

Prediction of minimal cohort sizes to get a fixed GPR value 

Fitting of sigmoidal curves used the generic following equation (Figure 1, Block 3):  

 𝑦 =  
𝑏0+ 𝑏1𝑥

𝑐0 + 𝑒
− ∑ 𝑎𝑖

𝑝
𝑖

𝑥𝑖  

with for model (1) 𝑝 = 1  and 𝑏1 = 0, for model (2) 𝑝 = 2 and  𝑏1 = 0, for model (3) 𝑝 = 2, for 

model (4) 𝑝 = 1 and for model (5) 𝑝 = 7, 𝑏0 = 1,  𝑏1 = 0 and  𝑐0 = 1. 

Initial values describing Q5 values were obtained from the bootstrap procedure described above and 

were used to extend these primary values with an increment of one in 𝑥, using the robust locally 

weighted regression function loess() in R. Such predicted values ranging from the inflection point of 

the sigmoidal curve to the maximal size of the training cohort were then used to fit a sigmoid model. 

To predict 𝑥 above the maximal size of the training cohort (n = 600), maximal acceptable values for 𝑥 

were most of the time extended to 3000. Models (1) to (4) were adjusted directly using the function 

nls() in R. To adjust the model (5), coefficients 𝑎𝑖 were estimated by multiple regression between 

logit(𝑦) and the different 𝑥𝑖 of the polynomials in (5), with 𝑖 ≤ 7. Prediction was assessed graphically 

and divergent models were discarded. In addition, the true residual variance between the values 

predicted by fitted models and the initial Q5-values ranging from the inflection point of the curve to 

the maximal size of the training cohort was calculated. 

3. Results 

3.1. Unsupervised multivariate assessment of the 1H NMR data structure 
Due to the fact that, for numerous cyclists of the cohort, several samples were collected in a 

longitudinal follow-up frame, these samples may display close fingerprints. If not, samples would 

appear as unrelated and could be considered in a first approximation as independent. To assess this 

point, unsupervised multivariate analyses of 1H NMR fingerprints were done (Figure 1, Block 1). 

Search for an explicit information structure present inside the metabolomic dataset, which can be 

unequivocally related to the available endocrine meta-information, could not be obtained neither by 

PCA (Figure S3), MDS (not shown) nor by PHATE analysis (Figure S4, Insert). Only a projection of 

samples phenotyped on the second 1H NMR session is distinctly established, mostly on the 2nd PC of 

PCA or on the 2nd PHATE component, from those analyzed on the first session. Neither cluster 

displaying a seasonal effect, nor a discipline related effect was detected by PCA (Figure S3). No 

cluster of the 21 endocrine phenotypes accessible to this analysis which were resulting from 

combined unitary endocrine phenotypes, including normal subjects for every of the three endocrine 

phenotypes considered, could really be detectable. In the score PHATE projection (Figure S4, Insert), 

only a Guttman effect, which corresponded to a non-linear relationship between these two first 

components, was seen similarly to what was obtained by PCA (Figure S3) or MDS (not shown). 

The distribution of scores of samples projected on the PHATE factorial map built with the two first 

components was not explained by a subject-based clustering as detailed hereafter. Most of 
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barycenters calculated for cyclists from respective coordinates of samples inside a longitudinal 

follow-up series of a given subject (number of samplings > 1) were mostly projected in the center 

part of the factorial map. Lines connecting barycenters to their respective samples revealed a large 

intra-subject variance, probably explained by environmental effects, which superimposed to the 

significant ‘NMR session’ effect for which a clear discrimination of barycenters was displayed, mostly 

on the 2nd component (Figure S4). 

A mixed-model effect analysis of the random variable consisting into the Euclidean distance of 

samples included in a given longitudinal follow-up series to their respective barycenter, considering 

the factor ‘subject’ as random factor, and, as fixed factors, the ‘NMR session’ factor and the ‘number 

of samples’ for a given subject in a longitudinal series, did not reveal any effect of the ‘number of 

samples’ neither nor any ‘NMR session’ effect on such distances, but only a difference in the session-

dependent fingerprints resulting in mean values of distances calculated for subjects phenotyped on 

both sessions which were larger than those calculated for subjects phenotyped in a unique NMR 

session (p < 0.001). In addition, MANOVA applied to the two variables corresponding to the two first 

PHATE components which was performed according to the ‘sample-to-barycenter distance’ factor, 

the ‘NMR session’ factor, the ‘number of samples’ enclosed in a longitudinal series and, last, the 

dummy matrix built from all subjects submitted to more than one blood sample collection, only the 

‘NMR session’ factor and the ‘sample-to-barycenter distance’ variable were very significant (p < 0.001 

and p < 0.01, respectively). Among the subjects repeatedly collected who appeared in the dummy 

matrix, only 6 over 157 were significantly involved in the explanation of the projection of these 

specific samples on the PHATE factorial map with p < 0.01 (Figure S4). Barycenters of these rare 

subjects are projected preferentially in regions close to the extreme parts of the 2nd component of 

the factorial map (Figure S4).  

So, on a first approximation, every sample could be considered as being independently sampled from 

a large population of samples collected on cyclists, even though an appreciable proportion was 

collected in the longitudinal follow-up of numerous subjects as indicated in Table S3. In the following 

part of the study, the longitudinal follow-up of subjects was not taken into account and, therefore, 

the total size of the dataset comprised 655 samples considered as independent statistical individuals.  

Since no evident clustering of homogenous endocrine subgroup could be detected by unsupervised 

analyses, in particular by the MAGIC-PHATE approach, and considering the independence between 

the distribution of hormonal values of the three hormones (see hereafter § 3.2), metabolomic 

detection of anomalous profiles could only be achieved by a supervised multivariate classification 

procedure and was performed considering the three endocrine profiles separately. 

3.2. Robust algorithm design for discrimination of endocrine phenotype classes 

To define and validate a multivariate statistical strategy minimizing both false positive and false 

negative rates in the classification of metabolomic data coming from 1H NMR-derived metabolic 

profiles acquired in one of the three classes named Low, Normal or High, i.e. low, normal or high 

concentrations of every three hormones, a deep datamining exploration was performed. A rather 

generic procedure was built to finally predict the minimal size a training set of samples should have 

to improve satisfactorily the classification performance of a training metabolomic dataset to get a 

global classification error rate lower than 0.1% (Figure 1, Block 2), a parameter which is in line with 

the 99.9%-credibility value of target biomarkers of ABP modules (Robinson et al. 2017). 

In preliminary classification tests, a partial-least squares-based discriminant analysis (PLS-DA) was 

used on the total available dataset (419 variables) to get a separation of the three groups 
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corresponding to either Low, Normal or High classes for every endocrine trait considered here, with 

or without a prior data correction using a PLS-based orthogonal signal correction (OSC) achieved with 

only one orthogonal component (1 OSC). Because the number of variables (p = 419) was rather high, 

compared to the total number of statistical individuals (n = 655), this PLS-DA should be more robust 

than a conventional linear discriminant analysis and therefore should be privileged. Yet, no satisfying 

separation of phenotypic classes was observed without or with one OSC as shown for cortisol 

(Figures S5A & S5B). With a more robust method of classification based on the shrinkage discriminant 

analysis (SDA), we could separate the three classes (Figure S5C), the correction with one OSC giving a 

more satisfying separation between them (Figure S5D). Interestingly, Mahalanobis distances, used to 

predict the assignment of a given sample to every phenotypic class, gave a clear distinction between 

classes (Figure S5E), which is strikingly reinforced with a prior correction with one OSC (Figure S5F). 

So, this preliminary datamining assessment resulted in a simple classification algorithm which could 

be performed as following: i) orthogonal correction of the dataset according to the prior 

classification information in classes of a given endocrine phenotype considering only one orthogonal 

component using a PLS-based procedure, and then ii) SDA performed on the OSC-corrected dataset. 

But, SDA sorted variables according to a cat score based on a Student test (Ahdesmaki & Strimmer 

2010; Zuber & Strimmer 2009). Therefore, it was necessary to validate such a classification algorithm 

by studying effects on discrimination performances of both the size of the training set (LS) and the 

number of variables (NV) being previously selected on their cat scores. These two parameters were 

systematically studied and results were summarized in abaci (Figure 1, Block 3).  

For the four chemometric situations examined in the study, this first validation procedure was 

confirmed by a complementary permutation analysis. The F-values resulting from a MANOVA test 

performed on the two resulting SDA components calculated on permuted training datasets display a 

distribution of values which are far more lower than the true ones (Figure S6). True models were all 

highly significant (p < 2 × 10-16). Therefore, the probability that overfitting problems may arise when 

using an OSC-SDA approach as described here would be strictly limited. 

4. Discussion 

4.1. Parameters influencing GPR 

Technically, the noisy information had a deep effect on performances of classification given by SDA 

or by PLS-DA, but it was only by SDA that high efficiency of PLS-based OSC was displayed. When this 

correction was applied, SDA resulted in a striking reduction of the intra-class variance thanks to the 

generalized shrinkage procedure used to calculate Mahalanobis distances (Ahdesmäki & Strimmer 

2010), and then to calculate maximal distances between the three class barycenters, enabling 

therefore calculation of higher probability values to assign unknown samples in the most probable 

class, hence maximizing performance of the overall classification process. As exemplified here, this 

was well demonstrated in case of a deep imbalance in the distribution of subjects in three endocrine 

classes for every endocrine phenotype as often found in epidemiological studies, this constraint 

being explained here by the fact that abnormal serum concentrations were hopefully more rarely 

found than the normal ones. The James-Stein shrinkage of priors was very efficient in this case. 

Probably, for these fitted cohort sizes from Q5 GPR predicted values, using a more balanced 

distribution of subjects across the three classes for every endocrine phenotype should give relatively 
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higher values of GPR than anticipated here through fitting studies. Yet, given the epidemiological 

constraint linked necessarily to the imbalanced distribution of subjects in three endocrine classes for 

every endocrine phenotype, GPR is a simple way to weigh overall classification performances. 

Therefore, study of GPR according to LS and NV was helpful to get global non-linear tendencies of 

variation.  

4.2. Tracking heterogeneities in every Normal class of the three endocrine 

phenotypes and putative biomarkers supporting them 

4.2.1. General considerations 

Probably, only two main  regions were involved in the construction of IC characterising outliers of 

the testosterone Normal class, i.e. the  regions [4.465-4.255 ppm] and [1.665-1.615 ppm], 

completed with  2.915 and  1.065 ppm; hence, they did not support really an efficient integration 

of the quantitative signal into a predefined list of known metabolites (see Figure S2) which relative 

amount was integrated thanks to the BATMAN processing (Table S4). Surprisingly, L-threonine was 

found as a BATMAN-integrated metabolite which was significantly correlated to IC, but at a very low 

frequency (14‰), even this analyte seemed to be highly correlated to IC when considering 

separately the four different  variables manually assigned to L-threonine, which were all correlated 

with a very high score frequency (equal to or higher than 963 over 1000) to the different IC 

repeatedly calculated (Table 2). This point can be easily explained by the way every IC was built and 

which took into account at the same time the different bucketed  variables, i.e. those presenting a 

very high score frequency. It was only inside this set of so-selected bucketed  variables displaying a 

structured information as shown in Figure S9 that an expert-based assignment could be obtained. 

But this information structure was not encountered in the BATMAN-integrated dataset and therefore 

the prior assigned metabolites in the sole  regions [4.465-4.255 ppm] and [1.665-1.615 ppm] were 

not in a sufficient number to get usable correlations.  

For the cortisol Normal class, on the contrary, the BATMAN-integrated metabolite dataset displayed 

for glycine and 7-methylxanthine found as candidate biomarkers a significant correlation to IC built 

from bucketed  variables (Table 2). The five main  regions found in the following intervals: [3.435-

3.425 ppm], [2.745-2.695 ppm], [2.445-2.435 ppm], [2.285-2.265 ppm] and [1.165-1.155 ppm] 

authorized such a positive correlation (Figure S10B). 
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Table S1. Synthetic review of age parameters regarding blood collection of subjects repeatedly collected or not. 

a Only subjects submitted to more than one blood sample collection were considered (n = 135). 

  

Parameters Minimal Median Maximal 

Age of subjects 19.9 24.3 41.0 

Median values of age of subjects repeatedly collecteda 24.4 24.8 27.6 
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Table S2. Distribution of samples in every endocrine phenotype between the class displaying concentrations lower than 
the lowest limit of normal values (class Low), the class displaying seemingly normal concentrations (class Normal) and 
the class displaying concentrations higher than the highest limit of normal values (class High). The number of non-
phenotyped samples (NP) for a given endocrine trait is also given. 

Endocrine 

traits NMR 

sessions 

Classes 

Low Normal High NP 
Total without 

NP 
Total 

cortisol 

1 30 

66 

222 

303 

115 

277 

1 

9 

367 

646 

655 

2 36 81 162 8 279 

IGF1 

1 67 

71 

224 

491 

77 

84 

0 

9 

368 

646 

2 4 267 7 9 278 

testosterone 

1 53 

78 

267 

500 

42 

57 

6 

20 

362 

635 

2 25 233 15 14 273 
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Table S3. Distribution of samplings collected one time or repeatedly done among fully hormonally normal (non-disrupted 
for any endocrine trait) or hormonally disrupted subjects. 

 

 

 

 

 

 

 

 

 

 

 

  

Number of samplings 

by subject 

Number of subjects with a 

fully normal endocrine profile  

Number of subjects with a 

disrupted endocrine profile  

1 67 91 

2 17 63 

3 5 21 

4 1 24 

5  17 

6  7 

7  2 

9  1 

Total number of 

samples without NP 
120 526 
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Table S4. List of candidate metabolites which relative quantification is obtained by a BATMAN-based procedure. 

Selected metabolites 

D-glucose capryloylglycine D-arginine glycine D-xylose 

L-proline D-alanine N-acetylserine L-lactic acid 7-methylxanthine 

α-hydroxy-

isobutyric acid 

2-hydroxy-3-

methylbutyric acid  

aminoadipic acid N-

acetyllactosamine 

hydroxyoctanoic acid 

cysteine-S-sulfate 2-ethyl-2-

hydroxybutyric acid  

putrescine succinyl-acetone propyl alcohol 

L-homoserine 3α,6,7-trihydroxy-

5-cholanoic acid 

L-leucine 2-hydroxybutyric 

acid 

dehydroepiandrosterone  

γ-caprolactone oxalacetic acid 3α,6α,7-

trihydroxy-5-

cholanoic acid 

threonic acid Taurine 

-N-acetyl-

glucosamine  

guanidoacetic.acid  glycerol-3-

phosphate 

L-cystathionine Rhamnose 

4,5-dihydroorotic 

acid 

methyl-isobutyl 

ketone 

α-D-glucose ethylmalonic acid malic acid 

canavanine epi-coprostanol L-α-amino-

butyric acid 

benzene-acetic acid glycolic acid 

maltotetraose deoxycholic acid O-phospho-

ethanolamine 

scyllo-inositol methionine sulfoxide 

sphingosine L-threonine homo-L-arginine 2-hydroxy-2-

methylbutyric acid 

D-mannose  

citrulline L-alanine L-valine   

 

  



13 
 

Figure captions 
Figure 1. Flow-chart of the different statistical analyses sequentially used to mine the 1H NMR dataset and data subsets 
used to endocrine phenotypes of cyclist sportsmen. It was divided in four block corresponding to parts of results 
indicated in brackets as following: [3.2.1 & 4.1], [4.2], [4.3 & 4.4] and [4.7]. Objectives of these specific parts are 
indicated in conclusive items colored in light violet. Specific statistical tools are indicated in black bold on background 
colored in green. 

Figure 2. Abacuses describing the variation of the median GPR and the confidence interval at 90% according to the 
training set size (50-650) and the number of prior selected informative variables (50, 100, 150, 200 and 400) thanks to the 
cat scores. The confidence interval limits (in dotted lines) were colored as their respective median curve. Only one 
orthogonal component was used to correct the dataset for cortisol (A), IGF1 (B) and testosterone (C). Four orthogonal 
components were used to significantly increase the GPR performances for IGF1 (D). 

Figure 3. Score plots and frequency distributions along the two first PCs for cortisol (A), IGF1 (B) and testosterone (C) 
with one orthogonal component (1 OSC), and IGF1 with 4 orthogonal components (4 OSC) (D). The 3 classes are given in 
green, violet and red for classes Normal, Low and High of every endocrine phenotype. Light grey squares marked with a 
green line focus on the apparent outliers of the Normal class excluded from the ellipses drawn at a confidence limit 
above 97.5%. 

Figure 4. Metabolic modules containing the putative biomarkers characterizing the outliers of the testosterone (A) and 
cortisol (B) Normal classes and connected metabolites as summarized in the respective sub-networks defined from a 
significant enrichment according to a Benjamini-Hochberg correction of the prior selected biomarkers using the 
MetExplore web tool. 1-Methylhistidine (meat consumption) also detected as marker for cortisol Normal class was not 
enclosed in the prior selection and enrichment analysis of targeted metabolic biomarkers. 
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Supplementary figure captions 
Figure S1. Distribution of cortisol (A), IGF1 (B) and testosterone (C) concentrations of the cyclists’ cohort as a function of 
age. A distinction was done between the groups they belonged to, i.e. the hormonally normal group in green, the 
hormonally higher than normal group (group High) in red and the hormonally lower than normal group (group Low) in 
violet. For every subgroup inside a hormonal trait, a linear regression between serum concentration and age [20-34 yrs.] 
was performed. Although a very significant variation of IGF1 concentration with age was observed in the normal IGF1 
group studied here, the slope value was not sufficient to conclude that age would be considered as a possible 
confounding factor when older cycling athletes with very low IGF1 concentration in serum would be still considered as 
normal ones. For ease of representation, the sample collected on the subject 41.0 yrs. old was discarded. 

Figure S2. Example of a 1H NMR metabolic fingerprint obtained at 600.13 MHz on a serum collected on an anonymous 
subject. Some assignments to known chemical shifts were done from those usually recorded for analytes detected in 
serum or plasma. Glu, Gln and Val corresponds to L-glutamate, L-glutamine and L-valine, respectively. 

Figure S3. Score plot of the different statistical individuals from a PCA analysis of the raw dataset comprising bucketed 1H 
NMR fingerprints (p = 419 variables) acquired on two different NMR sessions (1 and 2). Three types of factors were 
encoded differently according to the color of plot symbols for cycling discipline, their shape for season where blood 
samples were collected, and their size for the NMR session of samples fingerprinting.  

Figure S4. Score plot of the different statistical individuals from a PHATE analysis of raw dataset comprising bucketed 1H 
NMR fingerprints (p = 419 variables) acquired on two different NMR sessions (1 and 2) appearing in filled circles and 
triangles, respectively. PHATE analysis was performed on a data subset (n = 633) for which all samples were completely 
phenotyped for the three endocrine traits with no non-phenotyped (NP) data. Circled numbers give the number of 
samples collected in a longitudinal follow-up for every subject and which are projected on a barycenter corresponding to 
the mean score point calculated from these different points acquired respectively on the 1st (red circles), 2nd (green 
circles) or both NMR sessions (blue circles). Most of mean points with a number of samplings per cyclist above one are 
projected in the center part of the factorial map. Lines connect respective barycenters to the different points 
corresponding to samples collected for every cyclist and are colored according to the different subjects. Using MANOVA 
between the two coordinates of the factorial map on one part and, on another part, the set of following factors, i.e. the 
‘NMR session’ factor, the number of samples in a longitudinal series, the Euclidean distance calculated from barycenters 
to samples inside a longitudinal series, all these factors being joined to the dummy matrix built from subjects 
phenotyped more than one time, shows in addition to a highly significant ‘NMR session’ effect and a ‘barycenter-to-
sample distance’ effect, an effect of some rare subjects whose barycenters are projected close to the extreme parts of 
the 2nd component of the factorial map and are indicated by the following labels: ● when p < 0.10, * when p < 0.05, ** 
when p < 0.01 and *** when p < 0.05. The 21 specific endocrine phenotypes appear as differently colored from dark blue 
to light yellow for disrupted samples and in grey for controls (or equivalent to the combined normal endocrine 
phenotype ‘Cortisol N / IGF1 N / Testo N’). Insert gives only the PHATE scores of the different samples on the plan 1 × 2 
with circles corresponding to samples analyzed on the 1st NMR session and signs + for samples analyzed on the 2nd one. 

Figure S5. Progressive building of a generic classification algorithm. Partial least squares-discriminant analysis (PLS-DA) 
without (A) or with a prior PLS-based orthogonal signal correction with one orthogonal component (1 OSC) (B) 
considering the cortisol grouping factor. Shrinkage discriminant analysis (SDA) without (C) or with a prior OSC with 1 
component (D). Mahalanobis distance plots used to calculate probabilities to predict belonging of one individual to a 
given phenotypic subgroup by SDA without (E) or with a prior OSC with 1 component (F). Legend: the different 
phenotypic subgroups are given with normal cortisol concentrations in serum in green, lower cortisol concentrations 
than normal in violet, and higher cortisol concentrations than normal in red. 

Figure S6. Density plots of the distribution log10-transformed F-values coming from a MANOVA test (Hotelling-Lawley 
criterion) applied to SDA components repeatedly calculated in a bootstrap procedure using at each iteration a 
permutation test (line curves in red). True values for cortisol (A), IGF1 (B) and testosterone (C) datasets, all corrected by 
OSC with one orthogonal component, and for IGF1 dataset prior submitted to 4 OSC components (D), were indicated by a 
narrow distribution obtained by bootstrap (n = 1000, line curves in black). All these specific distributions were 
significantly different from those resulting from random permutations (p < 2 × 10-16).  

Figure S7. Variation of the prediction rates of classification of individuals in one of the different phenotypic subgroups for 
either cortisol (A), IGF1 (B and D) or testosterone (C) assayed in serum according to the size of the training set, which 
varied from 50 to 650. One PLS-based correction component (1 OSC) was used to get a prior correction of the dataset for 
the different hormonal traits. Influence of a correction with 3 supplementary orthogonal components (4 OSC) was also 
tested on the prediction rates of the IGF1 status. For every hormonal trait, prediction rates were presented for the 
different subgroups. A global prediction rate (GPR) corresponding to the multiplication of the three specific ones for a 
given hormonal trait was done at every training set size. Thanks to the resampling procedure used (n = 1000), a 
confidence interval (in light grey) was calculated in the 5%-95% quantile range (dotted lines). 
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Figure S8. PHATE analysis of the distribution of individuals belonging to the class Normal of the following endocrine 
phenotypes: cortisol (A), IGF1 (B) and testosterone (C) through 4 groups. This number of groups in the Normal class 
corresponded to the maximal one for which all outliers of the cortisol Normal class were assigned to a unique subgroup. 
The same number of subgroups was used to display the metabolomic heterogeneity inside IGF1 and testosterone Normal 
classes and then to check the distribution of outliers inside the respective different subgroups. Outliers prior detected by 
a PCA analysis of the bootstrap-supported cross-validation data are marked with larger size points (circle or triangle). 
Only for the normal cortisol trait, outliers belonged to a unique subgroup. 

Figure S9. Clustering of bucketed δ variables involved in the building of the most important independent component 
discriminating outliers from true normal individuals for the testosterone endocrine phenotype. All selected variables 
displayed a score above 700. A: Heatmap focused on selected δ variables, B: spectrum plotting of selected δ variables, 
and C: expert-based putative assignment of chemical shifts.  

Figure S10. Clustering of bucketed δ variables involved in the building of the most important independent component 
discriminating outliers from true normal individuals for the cortisol endocrine phenotype. All selected variables displayed 
a score above 899. A: Heatmap focused on selected δ variables, B: spectrum plotting of selected δ variables, and C: 
expert-based putative assignment of chemical shifts.  
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Figure S9.  

Expert-based assignment of 4 groups of variables named according to δ (ppm)

Priority and decreasing relative importance sorted from cluster A to D

(): score value in bootstrap procedure (from 765 to 988 over 1000)

• # B # 1.   4.295 (978) 4.305 (978): unknown; 4.265 (965) 4.285 (975) 4.275 (963): threonine; 
4.325 (917) 4.315 (976) 4.335 (867) 4.345 (923): α-glycerylphosphorylcholine

• # D # 2. 4.065 (974): choline; 1.615 (765) 1.625 (883) 1.635 (900) 1.645 (910) 1.665 (851) 
1.655 (910): arginine

• # A # 3.   4.075 (959): choline (4.075); 4.205 (909) 4.215 (919): unknown (4.205, 4.215); 
4.255 (988): threonine (4.255); 4.355 (962) 4.365 (959) 4.375 (968) 4.385 (961): noise

• # C # 4.   4.405 (942) 4.415 (903) 4.395 (857) 4.455 (949) 4.445 (860)  4.425 (830) 4.465 
(802): unknown (weak and large signals)

D BC A

Heatmap of candidate δ variables involved in independent
component building with a score above 700

Spectrum plotting of candidate δ variables involved in 
independent component building with a score above 700

A

B

C
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Figure S10.   

E D B C A

Expert-based assignment of 5 groups of variables named according to δ (ppm)

Priority and decreasing relative importance sorted from cluster A to E

(): score value in bootstrap procedure (from 900 to 953 over 1000)

• # E # 1.   7.495 (904): unknown

• # D # 2.   1.165 (909) 1.155 (907): lipids

• # B # 3.   3.435 (902): glucose; 2.745 (900) 2.725 (937): lipids; 2.695 (954) 2.715 (901): citrate

• # C # 4.   2.435 (929) 2.445 (940): glutamine

• # A # 5.   2.285 (945) 2.265 (931) 2.275 (953): valine

Heatmap of candidate δ variables involved in independent
component building with a score above 899

Spectrum plotting of candidate δ variables involved in 
independent component building with a score above 899

A

B

C
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