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Abstract

The bid-ask spread refers to the tightness dimension of liquidity and can be used as a proxy for transaction
costs. Despite the importance of the bid-ask spread in the financial literature, few studies have investigated
its forecastability. We propose a new methodology to predict the bid ask spread by combining density
forecasts of two types of models: Multiplicative Errors Models and ARMA-GARCH models. Our method
is employed to predict the effective intra-day bid-ask spread series of all shares pertaining to the CAC40
index. Using a one-step-ahead out-of-sample framework, we resort on the Model Confidence Set procedure
of Hansen et al. (2004) to classify models and we found that the proposed model appears to beat all the
benchmark specifications.
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1. Introduction

The main objective of this paper is to propose a new forecasting framework to predict the intra-day
effective bid-ask spread dynamics. In the market microstructure theory, the bid-ask spread is explained by
two principal theories: the inventory control models and the asymmetric information models. According to
the first theory, the spread remunerates the market maker for the costs caused by holding a non-diversified
portfolio (Garman, 1976; Ho and Stoll, 1981). However, the asymmetric information paradigm argues that
the bid-ask spread compensates for the adverse selection risk related to the existence of informed traders
(Copeland and Galai, 1983; Milgrom and Glosten, 1985).

The need to investigate the bid-ask price is principally motivated by its predominant role in the liquidity
literature (Amihud, 2019). In fact, the bid-ask spread refers to the tightness dimension of liquidity (Kyle,
1985) and is considered as an immediate cost of transaction for small size trades (Demsetz, 1968; Roll, 1984).
In those market models with friction, liquidity is time-varying and induces cost for investors. Henceforth
investors require a liquidity premium as compensation (Amihud and Mendelson, 1986; Brunnermeier and
Pedersen, 2008). The main empirical findings of this literature are summarized below: illiquidity has a
positive effect on expected stocks returns (Amihud and Mendelson, 1986; Brennan and Subrahmanyam,
1996; Datar et al., 1998; Acharya and Pedersen, 2005), fluctuations in the aggregated market liquidity
conditions impact expected returns on stocks (Pastor and Stambaugh, 2003), liquidity and volatility in
assets are negatively correlated (Acharya and Pedersen, 2005), there exists a ”flight to liquidity” effect: less
liquid stocks also have more volatility in liquidity innovations (Pastor and Stambaugh, 2003; Acharya and
Pedersen, 2005), liquidity can be used to predict future returns (Pastor and Stambaugh, 2003; Acharya and
Pedersen, 2005), there is co-movement between the individual liquidity and the market liquidity (Pastor and
Stambaugh, 2003), there exists a common factor in liquidity (Chordia et al., 2001; Hasbrouck and Seppi,
2001) and less liquid stocks tend to get higher autocorrelations in returns than high liquid stocks (Avramov
et al., 2006).



Despite the availability of high frequency data and the importance of the bid-ask spread in the financial
literature, little attention has been paid to its forecastability. In this article, we investigate the empirical
statistical property of univariate intra-day bid-ask spread time-series by extending the literature to its
forecastability analysis. Accordingly, we aim to provide a comprehensive comparison between the forecasting
power of two competitive types of models, namely ARMA-GARCH1 (ARMA hereafter) and Multiplicative
Error Models (MEM hereafter), when applied to non-negative series. MEM models have been introduced by
Engle (2002) and are specifically designed for non-negative processes. This non-negativity property makes
them natural candidates for bid-ask spread modelling. In contrast, ARMA models, may produce negative
values but allow for more flexibility by allowing a time-varying conditional variance process. A natural
question that arises is what type of model researchers and practitioners should favour to model the bid ask
spread? Most studies have focused on the predictive power of ARMA models (Giot and Laurent (2004);
Hansen and Lunde (2005); Wilhelmsson (2013)) and on MEM models (Bauwens et al., 2004; Allen et al.,
2009) separately. However, we found no papers comparing these two types of models extensively. By testing
a large number of specifications and combining density forecasts of both types of models, we intend to fill
this gap. This allows us to determine whether omitting the non-negativity property, in case of ARMA
modelling, is a serious concern.

Our paper differs in several ways from Gross-Klussmann and Hautsch (2013), who provide a methodology
to predict the quoted bid-ask spreads (a discrete positive process) for four stocks from the Russel index. In
fact, we propose to forecast the (relative) effective bid-ask spread which corresponds to the spread effectively
incurred by a trader (in contrast to the quoted spread which is a hypothetical cost of trading (Holden et al.,
2014) for all shares pertaining to the CAC40 Index, which is the main benchmark for Euronext Paris. This
choice, to favour the relative effective spread instead of the quoted spread, is motivated by several reasons.
First, regulation institutions stress the importance of measuring ”the spreads actually paid by investors”
(see the Rule 11Ac1-5 of the SEC), but trades sometimes occur inside or outside the Best Bid and Offer
(BBO). This is typically the case when a large market buy exhausts the quantity available at the best offer.
In this case the quoted spread does not adequately represent liquidity cost and risk models may suffer from
it. Secondly, by taking the effective spread, we also circumvent the discrete nature of spread series (multiple
ticks) and this allows the use of models designed for continuous variables whose properties are far better
known than for discrete positive models. Additionally, discrete models as the LMACP proposed by Gross-
Klussmann and Hautsch (2013), do not consider the case when the tick size varies according to the current
price, which is effectively the case for our data from Euronext. Finally, we analyse the relative spread (i.e.
by normalising the spread by the mid-price) instead of its raw value in order to ease its integration in risk
models and to facilitate cross-stock comparison.

The aim of this paper is to propose a methodology to better forecast the effective bid-ask spread. We
compare the prediction power of our method to a benchmark of models proposed in the literature. Model
comparison and combination are achieved within a density forecast framework, opposite to point forecast, in
order to fully capture forecast uncertainty. This is combined with the Model Confidence Set (MCS) approach
of Hansen et al. (2004) to rank models. Forecasts are made for all the shares pertaining to the CAC40 Index2

for 510 out-of-sample density forecast corresponding to an entire trading week at an observation frequency
of 5 minutes. Through the use of truncated scoring rules, we investigate the forecast accuracy in a specific
region of interest to help risk managers discriminate among models. We also demonstrate the potential
trading profit derived from a correct forecasting model. Our main result shows that no individual model
systematically outperforms other models proposed in the literature. However, our methodology based on
the combining density forecasts of ARMA and MEM models, outperforms all the benchmark specifications.

The paper is organized as follows: the materiel and data are presented in section 2. The competitive
models and the forecasting evaluation procedure are presented in sections 3 and 4. Sections 5 and 6 report
the empirical results and conclude.

1Autoregressive Moving Average - Generalized Autoregressive Conditional Heteroscedastic models.
2These stocks are actively traded, henceforth a trade-based liquidity metric as the effective spread appears relevant.
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2. Materials and data

Estimation and forecasts of the bid-ask spread are implemented using Matlab and OX programming
language developed by Jurgen A. Doornik (Doornik and Ooms, 2006) with G@rch (Laurent and Peters,
2002) package. A new OX package, devoted to the estimation of MEM models has been developed by the
authors for this study and is freely available, as well as the whole material and code of this paper, from the
author upon request.

2.1. Constructing the Bid-Ask Spread

The relative effective spread measures trading cost using the prices actually obtained by investors and
is defined, for a trade i, as:

ESi = 2×Di × (pi −MQi−)/MQi− (1)

where Di is the order direction indicator (+1 for buyer-initiated and -1 for seller initiated trades), pi is the
trade price and MQi− = 0.5× (Aski−+Bidi−) is the midquote prevailing just before the transaction. This
positive metric measures the “slippage”, in other words the deviation of the actual execution price from
the midprice. The analysis is conducted at a frequency of 5 minutes by weighting the effective spread by
the number of shares traded over this interval. The weighted (relative) effective spread is defined over an
interval u as:

Weighted ESu =

∑N
i=1 (ESi × sizei)∑N

i=1 sizei
(2)

where N is the number of trades during the interval u, sizei refers to the number of shares traded for the
transaction i and u is an interval of 5 minutes. The whole empirical part is based on this weighted effective
spread and we will refer to it simply by “bid-ask spread ”in the remainder of the document.

2.2. Data

Tick-by-tick data is collected from the Bloomberg database via its Application Programming Interface
(API). We focus on two months of tick-by-tick data for all the shares pertaining to the CAC 40 Index traded
on the limit order market of Euronext in January 2019. This index contains the 40 largest equities listed
in France, measured by free-float market-capitalization and liquidity. These stocks are subject to different
trading rules, we restrict our analysis to a homogeneous sample of stocks by selecting stocks belonging to
trading groups F1 and F2 as defined by EuroNext. This discards 2 stocks from the sample leaving 38 stocks.
The data span from 01/02/2019 to 31/03/2019 (41 days of trading) and contains tick by tick trades and
quotes data (recorded chronologically) for all stocks of the sample. We restrict our analysis to the continuous
trading hours period, between 9 a.m. and 5h30 p.m. (local time). Due to the 5 minutes aggregation, each
day contains 102 weighted bid-ask spread points giving 38 time series, each containing 4182 (= 41 × 102)
data points. Bid-ask spread series are computed as indicated in equation (1) except that trades with the
same timestamp at sub-second resolution have been merged. Trade size direction has been computed via the
algorithm proposed by Lee and Ready (1991). Table A.1 summarises descriptive statistics of the weighted
bid-ask spread series. A series of stationarity tests (unreported) has been conducted and all tests give strong
results in favour of the hypothesis of stationarity of the bid-ask spread.

Prior to estimation, the cleaning of the dataset has been carried by applying sequentially 8 filters pre-
sented in Appendix C. Unlike the standard dataset used in the literature (such has the TAQ), Bloomberg
records chronologically both trades and quotes data in the same data file. This facilitates the analysis since
it is not necessary to merge two datasets (trades and quotes) and the traditional “reporting delay”issue 3 is
not faced.

3see footnote 10 of Lee and Ready (1991)
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Figure 1: Seasonal effect. This graphic displays the evolution of the seasonal effect φ(τ) (equation 3) over a trading day for all
series.

The intra-day periodicity in high frequency data is a well-known fact (Andersen and Bollerslev (1997)),
and this the reason why prior to analysis, the deterministic diurnal effect has been removed. This is achieved
by computing the adjusted bid-ask spread yi,t as:

yi,t =
Yi,t
φ(t)

where Yi,t is the original bid ask spread value and φ(t) is the seasonal effect at time t. We follow Bauwens and
Veredas (2004) by modelling the deterministic diurnal effect by a non-parametric regression of the observed
proxy value on the time of the day. It is given by :

φ(τ) =

∑N
i=1K((τ − ti)/h)Yi,t∑N
i=1K((τ − ti)/h)

(3)

where τ is the number of cumulative seconds from midnight every day. The bandwidth is fixed as in Bauwens
and Veredas (2004) and the kernel chosen (K)is the quartic. Figure 1 displays the seasonal effect for all series.
We observe that the bid-ask spread exhibits a strong periodicity dynamic, with an important decrease in the
first 10 minutes of trading and stabilises after. This is explained by the greater asymmetry of information
there is at the opening. Forecasts are performed on the adjusted yi,t series and the non-adjusted forecast
can be recovered by post-multiplying forecasts by the deterministic seasonal factor φ(τi) .

To make the model more meaningful, we show the different steps of the bid ask spread construction for
a single stock (ticker ACAFP - Credit Agricole SA): Figure 2 shows the bid-ask spread before and after
the 5-minute aggregation and Figure 3 displays the same data before and after the periodicity adjustment.
We observe that the periodicity adjustment lower the number of jumps and shift the series to a unit mean
process. Forecasts are based on periodicity adjusted series, that is on the lower plot of Figure 3. Figure 4
displays the autocorrelation function of the original bid-ask spread and Figure 5 displays the autocorrelation
function (ACF) of the weighted bid-ask spread series before and after the periodicity adjustment. We clearly
see that the periodicity adjustment served its purpose by removing the strong periodicity pattern observed
in the ACF.
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Figure 2: Bid-ask spread time-series. This graphic displays the raw bid ask spread time-series (upper panel) and 5 minutes
weighted bid ask spread time-series (lower panel) of Credit Agricole SA company.

Figure 3: Periodicity adjustment. This graphic displays the unadjusted weighted bid-ask spread time series (upper panel) and
the diurnally adjusted weighted bid-ask spread time series (lower panel) of Credit Agricole SA company.
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Figure 4: ACF. This graphic displays the autocorrelation function of the raw bid-ask spread time-series of Credit Agricole SA
company.

Figure 5: Autocorrelation. This graphic displays the autocorrelation function of the weighted bid-ask spread series of Credit
Agricole SA company before (upper panel) and after (lower panel) the periodicity adjustment.
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3. Forecasting Models

Our purpose is to predict the bid-ask spread based on the intrinsic time series properties of spread series
only; we therefore do not include any explanatory variables and all models are performed in a univariate
setting. In this section we provide an overview of the types of model considered, MEM and ARMA models.

3.1. ARMA-GARCH type of models

The conditional mean process is modelled via the standard ARMA model. It is defined as:

∅ (L) (1− L)yt = w + θ (L) εt, (4)

where yt is the bid-ask spread, L is the traditional lag operator and εt is white noise residual. ∅(L) and
θ (L) are polynomials of order p and q, where p and q are non-negative integers, in the lag operator L with
all their roots lying outside the unit circle. The error term is defined as usual by:

εt = σtηt (5)

where ηt and σt are, respectively, the standardised innovations and conditional standard deviation process.
Regarding the conditional variance process, we tested four well-known models presented in Table 1.

Each variance specification aims to capture different features of bid-ask spread series. The GJR model of
Glosten et al. (1993) which allows an asymmetric relation between bid-ask spread innovations and volatility
changes is considered. Indeed, since illiquidity series are bounded by zero, it is reasonable to assume that
shocks have different impacts on the variance process depending on their sign. The Exponential-GARCH
(EGARCH - Nelson (1991)) is also considered because, while controlling this asymmetric effect, it also allows
the magnitude of shocks to be taken into account. Another feature of bid-ask spread series is the existence
of jumps in the series as depicted in Figure 3 and documented by Boudt and Petitjean (2013). To account
for this, we implement the BETA-T-GARCH model (a special case of the Generalised Autoregressive Score
model (Harvey, 2013)) developed by Harvey and Chakravarty (2008). This model has the advantage of
lowering the effect of jumps on the conditional variance process. A peak in the bid-ask spread may be
caused by a single very large trade but does not necessarily imply a long-lasting effect. Finally, the standard
GARCH model of Bollerslev (1986) is also considered.

The choice of the standardised innovation distribution is pivotal, the aforementioned zero-bounded fea-
ture of illiquidity series is likely to play a large role and we expect the bid-ask spread innovations to differ
widely from the normal distribution. To evaluate this effect, the standardised innovations are specified to
be Skewed Student distributed or Student-t distributed. The Skewed Student distribution initially proposed
by Fernandez and Steel (1998) intend to capture both fat tails and asymmetry in the error term conditional
density. This distribution has four parameters: location, dispersion, skewness and tail thickness parameters
and allows great flexibility in the error term conditional density.4 To summarise, for each series, we consider
a conditional mean processes (ARMA) and four conditional variance processes (GARCH, EGARCH, GJR,
BETA-T-GARCH) with Student-t or Skewed Student errors. This modelling framework leads us to estimate
8 different ARMA-GARCH types of model for each of the 38 series. Finally, we also consider four basic
benchmark models: an AR(1) model and an ARMA(p,q) model (both without conditional variance process),
with Normal or Skewed Student errors.

Estimation is performed by approximate quasi maximum likelihood (Sowell, 1992). The estimation
process used a sequential quadratic algorithm implemented in the G@rch package. We relied on the classical
BIC Criteria to select orders parameters of the mean process. As an illustration and regarding the ARMA-
GARCH,we fit for each series all permutations of the ARMA(p,q)-GARCH(1,1) model with p,q = [0:2] (9
permutations). We then select the most parsimonious one according to BIC.

4See Giot and Laurent (2004); Lambert and Laurent (2002) for details.
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Table 1: Conditional Variance processes. This table displays the four conditional variance model specifications. GARCH
refers to the Generalized Autoregressive Conditional Heteroskedasticity model of Engle (1982), EGARCH to the Exponen-
tial GARCH model of Nelson (1991), GJR to the Glosten-Jagannathan-Runkle GARCH model of Glosten et al. (1993) and
the BETA-T-GARCH model is proposed by (Harvey and Chakravarty, 2008). All models are estimated with one lag and
by the quasi-maximum likelihood method with Skewed-Student errors. Parameters obtained via the QMLE method are :
w,α, β, λ, φ1, λ1, λ2. It is a dummy variable that takes the value 1 when εt is negative and 0 otherwise.

Model Variance process
GARCH(1,1) σ2

t = w + φ1σ
2
t−1 + α1ε

2
t−1

EGARCH(1,1) log(σ2
t ) = w + β log(σ2

t−1) + α (λ1εt−1 + λ2[|εt−1| − E|εt−1|])
BETA-T-GARCH(1,1) σ2

t = w + α1ut−1σ
2
t−1 + φ1σ

2
t−1

GJR(1,1) σ2
t = w + αε2t−1 + λIt−1ε

2
t−1 + βσ2

t−1

3.2. Multiplicative Error Models (MEM)

MEM models are primarily used to model series with irregularly spaced data or strictly positive series.
They therefore appear as natural candidates to forecast the bid-ask spread (Gong et al., 2018). The most
popular MEM type model is the Autoregressive Conditional Duration (ACD) model of Engle and Russell
(1998) whose primary objective was the modelling of time between events but may be applied to all non-
negative processes. This model has led to the developments of a plethora of extensions (see Pacurar (2008)).
Formally, a non-negative discrete time process is said to follow a MEM if it can be expressed as (Brownlees
et al., 2012; Hautsch, 2012):

yi = Φiεi (6)

where εi is a unit-mean non-negative I.I.D random variable :

εi ∼ D+, E(εi) = 1 (7)

εi =
yi
Φi
∼ i.i.d → f(εi|yi−1, . . . , y1; θ) = f(εi; θ) (8)

The conditional mean Φi is a positive quantity that evolves deterministically according to a parameter vector
θ. The following condition holds :

E(yi|yi−1, . . . , y1; θ) = E(Φi|ui−1, . . . ,Φ1; θ) = Φi,

V (yi|yi−1, . . . , y1) = σ2Φ2
i

In this model, the variance of yi is proportional to the square of the variance of the error term and is not
time-varying. This appears as a plausible disadvantage with respect to the ARMA-GARCH type of model.
Several models have been proposed based on different specifications of 1) the distribution D+ of the error
term and 2) the specification of the conditional mean process Φi. The conditional density of yi is simply
given by:

g(yi) = Φ−1i D(yiΦ
−1
i )

The most widely used model, proposed by Engle and Russell (1998), is the ACD(m, q) where the m and
q refers to the orders of the lags. This model postulates that Φi evolves according to the following Linear
ARMA-type process:

Φi = ω +

m∑
j=1

αjyi−j +

q∑
j=1

βjΦi−j

where the unknown parameters are θ = (ω, α1, . . . , αm, β1, . . . , βq). Its main disadvantage is that constraints
on parameters are needed to ensure positivity of yi and that it imposes a linear relation between the
conditional mean process and yi. To overcome these problems, Bauwens et al. (2008) introduce the LOG-
ACD model (two versions LOG-ACD1 and LOG-ACD2 ). They differ from the standard ACD model by
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modelling the logarithm of the conditional expectation. Additionally the LOG-ACD1 specification allows
for non-linear effects of small and large spread value by introducing an asymmetry effect: if yi is superior to
the error mean (yi > 1) it has a positive and marginally decreasing effect on the log of the expected spread
series while small spread values have a negative effect. However, the use of the logarithmic function implies
a possible over-adjustment for small values. The EXACD model of Dufour and Engle (2000) overcome this
limitation by explicitly adding an asymmetry parameter. In this model, the impact news function has a
piece-wise linear specification, if εi−j > 1 (slope impact: αj + δj and intercept: w− δj ) or if εi−j < 1 (slope:
αj − δj and intercept: w + δj). We also evaluate the BCACD model, proposed by the same authors, and
which include the ACD and LOGACD1 as special cases. To increase the flexibility Fernandes and Grammig
(2006) propose the Power ACD (PACD) model by applying a Box–Cox transformation to the conditional
mean process through a shape parameter λ. This model adopts for limiting behaviour the LOG-ACD2

(λ → 0) and the linear ACD model (λ → 1). Finally, two long-memory models are also considered: the
Fractionally Integrated ACD (FIACD) model of Jasiak (1998) and the Long Memory ACD (LMACD) model
proposed by Karanasos (2003). Both models allow for a hyperbolic decay rate of autocorrelations and have
a similar conditional mean process, and only differ in the way they treat the constant term 5.

The previous eight MEMs are considered, in the empirical part, as competitive models and their condi-
tional mean formulations are formally defined in Table 2.

Table 2: Conditional mean process of Multiplicative Errors Models (MEM). y refers to the adjusted bid ask spread series.
The following conditions hold E(yi) = Φi and E(yi) = exp(ψi) . The polynomial φ(L) in the FIACD and LMACD model is
defined as φ(L) = [1− αL− βL](1− L)−1. L is standard Lag operator. Other polynomials are given by α(L) =

∑q
i=1 αiL

i ;
β(L) =

∑p
i=1 βiL

i . The parameters : {α, β, ω, φ1, δ, λ} are all estimated via MLE.

ACD Φi = ω + α(L)yi + β(L)Φi
FIACD Φi = ω[1− β(L)]−1 +

[
1− [1− β(L)]−1φ(L)(1− L)d

]
yi

LMACD Φi = ω +
[
1− (1− βL)−1φ(L)(1− L)d

]
(yi − w)

PACD Φλi = ω + α(L)yλi + β(L)Φλi
LOG-ACD1 ψi = ω + α(L) log(εi) + β(L)ψi
LOG-ACD2 ψi = ω + α(L)εi + β(L)ψi
EXACD ψi = ω + α(L) [εi + δj |εi − 1|] + β(L)ψi
BCACD ψi = ω + α(L)εvi + β(L)ψi

As with the ARMA model, the (multiplicative) error term D+ in equation 7 has a major impact on the
goodness of fit. To allow for great flexibility, we consider four different distributions: Exponential, Weibull,
Generalized Gamma and Burr. These distributions are formally presented in Appendix B. The Exponential
distribution initially proposed by Engle and Russell (1998) is the simplest distribution specification and
implies a constant hazard function. The Weibull, Generalized Gamma and Burr distributions are more
flexible and allow the hazard function conditional on past information to be either increasing, decreasing or
constant with respect to the bid-ask spread. The Burr distribution, first applied to MEM by Grammig and
Maurer (2000), is the most flexible one and admits the three other distributions as a special case.

Estimation. The orders of all MEM models are selected based on the Bayesian information criterion (BIC).
The eight MEM models coupled with the four error distributions lead us to test, for each series, 32 com-
petitive MEM models. Each model is estimated by using the conditional likelihood functions based on the
crucial assumption of IID innovations. The general log-Likelihood is:

L(θ) = −
n∑
i=1

[
logD

(
xi
Φi

; θε

)
+ log Φi

]
and error distribution specific log-likelihood functions are given in Appendix B .

5We follow the procedure proposed by Mccarthy et al. (2003) to fractionnaly difference time series data.
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3.3. Forecasting Procedure

For each bid-ask spread series, we apply the 32 MEM models and 12 ARMA-GARCH models to obtain
44 univariate predicted time-series. We produce 510 one step-ahead density forecasts at 5 minute frequency
in an out-of sample framework. Each model is re-estimated at every 5 predictions corresponding to a 25
minutes interval.

4. Measuring Forecast Accuracy: the Model Confidence Set Approach

We employed the “Model Confidence Set”(MCS) procedure of Hansen et al. (2004) to measure forecast
accuracy. This procedure, based on White (2000) previous research, is particularly useful to compare a large
number of models. It starts with a collection of models and determines a set of models that will contain the
best model with a given level of confidence, where best is defined in terms of a criterion that is user-specified.

The MCS procedure can be briefly presented in three steps. First, a collection of competing models
Mo, a criterion L and a given confidence level α are selected. Second, two tests are applied recursively
on the competing models: an equivalence test and an elimination rule. The equivalence test is used to
evaluate whether competing models forecast equivalently and the elimination rule discard a model found
to be significantly inferior to the other models. Both tests are applied at the same confidence level α. At
every step of the recursion the number of competing models (survivors) decreases and the algorithm stops
when all survivors are equivalent. Finally the ”surviving” models are referred to as the ”Set of Superior
Models” (SSM)6 and correspond to a set which is guaranteed to contain the best model with a certain level
of confidence.

The MCS procedure has the advantage of limiting the ”data snooping” bias, by allowing the number of
models in the SSM to depend on the information contained in the data 7, thus our results are less dependent
on our particular data sample than if we had used more a common ranking procedure.

The MCS methodology is formally presented below. We consider a set Mo containing all the models
(i = 0, . . . ,m). For each model the same loss function is computed and denoted Li,t where t refers to a
forecast time point. The relative performance variables dij,t are defined as:

dij,t ≡ Li,t − Lj,t, ∀i, j ∈Mo (9)

and the variable µij as :

µij,t ≡ E(dij,t)

Model i is preferred if E(dij,t < 0) ⇔ µij < 0. In this case the expected loss of model i is less than other
model losses. The Set of Superior Models (SSM) is defined by :

SSM ≡ i ∈Mo : µij < 0, ∀j ∈Mo.

The equivalence test, which is applied recursively, evaluates the null hypothesis of similar power among
models: H0,M : µij = 0,∀i, j ∈ M where M is a subset of Mo against the alternative HA,M : µij 6= 0 for
some i, j ∈M . We employed statistic proposed by Hansen et al. (2004) associated with this test, given by:

tij =
d̄ij√

v̂ar(d̄ij)
, ∀i, j ∈M

where d̄ij measures the relative sample loss between the i-th and j-th models: d̄ij = n−1
∑n
t=1 dij,t and

v̂ar(d̄ij) is a bootstrapped estimate of var(d̄ij). The higher the estimate of var(d̄ij), the larger the number

6Originally this final set was called the “Model Confidence Set”by Hansen et al. (2004), we change this name to avoid
confusion with the procedure which has the same terminology.

7Put in simple terms: a dataset with few variations in the data will lead to a large SSM and a dataset with large variation
will lead to a smaller number of models in the SSM.
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of models in final steps. We employed the range statistic TR,M ≡ max |tij |, i, j ∈M , proposed by the same
authors to test the null hypothesis of equivalence between models.
The asymptotic behaviour of this statistic is computed via the moving-block bootstrap method, in which
block lengths are determined by the (corrected) algorithm proposed in Politis and White (2004). If H0 is
rejected, an elimination rule is applied to identify the model to be removed. The elimination rule is simply
defined by removing the model that contributes most to the test statistic.

The MCS procedure yields p-values for each of the models. For a given model i ∈M0, the MCS-p-value,
p̂i, is the threshold at which i ∈ ˆSSM1−α, if and only if p̂i ≥ α. Thus a model with a high MCS-p-value is
more likely to be one of the “best”models (i.e. to belong to the SSM). This p-value is the main indicator of
the forecast accuracy of a model in the sequel.

MCS and Density Forecasts. In order to fully manage uncertainty, we focus on density forecast evaluation
instead of point forecasts. By observing the whole future probability distribution of the forecast instead of
its central tendency (point forecast), density forecast provides the complete description of the uncertainty
associated with a forecast. We follow Wilhelmsson (2013) by applying the MCS procedure to density
forecasts. Thus we use a density forecasts metrics as a loss function. Following Mitchell and Hall (2005);
Amisano and Giacomini (2007), we select the logarithmic score rule as a loss metric. In terms of density
forecast, loss functions are defined as the difference between the density forecast and the true (unknown)
density. Scoring rules relate the density forecast to the actual realisation (and therefore to the unknown
density) and are designed to assign a high score when the accuracy is good. The proper logarithmic score
rules is defined as,

S(f, yt+1) = log f̂t(yt+1)

where yt+1 is the realised value at time t+ 1 and f̂t(.) the predictive density forecast. It assigns a high (low)
score if the observed value falls within a region with high (low) predictive density.

This methodology involves computing for each forecast its associated predictive density forecast f̂(.).
For both MEM and ARMA models, these values are easily obtained since they are part of the likelihood
function which is maximised during estimation 8. As an illustration, the density forecast of a GARCH
model with Gaussian errors is given by f̂t(yt+1) = ft,N (yt+1) where ft,N is the pdf of a N(µt+1|t, σt+1|t)
distribution where µt+1|t and σt+1|t refers respectively to the forecasted conditional mean and conditional
variances values.

As with MEM models, the predictive likelihood corresponds to the conditional density of yt given the
past information (see Bauwens et al. (2004)) and is formally given by:

f̂t(yt+1) = Dt(yt+1Ψ−1t+1|t)Ψ
−1
t+1|t

where Dt(.) corresponds to the estimated error distribution at time t. Finally, since the MCS procedure
expects a loss function, we use the negative of these scoring rules.

Tail Evaluations. Density forecasts place equal weight over all the density, in other words uncertainty is
treated as a block. However, risk managers generally focus on tail events, so it seems worthwhile addressing
the question of density forecast accuracy for a specific region of interest. Diks et al. (2011) provides a tool
tailored to this need: the proper censored likelihood (CSL) scoring rule formally defined as:

Scsl(f, yt+1) = I(yt ∈ At) ln f̂t(yt) + I(yt ∈ ACt ) ln

(∫
ACt

f̂t(yt)dy

)
(10)

where At is the region of interest and Act is the complement of At. I(.) is an indicator function that takes
the value 1 if the argument is true. The first part of this scoring rule focuses on the behaviour of the density
forecast in the region of interest and the second part is required to avoid favouring density with a high

8Only for estimation based on out-of-sample forecasts.
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mass in the region of interest even if these densities are incorrect. In addition to the full distribution, two
regions are considered: the 10 % and 5 % Tails regions. The 10 % Tail region refers to the upper and lower
10 % region of the distribution while the 5 % Tails region is defined similarly. Thus the 10 % Tail region
corresponds to At defined as yt > q0.9 and yt < q0.1 with qk the k -th quantile of the empirical CDF of
the the out-of-sample values y1, . . . , yt. Our methodology has the advantage of observing the same number
of points in the tails for all series. By doing so, we can put greater weight on particular regions (tails) of
the distribution of the variable and compare models according to their accuracy with respect to different
scenarios.

Combining density forecasts. We investigate the benefit of combining density forecasts by resorting to the
combination scheme proposed by Opschoor et al. (2015). The intuition of using a combination of models
is that models can perform unequally over time depending on the evolution of the true data generating
process (DGP) of the series. As an illustration, we may think that a large trade of stocks split in several
orders can lead to jumps in the series, which in turn allows the BETA-T-GARCH model to be the optimum
specification. However as soon as all new stocks are absorbed by the market, jumps may disappear and
another (smoother) model may better describe the DGP. Opschoor et al. (2015) extend the CSL score

(equation 10) to a combined version of n available predictive density f̂it, i = 1, . . . , n defined by:

Scsl(f, yt+1) =

T∑
t=1

log

[
n∑
i=1

wt,i

(
I(yt ∈ At)f̂it(yt) + I(yt ∈ ACt )

∫
ACt

f̂it(yt)dy

)]
(11)

We propose an innovative and simple method to find the optimum weights wt,i inspired by portfolio opti-
misation techniques. We allow the weights to be time-varying by maximising the score every 5 steps for
the last 65 density points in a moving-average window way while taking into account forecast uncertainty
measured by the covariance matrix of the scoring rules. Specifically, we employ the following optimisation
algorithm to determine the weights:

maximize w′P − λw′Σw

sc w
′
e = 1

wi > 0∑
bi ≤ K

where P is the matrix of the individual (past) predictive densities, w is the (N x 1) vector of weights, Σ is
the covariance matrix of the scoring rules, e is a (N x 1) vector of 1, bi is a binary value taking the value
one if the weight of the i series is strictly positive. The first condition imposes that the sum of weight adds
up to one, the second imposes that all weights are positive and the last one imposes a maximum number of
selected models. Estimation is performed via second-order cone programming (SOCP). We arbitrarily fix
K to be 3 so that, at maximum, only 3 models are combined. The λ parameter is fixed to 0.25. We do not
evaluate different values of these parameters as this will go beyond the aim of this paper. The particular
chosen parameters are sufficient to show the benefit of combining model. At result, some combined densities
may be composed only of ARMA models, only MEM models or a mixture of both types.

5. Empirical Results

Table 3 summarises the composition of the Set of Superior Models (SSM) for the three regions under
study (Full, 10 % and 5% Tail distribution). Table A.2 displays summarise statistics of the predictive
log-likelihood.

As major observation, we found that combined models systematically outperform other models for alls
regions of interest. The maximum percentage of times the combined model is selected as part of the SSM
at 25 % confidence interval is 89.47 % , 94.74% and 94.74 % for respectively the full, 10 % tail and 5 % tail
region. Thus, the combined model has good forecast accuracy for at least 34 series over the total of 38 series
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(89.47%) and this is the higher ratio of all the studied models. This indicates that by combining models
we can produce more accurate forecasts. As robustness test, results are display at 10% confidence interval
in A.3 and confirm this observation. This finding demonstrates that it is possible to take advantage of the
various models accordingly their power to describe series at time t. It worth noting that the study of the
evolution of the weights wt,i (not investigated in this paper) may provide valuable comments on the various
phases of the process. Nevertheless, the added forecasting accuracy of combined models is not found to be
extreme in the sense that the following respective best models have comparable values (0.8664, 0.8421 and
0.8684). A second important observation is that ARMA models seem more suited to predict the bid-ask
spread than MEM models. Indeed, the top 5 models for all regions do not contain any MEM model. Caution
should be taken on this remark as we only compare individuals models here.

Regarding MEM models, the choice of the error term is found to be pivotal. MEM with the Exponential
or Weibull distribution are rarely selected as part of the SSM. Inversely, the Gamma and, most of all, Burr
distribution models increase the probability of MEM accurate forecast. The Burr distribution appears sys-
tematically to outperform other error distributions. This finding indicates that a highly flexible distribution,
such as the Burr distribution, is required to produce accurate forecasts and our results suggest practitioners
should favour it. Regarding the conditional mean specification, the LMACD and FIACD models are the
best models, indicating that the process may have a long memory feature.

Regarding the ARMA type of models, the EGARCH, GJR and BETA-T-GARCH (GAS) conditional
variance specifications are the best in class models. The EGARCH and GJR models allow for an asymmetric
effect of shocks that, henceforth, seems to be present in the series. We also clearly find that there is a benefit
in modelling the conditional variance process since benchmark models which do not possess this feature
produce poor forecasts. The error term distribution is also important, the Skewed Student distribution
is required to direct errors towards the non-bounded side of bid-ask spread series. The BETA-T-GARCH
model performs also well, and we deduced that the observed peaks in bid-ask series may be a concern for
the estimation of the conditional variance process.

Regarding parameters estimates and due to the large number of models estimated, we restrict the analysis
to the first-ranked model (EGARCH-S) accordingly the MCS results. Thus parameters of The EGARCH-S
are presented in Table 4. Parameters are those obtained at the last point of the out-of-sample period.
Estimates of the parameters of the error term indicate that bid-ask spread innovations have fat tails and are
asymmetric toward the right-hand side of the distribution. Skewness and kurtosis parameters of the Skewed
Student distribution are significant and positive. The flexibility of the error term distribution overcomes the
zero-limit bound by allowing a strong correction of the innovations toward the non-bounded side. Kurtosis
values indicate that bid-ask spread is subject to extreme events. Estimates of the sign (λ1) and magnitude
(λ2) parameters are positive and significant for most of the series. This indicates that the future conditional
variances will be more impacted proportionality as a result of a positive shock than for a negative shock
of the same absolute magnitude. Bad news (positive shock on the bid-ask spread) has a bigger impact on
the volatility of the bid ask spread than a good ones. We believe this was expected as the bid-ask spread is
bounded at zero. Second, coefficients α are negative and significant, thus positive shock tends to decrease
the volatility of the series indicating a fast level-reverting effect. This effect is confirmed by coefficients β
that are close to one, indicating strong persistence in the variance.

Financial application. The previous analysis was focused mainly on comparing individual models among
the two types of model considered 9 and to provide a combination method. We show that by combining
models the overall forecast accuracy can be improved. This leads us, in this section and as a financial
application, to consider the potential trading gain (or cost saving) arising from the various types of models.
That is to say that for each series, we select the best ARMA model, the best MEM model and the combined
model where best is expressed in terms of forecasting power evaluated via the MCS procedure.

We construct a fictive trading scenario in order to evaluate benefit of each type of model. We assume a
basic agent who trades on a regular schedule every 10 minutes. We assume that for each 10-minute interval,

9for instance, the FIACD (MEM type) versus the ARMA-GJR (ARMA type) model
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Table 3: MCS Summary results. This table reports for each econometric model, the percentage of time this model belongs to
the Set of Superior Model SSM∗

1−0.25. Interpretation: The first value 89.47% indicates that at the 25% threshold, 89.47% of
the 38 series predicted with the combined model belongs to the Set of Superior Model. A high percentage is a synonym of
better forecasts.

Full region 10% Tail 5% Tail

Model MCS75% Model MCS75% Model MCS75%

Combined 89,47% Combined 94,74% Combined 94,74%
EGARCH-S 86,84% EGARCH-S 84,21% EGARCH-S 86,84%

GAS-S 86,84% GAS-S 84,21% GAS-S 86,84%
GJR-S 84,21% GARCH-S 78,95% GJR-S 81,58%

GARCH-S 76,32% GJR-S 73,68% GARCH-S 73,68%
FIACD BURR 76,32% LMACD BURR 68,42% LMACD BURR 73,68%
LMACD BURR 76,32% FIACD BURR 65,79% FIACD BURR 68,42%

LOGACD2 BURR 55,26% ARMA-S 57,89% ARMA-S 60,53%
ARMA 52,63% ACD BURR 52,63% LOGACD2 BURR 57,89%

ACD BURR 52,63% LOGACD BURR 52,63% EXACD BURR 57,89%
BCACD BURR 52,63% AR1-S 50,00% PACD BURR 57,89%

ARMA-S 50,00% LOGACD2 BURR 50,00% BCACD BURR 57,89%
PACD BURR 50,00% ARMA 47,37% ACD BURR 55,26%

GARCH-T 47,37% PACD BURR 47,37% AR1-S 50,00%
EGARCH-T 47,37% EXACD BURR 44,74% LOGACD BURR 50,00%

EXACD BURR 47,37% BCACD BURR 42,11% ARMA 42,11%
GAS-T 44,74% ACD WEIBULL 36,84% FIACD WEIBULL 42,11%
GJR-T 44,74% FIACD GAMMA 36,84% LMACD WEIBULL 39,47%

LOGACD BURR 44,74% LMACD GAMMA 36,84% ACD GAMMA 36,84%
AR1-S 42,11% AR1 34,21% LOGACD2 GAMMA 36,84%
AR1 39,47% LOGACD2 WEIBULL 34,21% LOGACD2 WEIBULL 36,84%

FIACD GAMMA 36,84% BCACD WEIBULL 34,21% PACD WEIBULL 36,84%
EXACD WEIBULL 34,21% FIACD WEIBULL 34,21% BCACD WEIBULL 36,84%
FIACD WEIBULL 34,21% EXACD WEIBULL 31,58% LMACD GAMMA 36,84%

ACD GAMMA 31,58% PACD WEIBULL 31,58% AR1 34,21%
EXACD GAMMA 31,58% LMACD WEIBULL 31,58% ACD WEIBULL 34,21%
PACD WEIBULL 31,58% ACD GAMMA 28,95% EXACD WEIBULL 34,21%

BCACD WEIBULL 31,58% LOGACD2 GAMMA 28,95% BCACD GAMMA 34,21%
LMACD WEIBULL 31,58% EGARCH-T 26,32% FIACD GAMMA 34,21%

ACD WEIBULL 28,95% LOGACD WEIBULL 26,32% LOGACD WEIBULL 31,58%
LOGACD2 GAMMA 28,95% GAS-T 23,68% EXACD GAMMA 31,58%

LMACD GAMMA 28,95% PACD GAMMA 23,68% PACD GAMMA 31,58%
LOGACD2 WEIBULL 26,32% BCACD GAMMA 23,68% LOGACD GAMMA 28,95%

PACD GAMMA 26,32% GARCH-T 21,05% EGARCH-T 18,42%
BCACD GAMMA 26,32% GJR-T 18,42% GAS-T 18,42%

LOGACD WEIBULL 23,68% LOGACD GAMMA 18,42% GJR-T 18,42%
LOGACD GAMMA 21,05% EXACD GAMMA 13,16% GARCH-T 15,79%

ACD EXP 0,00% ACD EXP 0,00% ACD EXP 0,00%
LOGACD EXP 0,00% LOGACD EXP 0,00% LOGACD EXP 0,00%
LOGACD2 EXP 0,00% LOGACD2 EXP 0,00% LOGACD2 EXP 0,00%

EXACD EXP 0,00% EXACD EXP 0,00% EXACD EXP 0,00%
PACD EXP 0,00% PACD EXP 0,00% PACD EXP 0,00%

BCACD EXP 0,00% BCACD EXP 0,00% BCACD EXP 0,00%
FIACD EXP 0,00% FIACD EXP 0,00% FIACD EXP 0,00%
LMACD EXP 0,00% LMACD EXP 0,00% LMACD EXP 0,00%
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Table 4: EGARCH-S parameters estimates.
Skew and Kurtosis refer to parameters of the Skew t distribution. W and V are ,respectively , the intercept of the conditional
mean and conditional variance processes. λ1 is the sign effect and λ2 is magnitude effect, α and β are standard parameters of
the GARCH process. Stars indicate rejection of the null hypothesis at ** 0.01; *0.05 confidence level. Standards deviations
are in parentheses. Column ID refers to the identifier of stocks such as presented in Table A.1. ARMA coefficients are not
reported.

ID W V α β λ1 λ2 Skew Kurt

1 0.99**(0.02) -1.73**(0.22) -0.53**(0.09) 0.91**(0.02) 0.14**(0.03) 0.12**(0.04) 0.39**(0.03) 6.07**(0.67)
2 0.99**(0.02) -0.96**(0.20) -0.56**(0.11) 0.95**(0.02) 0.04(0.02) 0.16**(0.04) 0.33**(0.03) 7.08**(1.23)
4 0.97**(0.02) -1.43**(0.29) -0.56**(0.11) 0.96**(0.01) 0.08**(0.02) 0.12**(0.03) 0.34**(0.03) 5.39**(0.52)
5 0.97**(0.03) -1.49**(0.26) -0.52**(0.09) 0.94**(0.01) 0.08**(0.02) 0.12**(0.03) 0.31**(0.02) 6.87**(0.97)
6 0.98**(0.01) -1.57**(0.22) -0.31(0.20) 0.88**(0.06) 0.12**(0.03) 0.15**(0.03) 0.35**(0.03) 5.37**(0.49)
7 1.00**(0.02) 0.95(0.49) -0.38**(0.10) 0.94**(0.01) 0.08**(0.02) 0.16**(0.02) 0.71**(0.03) 3.59**(0.26)
8 0.98**(0.02) -1.33**(0.24) -0.56**(0.14) 0.87**(0.05) 0.05*(0.03) 0.22**(0.04) 0.31**(0.03) 7.81**(0.93)
9 1.00**(0.11) 0.66(3.98) -0.39**(0.11) 0.98**(0.00) 0.05(0.02) 0.19**(0.03) 0.25**(0.03) 13.59**(1.12)

10 0.99**(0.01) -1.65**(0.21) -0.26(0.14) 0.86**(0.04) 0.02(0.02) 0.13**(0.03) 0.31**(0.03) 7.45**(1.04)
11 0.99**(0.01) -1.92**(0.21) -0.23(0.27) 0.83**(0.04) 0.06*(0.03) 0.10**(0.04) 0.24**(0.02) 7.50**(1.13)
12 0.94**(0.01) -1.24**(0.34) -0.54**(0.12) 0.92**(0.02) 0.03(0.02) 0.20**(0.04) 0.22**(0.03) 11.67**(1.31)
13 -1.12**(0.01) 1.88**(0.04) -0.62(0.43) 0.99(0.63) -0.02(0.02) 0.22**(0.03) 0.17**(0.03) 8.72(6.80)
14 0.98**(0.03) -0.51(0.32) -0.43**(0.10) 0.93**(0.02) 0.05(0.03) 0.21**(0.03) 0.36**(0.03) 9.08**(1.08)
15 1.00**(0.01) -1.19**(0.16) -0.15(0.20) 0.90**(0.04) 0.05**(0.02) 0.14**(0.03) 0.25**(0.03) 15.76**(3.86)
16 0.95**(0.05) -1.17*(0.57) -0.38**(0.11) 0.98**(0.00) 0.12**(0.02) 0.07*(0.03) 0.36**(0.03) 5.96**(0.62)
17 0.99**(0.01) -1.43**(0.31) -0.39*(0.17) 0.93**(0.04) 0.08**(0.03) 0.12**(0.03) 0.32**(0.03) 7.69**(0.88)
18 0.96**(0.03) -0.20(0.55) -0.16(0.13) 0.96**(0.01) 0.08**(0.02) 0.14**(0.03) 0.32**(0.03) 8.47**(0.86)
19 0.97**(0.02) -2.04**(0.14) -0.02(0.20) 0.68**(0.09) 0.04(0.03) 0.10**(0.03) 0.38**(0.03) 5.27**(0.55)
20 0.98**(0.02) -0.09(0.34) -0.68**(0.05) 0.98**(0.01) 0.16**(0.03) 0.15**(0.03) 0.39**(0.03) 5.00**(0.52)
21 0.99**(0.02) -0.75**(0.29) -0.22(0.18) 0.91**(0.04) 0.02(0.02) 0.16**(0.04) 0.29**(0.02) 17.83**(6.51)
22 0.98**(0.01) -2.24**(0.06) 0.74**(0.16) -0.44**(0.10) 0.09**(0.03) 0.07(0.04) 0.31**(0.03) 4.87**(0.44)
23 1.04**(0.06) -0.79(1.37) -0.11(0.18) 0.90**(0.01) 0.02(0.03) 0.16**(0.03) 0.33**(0.03) 11.51**(1.12)
24 0.98**(0.02) -1.91**(0.09) -0.15(28.56) 0.82**(0.05) 0.03**(0.01) 0.08(0.07) 0.14**(0.03) 15.87**(5.51)
25 1.00**(0.01) -1.70**(0.14) -0.15(0.36) 0.93**(0.02) -0.02(0.01) 0.10**(0.04) 0.14**(0.03) 18.87**(5.34)
27 0.99**(0.01) -1.65**(0.05) 0.62**(0.08) -0.82**(0.03) 0.03(0.02) 0.18**(0.03) 0.28**(0.03) 10.63**(1.91)
29 1.00**(0.01) -1.90**(0.12) 0.11(0.33) 0.61**(0.10) 0.12**(0.03) 0.10**(0.03) 0.42**(0.03) 6.17**(0.60)
30 1.00**(0.02) -1.47**(0.17) -0.47**(0.12) 0.93**(0.02) -0.01(0.02) 0.17**(0.05) 0.21**(0.03) 22.55**(8.31)
31 0.97**(0.02) -1.62**(0.22) -0.45**(0.15) 0.88**(0.02) 0.07*(0.03) 0.14**(0.04) 0.41**(0.03) 5.21**(0.43)
32 0.98**(0.02) -1.44**(0.29) -0.47**(0.12) 0.96**(0.01) 0.08**(0.03) 0.11**(0.03) 0.33**(0.03) 7.31**(0.80)
33 0.98**(0.01) -0.85**(0.25) -0.10(0.26) 0.94**(0.01) 0.01(0.01) 0.14**(0.04) 0.25**(0.02) 11.79**(2.17)
34 1.00**(0.01) -1.93**(0.12) -0.49**(0.15) 0.91**(0.03) 0.05*(0.02) 0.16**(0.03) 0.18**(0.03) 9.62**(1.61)
35 0.97**(0.02) 0.46(0.55) -0.62**(0.06) 0.98**(0.01) 0.10**(0.02) 0.20**(0.03) 0.33**(0.02) 8.73**(1.11)
36 0.99**(0.01) -1.38**(0.23) -0.24(0.25) 0.88**(0.04) 0.02(0.02) 0.12**(0.03) 0.31**(0.03) 10.18**(2.36)
37 0.93**(0.02) 1.39(1.04) -0.53**(0.13) 0.99**(0.00) 0.07**(0.02) 0.11**(0.03) 0.35**(0.03) 9.28**(1.18)
38 0.98**(0.02) -0.23(0.48) -0.68**(0.15) 0.99**(0.02) 0.05*(0.02) 0.13**(0.04) 0.25**(0.03) 19.22**(3.90)
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he may choose to trade in the middle of the interval (5 minutes) or at the end of it. One simple alternative
trading strategy is considered and consists at time t in producing two one-step ahead forecasts for times
t + 5 and t + 10 on two-time grids 10 and in selecting the optimum trade timing over both grids based on
the following rule :

Trade t+5 if : f̂−1t,5 (0.55) ≤ f̂−1t,10(δ)

Trade t+10 if : f̂−1t,5 (0.55) > f̂−1t,10(δ)

where f̂−1t,5 (.) and f̂−1t,10(.) are the inverse quantile functions of, respectively, the forecasted densities at time

t for time periods t + 5 and t + 10 11. The parameter δ represents how safe the strategy is, and is defined
over the interval [0.04 : 0.01 : 0.6]. A high value δ indicates a safer strategy and vice versa. For the 5-minute
grid we only consider the first predicted density since the agent has to make a decision at time t 12.
This strategy is iterated during 255 five-minute intervals and the profits is computed relative to a benchmark
strategy. The benchmark strategy consists to randomly trade at the middle or at the end of the 10-minute
interval and is computed via Monte Carlo simulations (10 000 replications). The results are presented
re-expressed in terms of cost saving (in percentage of the stocks price). Table 5 display results.

The weights used to combine the densities correspond to those found by maximising the Full scoring
rule. Due to the fact that a mixture of density does not correspond to a simple weighted of its component,
we employ a Monte Carlo procedure to infer the combined density. More specifically, the densities of the
combined models are estimated by simulating the error terms εi in equation 6 and ηt in equation 5 and
by using the required estimated parameters at time t. The three simulated series are then combined by
applying the weights that are optimum at time t as described in section 4.

The results show potential profits (in bold). The combined model appears as the best type of model,
producing higher positive profit and for a wider range of δ values than other models. The maximum average
cost savings arising are 0.089%, 0.075 % and 0.022% for, respectively, the Combined, MEM and ARMA
types of model. Surprisingly, ARMA models produce less profitable opportunities. This may be explained
by the fact that we no longer look for a single individual best model, but select the best MEM models among
all MEM models available. This result tends to indicate that even-those MEM models, when considered
individually, do not beat ARMA models, the result is opposite if when consider them globally (i.e when we
pick the most relevant MEM model for each series). Overall, we find that by combining density forecasts
we manage to increase forecast accuracy, leading to the most profitable trading strategy.

10that is to say that we aggregate the series over two time scales: 5 and 10 minutes.
11To ease computation, when evaluating the combined density forecast type of model, we only employ a combination of

models for the 5 min grid forecast, 10 min forecasts are based on GARCH density forecasts. This is not a concern since we
expect the trading profit to increase if we had use the full combined scheme, thus keeping the direction of our results.

12Between time t and t+ 10 we observe 2 one-step-ahead forecasts on the 5-minute grid; only the first point is considered.
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Table 5: Profit of trading strategy. This table reports summarise statistics of the trading strategy. Percentage refers to the
average cost saving in the percentage of the stock price across all stocks. δ is the risk parameter. The line labelled Maximum
corresponds to the highest profit. Bold figures indicate benefit.

δ MEM ARMA COMBINED

0,4 -0,010% -0,007% -0,001%
0,41 -0,009% -0,005% 0,002%
0,42 -0,007% -0,005% 0,006%
0,43 -0,003% -0,003% 0,009%
0,44 -0,003% -0,003% 0,013%
0,45 0,000% 0,003% 0,022%
0,46 0,004% 0,003% 0,023%
0,47 0,011% 0,010% 0,024%
0,48 0,013% 0,014% 0,035%
0,49 0,023% 0,011% 0,043%
0,5 0,030% 0,013% 0,056%
0,51 0,044% 0,016% 0,069%
0,52 0,047% 0,022% 0,082%
0,53 0,059% 0,022% 0,084%
0,54 0,075% 0,012% 0,080%
0,55 0,067% 0,004% 0,089%
0,56 0,065% 0,007% 0,078%
0,57 0,054% 0,004% 0,082%
0,58 0,043% 0,005% 0,065%
0,59 0,036% 0,008% 0,052%
0,6 0,032% 0,016% 0,044%
Maximum 0,075% 0,022% 0,089%
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6. Conclusion

The aim of this paper is to propose a methodology to better forecast the effective bid-ask spread.
Despite the importance of the spread as a determinant of market liquidity (Amihud, 2019), few studies have
investigated the forecasting of the bid-ask spread (Gross-Klussmann and Hautsch, 2013). In this paper we
contribute to this literature in several ways. First, we provide a methodology to predict the effective bid-ask
spreads. Second and as far as we know, our paper is the first to compare the forecasting power of MEM and
ARMA types of model. This comparison is applied to bid-ask spread series, which are of critical importance
for liquidity risk and portfolio management purposes. Third we propose a new way to combine their density
forecasts.

As main results we found that there is no evidence of a clear superiority of a single model originating
from the ARMA and MEM models. We show the paramount importance of a correct specification of the
error term conditional density; we recommend the Skew-Student distribution for ARMA models and the
BURR distribution for MEM models when modelling the bid-ask spread. For MEM models, long-memory
models (FIACD, LMACD) are recommended and EGARCH and GAS specifications are recommended for
ARMA models. Interestingly, we show that when we combine density forecasts of both types of models,
the prediction accuracy can be improved and our methodology outperforms both ARMA and MEM models.
Moreover, the Model Confidence Set approach allows us to generalise our results because they are not tied
to our particular dataset.

We believe that accurate forecasting of the bid-ask spread dynamics can help in at least three fields.
For risk management purposes, the behaviour of models for tail events is of crucial importance and an
appropriate model can considerably reduce the risk. For high-frequency research purposes, models often
need to forecast non-negativity processes and our results can serve as additional information to decide
which model to use. Finally, regarding trading, an accurate prediction of future spread values can obviously
lower the cost of transactions, a simple trading strategy is implemented to illustrate it.

As possible further research, it could be worthwhile extending the whole analysis to multivariate econo-
metric models (Vector MEM and Multivariate GARCH). However this will raise difficult, but interesting,
issues to apply a combination framework to these models.
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Appendix A. Tables

Table A.1: Summarize statistics - Weighted Bid Ask Spread. This table reports summarise statistics for each series, series are
aggregated at the 5-minute frequency but have not been diurnally adjusted. Min, Max, Var, Mean, and Med are respectively the
mean, minimum, maximum, variance and median of the weighted bid ask spread. For convenience data has been pre-multiplied
by a factor of 100 before to generate this table. LB10 and LB20 are respectively the Ljung Box test of the residuals at lag 10
and 20. Nb Trades and Avg Size correspond to the total number of trades and the average trade size over the whole period.
To compute the total number of trades, a maximum resolution of one second has been adopted, it means that if two trades
occurs within the same second, they are counted as a single trade.

Stock Min Max Var Mean Med LB10 LB20 Nb Nb Trades Avg Size

ACAFP 3,00E-03 0,501673 1,62E-06 0,018 0,016 671,328 691,500 4182 603265 1626,2
ACFP 3,84E-14 0,544844 2,45E-06 0,021 0,019 274,948 277,121 4182 273895 559,1
AIFP 2,67E-14 0,134278 1,38E-06 0,027 0,027 193,889 200,172 4182 317929 433,5
AIRFP 6,50E-04 0,843522 2,37E-06 0,014 0,013 123,107 134,044 4182 799579 335,9
ATOFP 6,74E-04 0,365706 2,84E-06 0,022 0,019 688,222 699,189 4182 384816 158,6
BNFP 4,33E-04 0,184066 4,97E-07 0,012 0,011 650,036 696,072 4182 467098 382,2
BNPFP 2,98E-03 0,58024 2,23E-06 0,015 0,012 193,817 200,562 4182 1220256 655,6
CAFP 3,95E-14 0,24976 1,84E-06 0,024 0,022 638,972 666,133 4182 320060 1123,7
CAPFP 2,65E-14 0,26725 2,35E-06 0,027 0,025 1000,444 1429,178 4182 396597 242,2
CSFP 6,43E-04 0,282281 5,99E-07 0,014 0,013 163,347 167,826 4182 598071 1662,1
DGFP 3,40E-14 0,198375 6,49E-07 0,016 0,015 245,949 250,210 4182 442934 367,0
DSYFP 2,22E-14 0,289573 2,24E-06 0,026 0,024 398,721 443,257 4182 242089 177,8
ELFP 2,56E-14 0,24378 2,07E-06 0,029 0,028 1074,129 1840,951 4182 365488 395,4
ENFP 2,23E-14 0,239752 2,38E-06 0,024 0,022 797,984 836,307 4182 234055 466,7
ENGIFP 2,52E-14 0,621779 2,52E-06 0,021 0,020 173,038 173,945 4182 384053 2417,3
FPFP 1,06E-03 0,068635 2,40E-07 0,010 0,009 2215,293 3430,902 4182 1207160 906,2
FRFP 1,66E-03 0,287461 2,50E-06 0,027 0,025 708,006 738,779 4182 504396 571,2
FTIFP 3,37E-14 0,518366 3,99E-06 0,029 0,026 1049,420 1143,630 4182 385139 747,6
GLEFP 3,70E-03 0,195439 1,08E-06 0,016 0,014 739,347 782,459 4182 1043807 903,1
KERFP 2,23E-14 0,86551 3,77E-06 0,018 0,015 222,325 240,656 4182 537126 70,0
LRFP 2,35E-14 0,278447 1,91E-06 0,022 0,020 342,317 361,733 4182 186886 315,1
MCFP 1,69E-03 1,218281 4,10E-06 0,014 0,013 51,864 52,760 4182 773407 132,0
MLFP 5,33E-14 0,335191 2,25E-06 0,025 0,023 589,508 771,489 4182 430129 235,5
ORAFP 2,47E-14 0,091325 7,83E-07 0,022 0,021 202,340 250,280 4182 450608 2778,7
ORFP 5,03E-14 0,169109 1,29E-06 0,027 0,026 152,543 160,980 4182 383392 220,2
PUBFP 2,65E-14 0,399206 2,49E-06 0,021 0,018 614,536 735,145 4182 310732 350,3
RIFP 3,63E-14 0,172438 1,21E-06 0,021 0,020 263,332 277,895 4182 238190 186,8
RMSFP 4,01E-14 0,580136 3,62E-06 0,028 0,025 537,362 617,606 4182 215111 34,2
RNOFP 2,40E-03 0,19366 1,31E-06 0,017 0,015 955,653 964,329 4182 585261 275,8
SAFFP 4,06E-14 0,168307 1,28E-06 0,025 0,024 171,896 188,753 4182 369141 388,7
SANFP 3,59E-04 0,301519 5,85E-07 0,011 0,010 330,081 349,059 4182 695140 411,3
SGOFP 6,48E-04 0,353211 1,32E-06 0,016 0,014 642,410 657,539 4182 514615 468,1
STMFP 2,35E-14 0,149514 1,20E-06 0,021 0,020 422,523 432,141 4182 419612 1339,5
SUFP 3,44E-04 0,134912 7,36E-07 0,020 0,019 327,286 369,827 4182 489646 483,2
SWFP 2,81E-14 0,424001 3,08E-06 0,022 0,019 1175,140 1253,178 4182 201714 145,3
UGFP 3,40E-14 1,198239 5,67E-06 0,027 0,025 109,227 111,661 4182 390495 1008,8
VIEFP 3,55E-14 0,19804 1,45E-06 0,020 0,018 1146,756 1507,437 4182 248470 957,9
VIVFP 2,93E-14 0,138523 1,60E-06 0,025 0,024 278,791 324,830 4182 292705 1894,7
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Table A.2: Predictive log-likelihood summary statistics. This table reports summarise statistics of the negative predictive
log-likelihood per model. Q1, Q2 and Q3 are respectively the first, second and third quartile. NB is the number of series
(for some series and model, the estimation does not converge). A highly negative predictive log-likelihood indicates a poor
performance as it represents a loss metric. Interpretation: the average negative predictive log-likelihood across the 37 stocks
for the ARMA-GARCH model with Skewed Student error is 0.3814.

Average Max Min Std Q1 Q2 Q3 NB

GAS-S 0,3636 0,7884 -0,0954 0,1815 0,2653 0,3524 0,4772 36
GAS-T 0,3768 0,8140 -0,0604 0,1757 0,2810 0,3526 0,4927 36
EGARCH-T 0,3772 0,8106 -0,0616 0,1751 0,2807 0,3537 0,4899 36
GJR-S 0,3685 0,8143 -0,0834 0,1787 0,2668 0,3630 0,4741 37
EGARCH-S 0,3680 0,7806 -0,0966 0,1766 0,2612 0,3652 0,4781 35
GARCH-S 0,3847 0,8090 0,0977 0,1608 0,2714 0,3654 0,4815 35
ARMA-S 0,3814 0,8618 -0,0481 0,1719 0,2611 0,3675 0,4817 37
GARCH-T 0,3942 0,8390 -0,0526 0,1725 0,2978 0,3728 0,4962 36
FIACD BURR 0,3725 0,9211 -0,1009 0,2043 0,2517 0,3736 0,4902 33
BCACD BURR 0,3772 0,9520 -0,1077 0,2106 0,2560 0,3738 0,4963 32
PACD BURR 0,3783 0,9510 -0,1077 0,2084 0,2573 0,3740 0,4952 33
ACD BURR 0,3785 0,9400 -0,1012 0,2058 0,2561 0,3743 0,4947 33
LOGACD2 BURR 0,3789 0,9398 -0,0991 0,2056 0,2567 0,3743 0,4945 33
EXACD BURR 0,3781 0,9497 -0,1077 0,2090 0,2607 0,3743 0,4616 30
LMACD BURR 0,3728 0,9211 -0,0989 0,2041 0,2548 0,3746 0,4902 33
GJR-T 0,4007 0,8731 -0,0529 0,1958 0,2896 0,3837 0,5150 37
LOGACD BURR 0,3963 1,0812 -0,1081 0,2272 0,2564 0,3889 0,5180 33
AR1-S 0,4024 0,9429 0,0559 0,1670 0,2916 0,3922 0,4862 37
EXACD GAMMA 0,4460 0,8514 0,1381 0,1699 0,2970 0,4406 0,5666 33
LMACD GAMMA 0,4607 1,1513 0,1268 0,2089 0,2940 0,4464 0,5626 34
FIACD GAMMA 0,4609 1,1513 0,1268 0,2090 0,2940 0,4515 0,5659 34
LOGACD2 GAMMA 0,4676 1,1749 0,1379 0,2090 0,3014 0,4523 0,5807 34
ACD GAMMA 0,4675 1,1745 0,1378 0,2093 0,2977 0,4528 0,5786 34
PACD GAMMA 0,4745 1,1781 0,1377 0,2104 0,3096 0,4612 0,5786 33
BCACD GAMMA 0,4741 1,2023 0,1377 0,2122 0,3094 0,4617 0,5791 33
ACD WEIBULL 0,5583 2,7279 0,1079 0,4044 0,3752 0,4728 0,6090 37
PACD WEIBULL 0,5558 2,7072 0,1088 0,4019 0,3745 0,4731 0,6079 37
BCACD WEIBULL 0,5568 2,7070 0,1099 0,4011 0,3784 0,4736 0,6084 37
LOGACD2 WEIBULL 0,5558 2,7447 0,1097 0,4017 0,3773 0,4736 0,6041 38
LMACD WEIBULL 0,5407 2,5291 0,1017 0,3755 0,3716 0,4748 0,5874 37
FIACD WEIBULL 0,5463 2,6276 0,1017 0,3858 0,3725 0,4769 0,5917 38
LOGACD GAMMA 0,5679 2,9405 0,1373 0,4914 0,3097 0,4775 0,6124 33
EXACD WEIBULL 0,5601 2,6921 0,1095 0,4042 0,3777 0,4776 0,6128 36
ARMA 0,5155 1,7586 0,1184 0,2699 0,3676 0,4855 0,5421 38
AR1 0,5360 1,7493 0,1855 0,2673 0,3717 0,4993 0,5993 38
LOGACD WEIBULL 0,8300 7,9818 0,1046 1,3327 0,3798 0,5053 0,6359 38
PACD EXP 0,9946 1,2314 0,4927 0,1119 0,9645 1,0095 1,0579 38
ACD EXP 0,9944 1,2302 0,4923 0,1119 0,9646 1,0095 1,0581 38
FIACD EXP 0,9934 1,2267 0,4891 0,1122 0,9635 1,0095 1,0578 38
BCACD EXP 0,9946 1,2316 0,4929 0,1119 0,9646 1,0096 1,0580 38
LOGACD2 EXP 0,9945 1,2303 0,4929 0,1118 0,9646 1,0096 1,0583 38
EXACD EXP 0,9945 1,2312 0,4936 0,1119 0,9639 1,0096 1,0581 38
LMACD EXP 0,9934 1,2267 0,4891 0,1122 0,9638 1,0099 1,0578 38
LOGACD EXP 0,9995 1,2984 0,4954 0,1156 0,9677 1,0142 1,0599 38
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Table A.3: MCS Summary results. This table reports for each econometric model, the percentage of time this model belongs
to the Set of Superior Model SSM∗

