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A Note on the Variational Problem of Lagrange

It is shown that the Lagrange problem with differential constraints on an m-dimensional manifold is reduced to a Hamiltonian system on a 2m-dimensional symplectic manifold.

Introduction. The Statement of the Problem

Let M be a smooth m-dimensional manifold with local coordinates x = (x 1 , . . . , x m ) T . We assume all the objects below to be smooth enough for the formulas to make sense.

Let L : T M → R, L = L(x, v) be a Lagrangian function. Assume that the mapping

(x, v) → (x, y), y = ∂L ∂v (x, v) (1.1)
is a diffeomorphism of T M to T * M and equation (1.1) implies v = f (x, y), f = (f 1 , . . . , f m ) T .

Here (x, y) are the local coordinates in T * M .
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Assume also that

A(x, v) = ∂ 2 L ∂v 2 (x, v) is a matrix of positively definite quadratic form; ∂f ∂y = A -1 . (1.2) Introduce 1-forms b i = b i j (x)dx j , i = 1, . . . , n < m; and B(x) =     b 1 1 (x) b 1 2 (x) • • • b 1 m (x) b 2 1 (x) b 2 2 (x) • • • b 2 m (x) . . . . . . . . . . . . b n 1 (x) b n 2 (x) • • • b n m (x)     , rang B(x) = n, x ∈ M.
These forms define an m -n-dimensional differential system

T x = n i=1 ker b i (x) ⊂ T x M in M [3].
Let Σ ⊂ M be a smooth n-dimensional submanifold such that

x ∈ Σ =⇒ T x M = T x Σ ⊕ T x .
Let S stand for a set of functions x : [t 1 , t 2 ] → M such that

x(t 1 ) = x 1 , x(t 2 ) ∈ Σ, ẋ(t) ∈ T x(t) , t ∈ [t 1 , t 2 ].
Here x 1 ∈ M is a fixed point.

In coordinate notation the last inclusion is read as follows

B x(t) ẋ(t) = 0. (1.3)
The scheme described below works if we replace constraints (1.3) with ones nonlinear in ẋ. We use linear constraints just to avoid an irrelevant complication of the technique.

From the calculus of variations [START_REF] Akhiezer | The Calculus of Variations[END_REF] we know that if a function x(•) ∈ S is a critical point of the functional

F : S → R, F x(•) = t 2 t 1 L x(t), ẋ(t) dt then there is a vector λ(t) = (λ 1 , . . . , λ n )(t) such that the function x(t) satisfies the Lagrange equations d dt ∂L * ∂v x, ẋ, λ(t) - ∂L * ∂x x, ẋ, λ(t) = 0, (1.4) with L * (x, v, λ) = L(x, v) + λB(x)v, L * : T M × R n → R; and ∂L * ∂v x(t 2 ), ẋ(t 2 ), λ(t 2 ) ξ = 0, ξ ∈ T x(t 2 ) Σ. (1.5)
The main object of our study is system (1.3), (1.4). Loosely speaking our aim is to show that this system is described in terms of a Hamiltonian system in some 2m-dimensional symplectic manifold.

As far as the author knows this simple but important fact has not been noticed anywhere.

Note also that the variational problem described above provoked a lot of mistakes in classical mechanics. Many researches thought that such a variational problem is equivalent to the Lagrange-d'Alembert equations for the mechanical system with the Lagrangian L and ideal constraints (1.3). In general it is not so. This topic together with nice historical details is discussed in [START_REF] Bloch | Nonholonomic Mechanics and Control (Interdisciplinary Applied Mathematics)[END_REF].

The Main Construction

Let H * : Q → R, Q = T * M × R n
stand for the standard Legendre transformation of L * :

p = (p 1 , . . . , p m ) = ∂L * ∂v (x, v, λ), v = f (x, p, λ), where f (x, p, λ) := f x, p -λB(x) ; H * (x, p, λ) = p f (x, p, λ) -L x, f (x, p, λ) -λB(x) f (x, p, λ).
The following well-known fact holds true. Let the function λ = λ(t) be fixed then the function x(t) is a solution to equations (1.4) iff the functions

x(t), p(t) = ∂L * ∂ ẋ x(t), ẋ(t), λ(t)
are the solution to the Hamilton equations ẋ = ∂H * ∂p x, p, λ(t) , ṗ = -∂H * ∂x x, p, λ(t) .

(2.1)

Remark 1. The condition (1.5) takes the form

p(t 2 )ξ = 0, ξ ∈ T x(t 2 ) Σ.
Equation (1.3) takes the form

B(x) f (x, p, λ) = 0. (2.2)
To determine the function λ(t) one must differentiate this equation in t and substitute ẋ, ṗ from (2.1). This procedure gives an equation of the form

R(x, p, λ) λT = ψ(x, p, λ), R(x, p, λ) = B(x) ∂f ∂y x, p -λB(x) B T (x).
Recall that A is a matrix of positive definite quadratic form. So that by formula (1.2) we have det R(x, p, λ) = 0;

(2.3) and the last equation takes the form λ = Λ(x, p, λ).

(2.4) System (2.1), (2.4) is an ODE system on the manifold Q with the local coordinates (x, p, λ).

Observe that the way we construct system (2.1), (2.4) implies that the vector function

C(x, p, λ) = B(x) f (x, p, λ)
is a first integral of this system. This in particular means that a solution (x, p, λ)(t) to system (2.1), (2.4) satisfies (2.2) identically provided the solution's initial conditions satisfy (2.2).

Let N denote the zero level manifold of C(x):

N = {(x, p, λ) ∈ Q | C(x, p, λ) = 0}.
Proposition 1. The set N is a smooth 2m-dimensional submanifold of Q; this submanifold is locally presented as a graph of a function: λ = ϕ(x, p).

(2.5) Indeed, this follows from the Implicit Function Theorem and formula (2.3) : ∂C ∂λ = R.

Remark 2. Formula (2.5) implies that (x, p) are the local coordinates in N .

The manifold T * M has the standard symplectic structure:

Ω = dx i ∧ dp i .
This 2-form is trivially extended to the cross product Q. Therefore we proceed with considering of Ω in Q.

Proposition 2. The manifold N is a symplectic manifold with a symplectic form given by the following restriction

ω = Ω | N .
The coordinates (x, p) are symplectic coordinates in N .

Indeed, this is a direct consequence of proposition 1 and remark 2. Let w(z) ∈ T z Q, z = (x, p, λ) denote the vector field of system (2.1), (2.4). Since C is a first integral we have z ∈ N ⇒ w(z) ∈ T z N . Theorem 1. The vector field u = w | N is a Hamiltonian vector field in N . The Hamiltonian of u is

H = H * | N : N → R.
In the local coordinates (x, p) this Hamiltonian is given by the formula H(x, p) = H * x, p, ϕ(x, p) .

Proof of Theorem 1. Let i w stand for the interior product. The following formula is the main: The theorem is proved.

Example

Let the Lagrangian L be given by the formula

L(x, ẋ) = 1 2 ẋT G(x) ẋ,
where G(x) is a Riemann metric in M . After some calculation one yields H(x, p) = 1 2 pP(x)G -1 (x)p T ,

  i w Ω = dH * -∂H * ∂λ j dλ j . (2.6) This formula is checked by direct calculation. The formulas ∂H * ∂λ = -B(x) f (x, p, λ), ∂H * ∂λ N = 0 are evident. Restricting the both sides of formula (2.6) to N we obtain i u ω = dH.

where

is the orthogonal projection: