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Abstract 

This paper presents an experimental study of gear rattle noise induced by vibroimpacts between gear 

teeth. A specific device is designed to analyse the nonlinear dynamic behaviour of a spur gear submitted 

to input velocity fluctuation. After adjustment of the drag torque applied to the output gear and the 

operating backlash, the drive gear mean rotation speed, the velocity fluctuation amplitude and frequency 

are controlled during experiment. The dynamic transmission error is measured thanks to high resolution 

optical encoders. The originality of the device consists on a high-speed camera implemented in order to 

visualize the contact zone and to identify the occurrence of successive impacts between gear teeth. The 

rattle threshold is identified as a function of velocity fluctuation amplitude and frequency for various 

operating drag torques and mean rotation speeds. Experiments show a very good agreement with the 

theoretical master curve. Once impacts occur, stationary nonlinear gear dynamic response and rattle noise 

radiated by the mechanical system are investigated. Most of times, almost 1𝑇 periodic response with 2 

impacts per period are observed, one impact between active flanks succeeding to one impact between 

reverse flanks. A contact phase between gear teeth is observed after each impact rather than an 

instantaneous rebound. Dynamic response frequency is independent of the mean rotation speed, so that 

several successive tooth pairs can cross the meshing zone without any contact between gear teeth. 

Analytical and numerical simulations performed using a gear rattle model show a good agreement with 

experiments. Finally, sound pressure emitted from the gear pair is measured and discussed in the light of 

energy transferred per second to the system during the successive impacts. 
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1 Introduction 

Many mechanical-geared systems are subjected to such external excitations that some contact losses 

between gear teeth may occur, leading to rattle noise. The nonlinear gear dynamic response is then 

characterized by impacts between active and reverse tooth flanks. As a first example, roots vacuum pump 

presents this kind of behaviour. It is designed with two shafts supporting a pair of pumping lobes at each 

stage of the pump. The counter rotary motion of shafts is provided by an electric motor associated with 

a reverse gear (i.e. gear ratio equal to 1). When the limit pressure is reached, the mean drag torque and 

the contact mesh force are low. Consequently, contact losses between gear teeth may occur due to the 

fluctuations of the input torque and the fluid forces during the operating of the pump [1-3]. Another 

example corresponds to conventional manual automotive gearbox, for which the output gears of 

unselected ratios are subjected to a low drag torque. So, the engine torque fluctuation generates a velocity 

fluctuation of the drive gear leading to contact losses [4-12]. In both cases, the nonlinear dynamic 

behaviour of the output gears is characterized by impacts between active and/or reverse flanks leading to 

a broadband rattle noise emitted from the mechanical system. 

More generally, the key parameters governing the nonlinear gear rattle dynamics are the velocity 

fluctuation of the drive gear, the inertia of the output gear, the low drag torque, the gear backlash and the 

elastic and damping characteristics during impacts [13]. Many investigations deal with the torsional 

analysis of the driveline dynamic behaviour in order to reduce velocity fluctuation of the drive gear [4-

9]. Some other works deal with a 1 degree of freedom modelling of the gear pair including backlash non 

linearity. Nonlinear dynamic response induced by harmonic [14, 15], periodic [10, 16] or random 

excitation [17] has been studied. Effect of tooth profile errors and gear eccentricities which modify gear 

backlash amplitude and generate a secondary internal excitation source have also been analysed [18-20]. 

This paper presents an experimental study of the nonlinear dynamic behaviour of a spur gear. The aim is 

to identify gear rattle threshold and to characterize impact regimes for various operating conditions, and 

to compare results with those obtained from analytical and numerical models. The first part presents the 
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experimental device as well as the studied spur gear characteristics. The second part presents preliminary 

measurements of drag torque, operating gear backlash and static transmission errors generated by the 

contacts between active and reverse flanks. The third part compares the rattle threshold measurements to 

the corresponding analytical results. The fourth part investigates the nonlinear gear dynamic responses 

observed beyond the threshold for various operating conditions. Then, results are compared with 

analytical and numerical investigations. Finally, the rattle noise is measured and discussed in the light of 

impulses associated with the successive impacts. 

2 Experimental set-up and instrumentation  

The principle of the rattle experiments consists of generating and measuring the nonlinear dynamic 

behaviour of a reverse spur gear with a controlled operating backlash. Experiments are performed using 

the specific apparatus named LUG designed and built at the Tribology and System Dynamics Laboratory 

(LTDS) [21]. It is composed of a fixed aluminium plate attached to a concrete bloc supported by 4 air 

springs. The high mass (600 kg) of the whole bench leads to very low resonant frequencies decoupled 

from the gear rattle dynamics. A high precision spindle is located at the centre of the top plate. Its rotation 

is accurately controlled with a brushless synchronous motor allowing rotational speed 𝛺 from 0 to 

2000 rpm. The piloting of the test bench allows control of the mean rotation speed 𝛺0, the velocity 

fluctuation amplitude Δ𝛺 and frequency 𝜔 which can be adjusted independently of the mean rotation 

speed. The instantaneous velocity is then: 

 𝛺(𝑡) = 𝛺0 + 𝛥𝛺 sin(𝜔𝑡) (1) 

The piloting also allows some increasing and decreasing sweeps of parameters 𝛺0, Δ𝛺 and 𝜔, one after 

the other, or simultaneously.  

A specific module corresponding to a reverse spur gear has been assembled on the top plate (see figure 1). 

The rotation of the spindle generates the motion of the drive gear. This one meshes with an identical 

output gear (gear ratio: 1) supported by a ball bearings set-up. Gear characteristics are presented in 
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Table 1. As described in section 3, the center distance can be adjusted, leading to variations in contact 

ratio and operating backlash. 

Number of teeth (Z1=Z2) 90 

Normal module mo 3.5 mm 

Pressure angle 0 20° 

Tooth addendum coefficient 1 

Tooth dedendum coefficient 1.25 

Shift radius coefficient 0 

Face width 7.5 mm 

Centre distance a 315 to 318 mm 

Operating backlash 0 to 2 mm 

Contact ratio a 1.84 to 1.02 

Table 1: Spur gear characteristics. 

 

Figure 1: Experimental set-up. (1) High speed camera, (2) pin for additional drag torque, (3) optical 

encoder, (4) accelerometer, (5) microphone, (6) micrometric translation stage for adjustment of centre 

distance. 

 

Angular displacements of gears 𝜃1 and 𝜃2 are measured thanks to the high resolution optical encoders 

(400 000 ppr). Acoustic response is measured thanks to a ½ in. microphone placed in the near-field, close 

to the gear meshing zone. Signals are acquired using a dynamic acquisition card with a high sampling 
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rate (50 kHz). The dynamic response of the gear and the impacts are also visualized thanks to a compact 

monochrome 1-megapixels high speed camera (Phantom Miro M310) with 3.2 Giga-pixels/second 

providing 3200 fps at maximum resolution (1280x800) and 12800 fps at resolution (640x400). The 

camera is coupled with direct and reverse lighting devices. Its sensor high light sensitivity and minimum 

exposure time (1 µs) offer high dynamic range and excellent image quality. 

3 Drag torque, backlash and transmission error measurement 

A residual drag torque 𝑇𝑟 applied to the output gear is induced by the dissipation in the rolling element 

bearings. It is measured from the analysis of the free damped dynamic response of the output gear alone. 

For this, an initial rotation speed is introduced. The free damped angular motion of the output gear is 

measured thanks to the optical encoder, until motion stops. It shows a constant deceleration. 

Consequently, the corresponding residual drag torque is independent of angular velocity. The measured 

constant value is 𝑇𝑟 = 0.22 N m. An additional drag torque 𝑇𝑎 can be added by introducing a friction 

force through a sliding contact between the lateral surface of the output gear and a bronze pin subjected 

to a normal load (see figure 1). Measurement of deceleration of the output gear for successive normal 

loads applied to the sliding contact allows identification of the additional drag torque 𝑇𝑎 which turns out 

to be independent of angular velocity. The range explored for the total drag torque 𝑇𝑑 during the 

experimental campaign is 0.22 ≤ 𝑇𝑑 ≤ 0.750 N m. 

The operating backlash amplitude associated with circumferential clearance between active and reverse 

flanks can be adjusted by changing the centre distance thanks to a micrometric translation stage 

supporting the output gear. The range explored for the operating backlash during the experimental 

campaign is 0 ≤ 𝑏 ≤ 2 mm. 

The transmission error (TE) is defined as the difference between the actual position of the output gear 

and the position it would occupy if the gear drive were perfect [22]. TE along the line of action is equal 

to 𝑅𝑏(𝜃1 − 𝜃2) where 𝑅𝑏 is the base radius for both wheels and 𝜃1, 𝜃2 are respectively the input and the 
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output gear angular positions. For a very low rotation speed and a very low applied load such as the gear 

teeth deflection is negligible, the unloaded static transmission error (STE) results from tooth flank 

corrections and gear manufacturing errors. Under other operating conditions, the dynamic transmission 

error (DTE) corresponds to the gear dynamic response to the different excitation sources. STE between 

active flanks, referred as 𝑅𝑏𝜑(𝜃1), STE between reverse flanks, referred as 𝑅𝑏𝜓(𝜃1), and the operating 

backlash 𝑅𝑏(𝜑 − 𝜓) can be measured thanks to a single experiment. For this, a very low counter 

clockwise motion of the drive gear (𝛺0 = +1 rpm) is introduced and allows measurement of STE 

between the active flanks. Once the angular distance corresponding to a fundamental period is travelled 

(360° for a reverse gear), the rotation speed is reversed (𝛺0 = −1 rpm). The clockwise motion allows 

measurement of STE between the reverse flanks. The gap between the two curves corresponds to the 

gear backlash amplitude. 

 

Figure 2: Unloaded static transmission errors generated by contact between active and reverse flanks. 

 

Figure 2 displays the time evolution and the amplitude spectra of both unloaded STE. Time fluctuation 

firstly shows low frequency components (harmonics H1, H2, H3 of the fundamental period 360°) related 

to wheel shape defects and mounting errors such as eccentricities. Its peak-to-peak amplitude during a 

rotation period is equal to 100 µm. STE fluctuation secondly shows mesh frequency components (H90, 

H180, etc.) related to the tooth profile errors. Its peak-to-peak amplitude during a mesh period is equal to 
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10 µm. For this experiment and the centre distance chosen, the backlash amplitude is almost constant 

and is equal to 250 µm. 

4 Measurement of rattle threshold 

The first step of the experimental campaign consists of measuring the rattle threshold beyond which 

impacts occur. Experiments are performed different sets of drag torque 𝑇𝑑, mean rotation speed 𝛺0 and 

velocity fluctuation amplitude Δ𝛺. For each operating condition, a slow increasing sweep of the 

excitation frequency 𝜔 is performed until rattle arises. Then, a slow decreasing sweep of the excitation 

frequency 𝜔 is performed until rattle collapses. The frequency 𝜔𝑐 for the collapsing threshold is observed 

to be lower than or equal to the frequency 𝜔𝑎 for the arising threshold. Nevertheless, the values of 𝜔𝑎 

and 𝜔𝑐 are very close whatever the operating conditions.  

 

Figure 3: Experimental rattle threshold. Drag torque 𝑇𝑑 = 0.22 N m (++++++), 𝑇𝑑 = 0.46 N m 

(°°°°°°°°), 𝑇𝑑 = 0.75 N m (xxxxxx). 

 

Figure 3 displays results obtained for the arising rattle threshold in the log-log scale plane (Δ𝛺, 𝜔), for 

three drag torques (𝑇𝑑 = 0.22, 0.46 and 0.75 N m), two mean rotation speeds (𝛺0 = 30 rpm, figure 3a 

and 90 rpm, figure 3b) and a large set of velocity fluctuations Δ𝛺 in-between 0.5 and 50 rpm 

corresponding to the range [0.05 − 5 𝑟ad s−1]. For each drag torque value, the curve describing the 



9 

logarithm of the velocity fluctuation frequency vs velocity fluctuation amplitude shows a linear 

decreasing with a slope close to (−1). Comparison between figures 3a and 3b confirms that the 

experimental rattle threshold does not depend of the mean rotation speed 𝛺0.  

From a theoretical point of view, teeth contact loss occurs when the acceleration 𝜃̈2 of the output gear 

(whose inertia is noted 𝐽) imposed by the drive gear motion 𝜃1 becomes such the inertial torque 𝐽𝜃̈2 

exceeds the drag torque 𝑇𝑑 [12]. Therefore, the rattle threshold is given by the following condition: 

 max(𝜃̈2) = 𝑇𝑑/𝐽 (2) 

For an applied load such as the gear teeth deflection is negligible and contact between gear teeth, the 

forced angular position of the output gear 𝜃2 is related to the input angular position 𝜃1: 

 𝜃2 = 𝜃1 + 𝜑(𝜃1) (3) 

where 𝜑(𝜃1) corresponds to the unloaded STE. Consequently, angular velocity and acceleration of the 

output gear during contact are given by: 

 𝜃̈2 = 𝜃̈1 + 𝜑′(𝜃1)𝜃̈1 + 𝜑′′(𝜃1)𝜃̇1
2 (4) 

where the prime sign corresponds to the derivative with respect to 𝜃1. In order to analyse rattle gear 

phenomena and threshold, a harmonically varying input velocity is introduced (see equation (1), section 

2). Consequently, the drive gear angular acceleration is: 

 𝜃̈1 = 𝜔Δ𝛺 cos(𝜔𝑡)  (5) 

Finally, the rattle threshold is governed by the following condition: 

 max(𝜃̈1 + 𝜑′(𝜃1)𝜃̈1 + 𝜑′′(𝜃1)𝜃̇1
2) = 𝑇𝑑 𝐽⁄  (6) 

The objective of experiments performed is to generate the gear teeth contact losses and to control the 

impacts threshold from the drive gear velocity fluctuation and not from the static error. For this, the 

experimental values of parameters 𝛺0, Δ𝛺, and 𝜔 have been chosen in order to remain the additional 

terms 𝜑′(𝜃1)𝜃̈1 and 𝜑′′(𝜃1)𝜃̇1
2 negligible compared to the maximum value of the direct forcing 

acceleration term 𝜃̈1. Therefore, the rattle threshold criterion can be written as follows: 
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 𝜔 Δ𝛺 = max(𝜃̈1) ≈ max(𝜃̈2) = 𝑇𝑑 𝐽⁄  (7) 

The ratio between the acceleration force of the driving gear and the drag force allows introduction of the 

dimensionless excitation level [12]: 

 Λ = 𝐽 𝜔 Δ𝛺 𝑇𝑑⁄  (8) 

The rattle threshold criterion Λ∗ is:  

 Λ∗ = 1 (9) 

Corresponding to: 

 log 𝜔 = −log Δ𝛺 𝑇𝑑⁄ − log 𝐽 (10) 

Figure 4 displays the theoretical rattle threshold master curve in the log-log scale plane (Δ𝛺 𝑇𝑑⁄ , 𝜔). The 

slope is equal to (-1) in accordance with equation (10). Figure 4 shows that rescaling of the experimental 

data leads to a very good agreement with the theoretical master curve, whatever the applied drag torque. 

The set of measurements carried out corresponds to a mean value of the dimensionless excitation level 

Λ𝑒𝑥𝑝
∗ = 1.09 (standard deviation 0.19). 

 

Figure 4: Theoretical rattle threshold master curve (black line) and rescaled experimental data. Drag 

torque 𝑇𝑑 = 0.22 N m (++++++), 𝑇𝑑 = 0.46 N m (°°°°°°°°), 𝑇𝑑 = 0.75 N m (xxxxxx). 
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5 Nonlinear gear dynamic responses under stationary conditions 

The next step of the experimental campaign consists of measuring the impact response beyond the rattle 

threshold, in order to characterize the corresponding gear nonlinear dynamic behaviour. 

First, the effect of velocity fluctuation amplitude Δ𝛺 is analysed for a chosen excitation frequency 𝜔. 

Figure 5 displays the gear dynamic responses for increasing velocity fluctuation amplitudes Δ𝛺 =

0, 1.6, 5 and 20 rpm, corresponding to a velocity fluctuation along the line of action up to 310 mm s−1. 

The mean operating speed is 𝛺0 = 30 rpm, the drag torque is 𝑇𝑑 = 0.22 N m and the excitation 

frequency is 𝜔/2𝜋 = 3 Hz.  

The first column displays the time evolutions of the displacement dynamic transmission error 𝑅𝑏(𝜃2 −

𝜃1). The up and down frontiers correspond to transmission errors between active flanks 𝑅𝑏𝜑(𝜃1) and 

reverse flanks 𝑅𝑏𝜓(𝜃1). Successive contact losses can be easily observed. The second column displays 

the time derivative of the dynamic transmission error, defined by the relative velocity 𝑅𝑏(𝜃̇2 − 𝜃̇1). 

Positive peaks correspond to impacts between active flanks and negative peaks correspond to impacts 

between reverse flanks. Considering at what time successive impacts occur, the third column displays 

the Poincaré sections corresponding to the impact velocity versus the phase relative to the excitation 

frequency. The successive responses allow analysis of the velocity fluctuation influence. For a very low 

amplitude (Δ𝛺 ≈ 0 rpm), an almost permanent contact between the active flanks is observed, even if the 

displacement response shows few peaks revealing light contact losses. Consequently, the dynamic 

transmission error 𝑅𝑏(𝜃2 − 𝜃1) is similar to the static transmission error 𝜑(𝜃1) displayed in figure 2. 

When the velocity fluctuation is increased (Δ𝛺 = 1.6 rpm), the rattle threshold is reached. The nonlinear 

dynamic response shows noticeable contact losses and impacts. The excitation amplitude is still too low 

to cross the gear backlash. Consequently, impacts only occur between active flanks with a low impacting 

velocity. For Δ𝛺 ≥ 5 rpm, the excitation amplitude leads to succeeding impacts between active and 

reverse flanks. The displacement responses show that the output gear crosses the gear backlash forward 

and backward. Each impact is followed by a persistent contact period between the gear teeth. The free 
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flight period and the following persistent contact period show a duration of the same order of magnitude. 

Considering the period of the excitation 𝑇 = 2π 𝜔⁄ , the gear dynamics corresponds to a 1𝑇 periodic 

response with 2 impacts per period. Poincaré sections show that impact phases and impacting velocities 

are almost constant for all the successive impacts between active flanks, as well as for all the impacts 

between reverse flanks.  

Second, the effect of the excitation frequency 𝜔 is analysed for a chosen velocity fluctuation amplitude 

Δ𝛺. Figure 6 displays the gear dynamic response for increasing velocity fluctuation frequencies 𝜔/2𝜋 =

1, 3, 5 and 10 Hz. The mean operating speed is 𝛺0 = 30 rpm, the drag torque is 𝑇𝑑 = 0.22 N m and 

the velocity fluctuation amplitude is Δ𝛺 = 5 rpm. The successive responses allow analysis of the 

excitation frequency influence and leads to similar conclusions. For a very low frequency 𝜔/2𝜋 < 1 Hz, 

a permanent contact between the active flanks is observed. For 𝜔/2𝜋 = 1 Hz, the rattle threshold is 

reached. Some bursts of light impacts between active flanks occur. For 𝜔/2𝜋 = 3, 5 and 10 Hz, the 

dynamic 1𝑇 periodic responses previously identified are observed. The dates of successive impacts are 

only related to the excitation frequency which is much lower than the mesh frequency. Consequently, 

several successive tooth pairs may cross the meshing zone without any contact between gear teeth.  

Each Poincaré section displayed in figures 5 and 6 shows that the impacting velocity between active 

flanks is slightly higher than that between reverse flanks (for example, for Δ𝛺 = 20 rpm and 𝜔/2𝜋 =

3 Hz, mean values of impacting velocities are 22.3 mm s−1 and −19.9 mm s−1. Standard deviation is 

2.1 mm s−1). Successive Poincaré sections obviously show that the impacting velocity is governed by 

the velocity fluctuation amplitude and frequency. Figure 7 displays the evolution of the mean value of 

the squared impacting velocity (proportional to the kinetic energy) versus the product between the 

velocity fluctuation amplitude and the velocity fluctuation frequency (𝜔. Δ𝛺) for various operating 

conditions. Vertical bars correspond to standard deviation measured for all the impacts during the 

experiment. For convenient reasons, a log-log scale is chosen. The slope is equal to (+10 dB/decade), 
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showing a linear relationship between the impacting kinetic energy and the product (𝜔. Δ𝛺). Moreover, 

a slight difference between the active and reverse flanks impacting velocity is confirmed. 

 

 

Figure 5: Impact response for increasing amplitude of velocity fluctuation ΔΩ. (ΔΩ = 0, 1.6, 5 and 

20 rpm). 𝛺0 = 30 rpm, 𝜔/2𝜋 = 3 Hz, 𝑇𝑑 = 0.22 N m. Column 1: dynamic transmission error 

𝑅𝑏(𝜃2 − 𝜃1), column 2: velocity dynamic transmission error 𝑅𝑏(𝜃̇2 − 𝜃̇1), column 3: Poincaré sections 

- impacting velocity vs. phase. 
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Figure 6: Impact response for increasing amplitude of excitation frequency  (𝜔/2𝜋 = 1, 3  5 and 

10 Hz). 𝛺0 = 30 rpm, Δ𝛺 = 5 rpm, 𝑇𝑑 = 0.22 N m. Column 1: dynamic transmission error 𝑅𝑏(𝜃2 −

𝜃1), column 2: velocity dynamic transmission error 𝑅𝑏(𝜃̇2 − 𝜃̇1), column 3: Poincaré sections - 

impacting velocity vs. phase. 
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Figure 7: Mean value and standard deviation of the squared impacting velocity 𝑣−
2 versus (𝜔. Δ𝛺).  

Impacts between active flanks (). Impacts between reverse flanks (). 𝛺0 = 30 rpm, 𝑇𝑑 = 0.22 N m. 

 

The visualization of the contact zone with a high speed camera confirms the nonlinear behaviour induced 

by contact losses and the measurements performed in stationary conditions. The video post-processing 

allows measurement of the instantaneous position of the gears from the shape recognition. The 

visualization of the contact zone confirms at what time the impacts between active and reverse flanks 

occur. It also allows measurement of the contact and free flight motion durations, as well as the impacting 

velocity. Figure 8 displays a sequence of images of the contact along a period of excitation. The mean 

rotation speed is 𝛺0 = 90 rpm. The velocity fluctuation amplitude is Δ𝛺 = 5 rpm and its frequency is 

𝜔/2𝜋 = 3 Hz . The excitation period is then 𝑇 = 0.333 ms. The drive gear is on the right side and its 

motion is counter clockwise. First, contact between active flanks is observed (𝑡 = 0, tooth pair N°1, and 

 𝑡 = 𝑇/8 tooth pairs N°6-7). Then, contact loss occurs and the output gear shows a free flight motion 

(𝑡 = 𝑇/4, tooth pair N°12, and 𝑡 = 3𝑇/8, tooth pair N°18) until contact between reverse flanks occurs 

(𝑡 = 𝑇/2, tooth pair N°24, and 𝑡 = 5𝑇/8, tooth pairs N°29-30). Contact loss occurs again and the output 

gear shows a reverse free flight motion (𝑡 = 3𝑇/4, tooth pair N°35, and 𝑡 = 7/8, tooth pairs N°40-41) 

until contact between active flank occurs (𝑡 = 𝑇, tooth pair N°46). The free flight duration and the contact 

duration are much longer than the meshing period. Consequently, visualization confirms that several 
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successive tooth pairs are in contact and several successive tooth pairs can cross the meshing zone 

without any contact between gear teeth.  

 

 

t=0 (Z=1)  

Active flanks contact  

 

t=T/8 (Z=6-7) 

Active flanks contact 

 

t=T/4 (Z=12) 

Free flight motion 

 

t=3T/8 (Z=18) 

Free flight motion 

 

t=T/2 (Z=24) 

Reverse flanks contact  

 

t=5T/8 (Z=29-30) 

Reverse flanks contact 

 

t=3T/4 (Z=35) 

Free flight motion 

 

t=7T/8 (Z=40-41) 

Free flight motion 

 

t=T (Z=46)  

Active flanks contact 

Figure 8: Visualization of the contact with a high speed camera (𝛺0 = 90 rpm, Δ𝛺 = 5 rpm, 𝜔/2𝜋 =

3 Hz, 𝑇 = 0.333 ms).  
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6 Theoretical results 

6.1 The mathematical model 

As shown in previous works, the bouncing ball model with two moving walls excited by the velocity 

fluctuation suits to describe gear rattle dynamics [12]. Figure 9 displays the corresponding dynamic 

model. 

 

Figure 9: The dynamic model. 

 

𝑥(𝑡) = 𝑅𝑏𝜃2(𝑡) and 𝑦(𝑡) = 𝑅𝑏𝜃1(𝑡) are the output gear and drive gear displacements along the line of 

action. (𝑥 − 𝑦) = 𝑅𝑏[𝜃2(𝑡) − 𝜃1(𝑡)] is the transmission error (TE). Gear backlash amplitude 𝑏 is 

assumed to be constant. 𝐹 = 𝑇𝑑 𝑅𝑏⁄  is the drag force. 𝑚 = 𝐽 𝑅𝑏
2⁄  is an equivalent mass assigned to the 

output gear. The drive gear motion is imposed and its mass is assumed infinite. Considering a purely 

harmonic fluctuation of the drive gear velocity 𝑦̇(𝑡) along the line of action (see equation (1)) leads to: 

 𝑦̇(𝑡) = 𝑅𝑏(𝛺0 + 𝛥𝛺 sin 𝜔𝑡) = 𝑉0 + 𝛥𝑉 sin 𝜔𝑡 (11) 

The same dynamic behavior is observed in the frame uniformly translated at speed 𝑉0, such that equation 

(11) can be replaced by: 

 𝑦̇(𝑡) = 𝑅𝑏𝛥𝛺 sin 𝜔𝑡 = 𝛥𝑉 sin 𝜔𝑡 (12) 

The displacement and acceleration of the drive gear in this moving frame are: 

 𝑦(𝑡) = −
𝛥𝑉

𝜔
cos 𝜔𝑡 (13) 

 𝑦̈(𝑡) = 𝜔𝛥𝑉 cos 𝜔𝑡 (14) 
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The free flight motion of the output gear initiated at time 𝑡𝑖 is deduced from the equation of motion 𝑚𝑥̈ =

−𝐹 and is written as follows: 

 𝑥(𝑡) = −
𝐹

2𝑚
(𝑡 − 𝑡𝑖)2 + 𝑥̇𝑖(𝑡 − 𝑡𝑖) + 𝑥𝑖 (15) 

with 𝑥̇𝑖 = 𝛥𝑉 sin 𝜔𝑡𝑖 

The output gear response is 𝑥𝑖 = − 𝛥𝑉 𝜔⁄ cos 𝜔𝑡𝑖 when it loses contact between active flanks and 𝑥𝑖 =

𝑏 − 𝛥𝑉 𝜔⁄ cos 𝜔𝑡𝑖 when it loses contact between reverse flanks. Equation (15) remains valid as long as 

𝑦 < 𝑥 < 𝑦 + 𝑏. First, instantaneous impacts are assumed between active (𝑥 = 𝑦) and reverse flanks (𝑥 =

𝑦 + 𝑏). The change in relative velocity between drive and output gears just after and before the impact 

is calculated from the usual relation:  

 𝑥̇𝑖+ − 𝑦̇𝑖 = −𝑒(𝑥̇𝑖− − 𝑦̇𝑖) (16) 

𝑥̇𝑖− is the absolute impacting velocity of the output gear at the 𝑖th impact. 𝑥̇𝑖+ is the rebound velocity of 

the output gear. 𝑦̇𝑖 is the velocity of the drive gear. 𝑒 is the coefficient of restitution (0 ≤ 𝑒 ≤ 1). 

Dates of successive impacts are identified by solving collision conditions in order to simulate the 

dynamic response. an alternative solution consists of integrating equation of motion, which requires 

introduction of Lagrange multiplier with Signorini condition, or penalty stiffness assuming very short 

impact duration. Both approaches have been performed. 

6.2 The perfectly plastic case (𝒆 = 𝟎) 

Experiments show that a quasi-persistent contact between drive and output gears occurs after each 

impact. A simple way to model this behaviour is to consider perfectly plastic impact with 𝑒 = 0. The 

persistent contact is observed until the imposed acceleration reaches the drag force, just like for the rattle 

threshold condition. Dates of successive contact losses between active and reverse flanks can thus be 

identified. The dynamic response is periodic at the excitation frequency, in particular because the 

memory of the impacting velocity is lost. Equations modelling the problem can be summarized as 

follows. The date 𝑡1 for which contact loss between active flanks occurs is such that: 
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 𝑚𝜔𝛥𝑉 cos 𝜔𝑡1 = 𝐹 (17) 

with 0 < 𝜔𝑡1 < 𝜋 2⁄  

The date 𝑡2 impact occurs between reverse flanks is such that: 

 
𝐹

2𝑚
(𝑡2 − 𝑡1)2 − 𝛥𝑉(𝑡2 − 𝑡1) sin 𝜔𝑡1 −

𝛥𝑉

𝜔
(cos 𝜔𝑡2 − cos 𝜔𝑡1) + 𝑏 = 0 (18) 

The date 𝑡3 for which contact loss between active flanks occurs is such that:  

 𝑚𝜔𝛥𝑉 cos 𝜔𝑡3 = 𝐹 (18) 

with 𝜋 2⁄ < 𝜔𝑡3 < 𝜋 

The date 𝑡4 for which impact occurs between reverse flanks is such that: 

 
𝐹

2𝑚
(𝑡4 − 𝑡3)2 − 𝛥𝑉(𝑡4 − 𝑡3) sin 𝜔𝑡3 −

𝛥𝑉

𝜔
(cos 𝜔𝑡4 − cos 𝜔𝑡3) − 𝑏 = 0 (19) 

Finally, the response is T-periodic with 𝑇 = 2𝜋 𝜔⁄ . 

 

Figure 10: The dynamic displacement response (a) and its associated Poincaré section (b). Dashed line: 

active and reverse flanks of the drive gear displacements. Solid line: output gear displacement. Black 

points: impacts. grey points: contact losses. 𝑏 = 200 μm, 𝑇𝑑 = 0.22 N m, Δ𝛺 = 4 rpm, 𝜔/2𝜋 =

 10 Hz and 𝑒 = 0. 

 

Figure 10 displays the corresponding dynamic response. Operating conditions are backlash amplitude 

𝑏 = 200 μm, drag torque 𝑇𝑑 = 0.22 N m, velocity fluctuation amplitude Δ𝛺 = 4 rpm and frequency 
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𝜔/2𝜋 =  10 Hz. Figure 10(a) displays the prescribed displacements of the active and the reverse flanks 

of the drive gear (dashed lines), and the dynamic response of the output gear (solid line). Figure 10(b) 

displays the Poincaré section corresponding to the relative impacting velocity versus the impact phases 

relative to the excitation frequency (black points). Figure 10(b) also displays contact loses dates with 

corresponding null relative velocity (grey points). 

6.3 The inelastic case (𝟎 < 𝒆 < 𝟏) 

The perfectly plastic case (𝑒 = 0) may be physically inappropriate. Some simulations have been 

performed for a partially inelastic case by introducing penalty stiffness to take account of the contact 

conditions. Figure 11 shows that the persistent contact phase observed during the motion is observed. 

Operating conditions are backlash amplitude 𝑏 = 200 μm, drag torque 𝑇𝑑 = 0.22 N m, velocity 

fluctuation amplitude Δ𝛺 = 4 rpm and frequency 𝜔/2𝜋 =  10 Hz. The coefficient of restitution is 𝑒 =

0.3. Energy loss during contact has been introduced via an equivalent viscous damping coefficient during 

contact deduced from the coefficient of restitution 𝑒 and given by [24, 25]: 

 𝜁 = − log 𝑒 √𝜋2 + log 𝑒⁄  (20) 

 

Figure 11: Relative dynamic response of the output gear in between the active and reverse flanks of the 

drive gear. Grey line: 𝑒 = 0. Black line: 𝑒 = 0.3. 𝑏 = 200 μm, 𝑇𝑑 = 0.22 N m, Δ𝛺 = 4 rpm and 

𝜔/2𝜋 =  10 Hz. 
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Next simulations have been performed taking account of the excitation source induced by the STE. As 

shown in figure 2, STE time fluctuation firstly shows components at the rotational frequency induced by 

wheel shape defects and eccentricities and secondly shows components at the mesh frequency induced 

by tooth profile errors. Therefore, two additional harmonic excitations have been superimposed to the 

external excitation, leading to: 

 𝑦(𝑡) = −
𝛥𝑉

𝜔
cos 𝜔𝑡 + 𝑌1cos (𝛺0𝑡 − 𝜑1)+ 𝑌90cos (90𝛺0𝑡 − 𝜑90) (21) 

Amplitudes 𝑌1, 𝑌90 and phases 𝜑1, 𝜑90 are adjusted according to the experimental data.  

Figure 12 displays numerical dynamic responses for several operating conditions corresponding to 

experimental results observed in figures 5 and 6. Results correspond to a coefficient of restitution 𝑒 =

0.5. A very good agreement between experimental and numerical results is observed. the proposed 

modelling and numerical time integration scheme are quite appropriate to describe the nonlinear gear 

dynamic response beyond the rattle threshold. In particular, the dynamic responses are very well 

predicted for operating conditions just beyond the rattle threshold (see the two first dynamic responses 

displayed in figure 12 and the corresponding dynamic responses displayed in figures 6a and 5b). Taking 

into account the static transmission error leads to slightly premature contact losses. Nevertheless, once 

the 1T periodic response with 2 impacts per period established, the influence of static transmission error 

is negligible for the chosen mean operating speed, compared to the influence of velocity fluctuation, even 

if it leads to a slight dispersion on the impacting velocity and phase.  
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Figure 12: Relative dynamic response of the output gear in between the active and reverse flanks of the 

drive gear. Time history and Poincaré section. 𝑒 = 0.5, 𝛺0 = 30 rpm, 𝑇𝑑 = 0.22 N m. 
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7 Gear rattle noise induced by impacts 

Below the rattle threshold, the noise radiated by the gear pair corresponds to the whining noise generated 

by the meshing process [26, 27]. For a mean operating speed 𝛺0 = 30 rpm and a residual drag torque 

𝑇𝑑 = 0.22 N m, the sound pressure measured thanks to the microphone in the near-field close to the gear 

meshing zone is equal to: 

 𝐿𝑝−𝑤 = 78 dB (22) 

with 𝐿𝑝−𝑤 = 10 𝑙𝑜𝑔 (
𝑃

𝑃𝑟𝑒𝑓
)

2

= 20 𝑙𝑜𝑔 (
𝑃

𝑃𝑟𝑒𝑓
)  

and 𝑃𝑟𝑒𝑓 = 2 105 Pa  

Beyond the rattle threshold, an increase of the sound pressure with velocity fluctuation amplitude and 

frequency is observed. The purpose of this section is to establish the correlation between the sound 

pressure amplitude and the successive impacts. An almost linear increasing of the impacting kinetic 

energy 𝐸 with the product between velocity fluctuation amplitude and frequency is observed in figure 7: 

 𝐸 ∝  𝜔. Δ𝛺 (23) 

A persistent contact rather than an instantaneous rebound is observed after the impact, so that the 

impacting kinetic energy is transferred to the system, because. Moreover, once the periodic 1T response 

is established with 2 impacts per period, the number of impacts 𝑛 per second is proportional to the 

excitation frequency: 