1−0.1.

Full region 10% Tail 5% Tail

Model MCS90% Model MCS90% Model MCS90%

Combined 97,37% Combined 100,00% Combined 97,37%
GAS-S 92,11% EGARCH-S 92,11% GAS-S 92,11%
GJR-S 92,11% GAS-S 92,11% EGARCH-S 89,47%

EGARCH-S 89,47% GJR-S 92,11% GJR-S 89,47%
GARCH-S 78,95% GARCH-S 86,84% GARCH-S 84,21%

FIACD BURR 78,95% ARMA-S 76,32% ARMA-S 76,32%
LMACD BURR 78,95% LMACD BURR 76,32% FIACD BURR 73,68%

ARMA-S 71,05% FIACD BURR 73,68% LMACD BURR 73,68%
BCACD BURR 65,79% ACD BURR 60,53% ACD BURR 71,05%

ACD BURR 63,16% LOGACD2 BURR 60,53% PACD BURR 71,05%
LOGACD2 BURR 63,16% AR1-S 57,89% BCACD BURR 71,05%
LOGACD BURR 60,53% EXACD BURR 57,89% LOGACD2 BURR 68,42%
EXACD BURR 60,53% PACD BURR 57,89% EXACD BURR 65,79%
PACD BURR 60,53% LOGACD BURR 55,26% AR1-S 60,53%
EGARCH-T 57,89% BCACD BURR 55,26% LOGACD BURR 57,89%

GAS-T 55,26% FIACD GAMMA 50,00% FIACD WEIBULL 55,26%
ARMA 55,26% ARMA 47,37% LMACD WEIBULL 52,63%

GARCH-T 52,63% FIACD WEIBULL 47,37% ARMA 50,00%
GJR-T 52,63% LMACD GAMMA 47,37% LMACD GAMMA 50,00%
AR1-S 52,63% EGARCH-T 42,11% ACD WEIBULL 47,37%
AR1 44,74% AR1 42,11% LOGACD2 WEIBULL 47,37%

FIACD GAMMA 44,74% ACD GAMMA 42,11% PACD WEIBULL 47,37%
LOGACD2 WEIBULL 42,11% ACD WEIBULL 42,11% BCACD WEIBULL 47,37%

FIACD WEIBULL 42,11% PACD WEIBULL 42,11% FIACD GAMMA 47,37%
LMACD GAMMA 42,11% BCACD WEIBULL 42,11% AR1 44,74%
EXACD WEIBULL 39,47% LMACD WEIBULL 42,11% EXACD WEIBULL 44,74%
BCACD WEIBULL 39,47% LOGACD2 GAMMA 39,47% LOGACD2 GAMMA 42,11%
LMACD WEIBULL 39,47% LOGACD2 WEIBULL 39,47% EXACD GAMMA 42,11%

ACD WEIBULL 36,84% EXACD WEIBULL 39,47% ACD GAMMA 39,47%
PACD WEIBULL 36,84% GARCH-T 36,84% PACD GAMMA 39,47%

ACD GAMMA 34,21% GAS-T 36,84% BCACD GAMMA 39,47%
LOGACD2 GAMMA 34,21% GJR-T 36,84% LOGACD GAMMA 34,21%

BCACD GAMMA 34,21% EXACD GAMMA 36,84% LOGACD WEIBULL 34,21%
LOGACD WEIBULL 31,58% PACD GAMMA 36,84% EGARCH-T 31,58%

EXACD GAMMA 31,58% BCACD GAMMA 36,84% GAS-T 31,58%
PACD GAMMA 28,95% LOGACD WEIBULL 31,58% GJR-T 31,58%

LOGACD GAMMA 23,68% LOGACD GAMMA 23,68% GARCH-T 28,95%
ACD EXP 0,00% ACD EXP 0,00% ACD EXP 0,00%

LOGACD EXP 0,00% LOGACD EXP 0,00% LOGACD EXP 0,00%
LOGACD2 EXP 0,00% LOGACD2 EXP 0,00% LOGACD2 EXP 0,00%

EXACD EXP 0,00% EXACD EXP 0,00% EXACD EXP 0,00%
PACD EXP 0,00% PACD EXP 0,00% PACD EXP 0,00%

BCACD EXP 0,00% BCACD EXP 0,00% BCACD EXP 0,00%
FIACD EXP 0,00% FIACD EXP 0,00% FIACD EXP 0,00%
LMACD EXP 0,00% LMACD EXP 0,00% LMACD EXP 0,00%
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Appendix B. Error Terms Distribution and Log-Likelihood Function

Four errors terms distribution are considered. Each of one is parametrised such as it has a unit mean.
This implies for the Weibull, Burr and Generalized Gamma distribution to let the scale parameter of the
distribution to be a function of other parameters and it has the effect to cancel out one parameter in the
likelihood functions. For the Exponential distribution λ is fixed to one to ensure a unit mean. The probability
density function f(x), survival function S(x), expected value E(x) and the associated log-likelihood function
logL(θ) are formally given below.

� Exponential(λ)

f(x) =
1

λ
e−

x
λ

S(x) = e−
x
λ

E(x) = λ

logL(θ) =

T∑
i=t0

[
− log(Φi)−

xi
Φi

]

� Weibull(γ, β) with restrictions x > 0, γ > 0, β > 0

f(x) = γβ−γ (x)
γ−1

e−(x/β)
γ

S(x) = e[−(x/β)
γ ]

E(x) = βΓ

(
1 +

1

γ

)
logL(θ) =

T∑
i=t0

γ ln

[
Γ

(
1 +

1

γ

)]
+ ln

(
γ

xi

)
+ γ log

(
xi
Φi

)
−
(

Γ(1 + 1/γ)xi
Φi

)γ

� Burr(u, k, σ2) Stacy (1962) with restrictions 0 < σ2 < k

f(x) =
µkxk−1

(1 + σ2µxk)[
1
σ2

+1]

S(x) = (1 + σ2µxk)
−

1

σ2

E(x) = µ−(1/k)
Γ(1 + k−1)Γ(

1

σ2
− k−1)

σ2(1+k−1)Γ(
1

σ2
+ 1)

logL(θ) =

T∑
i=t0

[
log(µ) + ln k − k × ln(Φi) + (k − 1) lnxi − (

1

σ2
+ 1) ln(1 + σ2µΦ−ki xki )

]

� Generalized Gamma where β, α and k are respectively, the location parameter and two shape param-
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eters with restrictions x > 0, k > 0, α > 0, β > 0

f(x) =
αxkα−1

βkαΓ(k)
exp

[
−
(
x

β

)α]
S(x) = 1− γ(k, (x/β)α)

Γ(k)

E(x) = β
Γ(k + α−1)

Γ(k)

logL(x|θ, xi,0) =

T∑
i=t0

ln

(
α

Γ(k)

)
+ (kα− 1) ln(xi)− (kα) log(Φiλ)−

(
xi

Φiλ

)α
where γ(a, z) is the lower incomplete gamma function,

γ(a, z) =

∫ z

o

ta−1e−tdt

Appendix C. Screening - Filters

The following eight filters are applied to the high frequency data in order to obtain a reliable sample.
These filters are recommended by Hautsch (2012) :

1. Delete observations which are directly indicated to be incorrect, delayed or subsequently corrected.

2. Delete entries outside the regular trading hours.

3. Delete all entries with negative spreads.

4. Delete entries whenever the price is outside the interval [ Bid - 2 spread , Ask + 2 Spread].

5. Delete all entries with the spread being greater or equal than 50 times the median spread of that day.

6. Delete all entries with the price being greater or equal than 5 times the median mid-quote of that day.

7. Delete all entries with the mid-quote being greater or equal than 10 times the mean absolute deviation
from the local median mid-quote.

8. Delete all entries with the price being greater or equal than 10 times the mean absolute deviation from
the local median mid-quote.
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