 𝑛 = / (24) 

Let’s assume the acoustic power generated by the successive impacts is proportional to the sum of energy 

transferred to the system per second: 

 ac ∝ ².𝛺  (25) 

This leads to a rattle sound pressure generated by the successive impacts as follows: 

 𝐿𝑝−𝑟 = 10 𝑙𝑜𝑔(𝐴.².𝛺) (26) 
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Where 𝐴 is constant and depends on parameters such as the equivalent impacting mass m, the radiating 

surface of the experimental system and the distance between the source and the microphone. The total 

sound pressure generated by both whining and rattle noises is: 

 𝐿𝑝 = 10 𝑙𝑜𝑔(10𝐿𝑝−𝑤 10⁄ + 10𝐿𝑝−𝑟 10⁄ ) (27) 

Figure 13 displays the evolution of experimental sound pressure (dB) versus (².𝛺) for several velocity 

fluctuation amplitudes (𝛺 =1.6, 5, 10 and 20 rpm) and frequencies (𝜔/2𝜋 = 1, 2, 3, 5 and 10 Hz). 3 

curves are added. The first one corresponds to the sound pressure amplitude 𝐿𝑝−𝑤 generated by the 

whining noise for the mean operating speed and measured below the rattle impact threshold (eq. (22)). 

The second one corresponds to the sound pressure amplitude 𝐿𝑝−𝑟 generated by the rattle noise and is 

deduced from the assumption that the acoustic power induced by the successive impacts is proportional 

to the sum of energy transferred to the system per second (eq. (26)). The last one corresponds the total 

sound pressure 𝐿𝑝 which takes account of the coexistence of both whining and rattle noises (eq. (27)). 

The experimental measurements show a good agreement with eq. (27), whatever the velocity fluctuation 

amplitude and frequency. This confirms that the acoustic power induced by the rattle varies linearly with 

(².𝛺)  and is related to the kinetic energy transferred to the system per second by the successive 

impacts. For low amplitudes of (².𝛺), the whining noise is much higher than the rattle noise, even if 

the successive impacts are clearly audible once they occur. For larger amplitudes of (².𝛺), the rattle 

noise induced by the successive impacts masks the whining noise. 
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Figure 13: Evolution of the sound pressure 𝐿𝑝 (dB) vs (².𝛺).  

(ω/2π = 1, 2, 3, 5, 10 Hz) (𝛺 = 1.6 rpm (°°°), 5 rpm (+++), 10 rpm (), 20 rpm (***). 

8 Conclusion 

The experimental nonlinear rattle dynamic behaviour of a spur gear submitted to velocity fluctuation has 

been investigated using a specific device. After adjustment of drag torque and gear backlash, piloting of 

the device allows control of the mean rotational speed, the velocity fluctuation amplitude and its 

frequency. The dynamic transmission error is measured thanks to high resolution optical encoders. 

Results highlight contact losses and impacts between active and reverse flanks. Theoretical rattle 

threshold master curve is confirmed by experiments performed for various operating conditions. Arising 

and collapsing of contact losses are governed by the velocity fluctuation amplitude and frequency. They 

are independent of the gear mean rotation speed. In the range of operating speeds explored, the influence 

of static transmission error excitation source is also negligible. 

Beyond the rattle threshold, nonlinear gear dynamic response is characterized for several mean rotation 

speeds, velocity fluctuation amplitudes and excitation frequencies. Most of time, an almost 1T periodic 

response with 2 impacts per period of excitation is observed, one impact between active flanks 

succeeding to one impact between reverse flanks. A contact phase between gear teeth is observed after 

each impact rather than an instantaneous rebound. The kinetic energy transferred to the system during 

the impact shows a linear variation with the product between velocity fluctuation frequency and 
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amplitude (.𝛺). The visualization of the contact with a high speed camera confirms at what time the 

impacts between active and reverse flanks occur. It also allows measurement of the contact duration, the 

free flight motion duration and the impacting velocity. Occurrence of successive impacts is related to the 

excitation frequency which is much lower than the mesh frequency. Visualization confirms that several 

successive tooth pairs are in contact and several successive tooth pairs can cross the meshing zone 

without any contact between gear teeth. 

Theoretical and numerical results have been performed from a gear rattle model. Excitation source 

considered is the velocity fluctuation and eventually includes the static transmission error. A good 

agreement is observed with experimental results, both for the rattle threshold and for the nature of 

nonlinear dynamic responses. The proposed modelling and numerical time integration scheme are 

relevant to describe the nonlinear gear dynamic response.  

Finally, noise emitted from the system can be interpreted from simultaneous consideration of whining 

and rattle sources. Assuming that acoustic power generated by the rattle is proportional to the sum of 

kinetic energy transferred per second to the system by the successive impacts is relevant for describing 

the sound pressure measured during rattle experiments. For low amplitude of parameter (².𝛺), the 

successive impacts are clearly audible once they occur, but the sound pressure radiated from the system 

is mainly due to the gear whining noise. For larger amplitude of parameter (².𝛺), the rattle noise 

induced by the successive impacts becomes the main source of acoustic nuisance. 
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