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We consider different generalizations of the Brachistochrone Problem in the context of fundamental concepts of classical mechanics. The correct statement for the Brachistochrone problem for nonholonomic systems is proposed. It is shown that the Brachistochrone problem is closely related to vakonomic mechanics.

Introduction. The Statement of the Problem

The article is organized as follows. Section 4 is independent on other text and contains an auxiliary material with precise definitions and proofs. This section can be dropped by a reader versed in the Calculus of Variations.

Section 3 is also pure mathematical. In this section we justify the alternative statement of the variational problem for the Brachistochrone with nonholonomic constraints.

Other part of the text is less formal and based on Section 4.

The Brachistochrone Problem was stated by Johann Bernoulli in 1696 and became one of classical problems that gave rise to the Calculus of variations.

Since that time the problem was discussed in different aspects numerous times.

We do not even try to touch this long and celebrated history. This article is devoted to comprehension of the Brachistochrone Problem in terms of the modern Lagrangian formalism and to the generalizations which such a comprehension involves.

In the sequel we assume all the functions to be smooth. Recall that a function is smooth in the closed interval [s 1 , s 2 ] if by definition it belongs to C ∞ (s 1 , s 2 ) and all the derivatives are extended to continuous functions in [s 1 , s 2 ].

This assumption is overly strong but we keep it for simplicity of the wording.

1.1. Holonomic Version of the Problem. Assume we are given with a Lagrangian mechanical system with a kinetic energy T and a potential energy V :

L = T -V, T = 1 2 x T t G(x)x t , V = V (x). (1.1) 
By the subscript t we denote the derivative in t. Here x = (x 1 , . . . , x m ) T are the local coordinates on a configuration manifold M and G(x) is the matrix of a positively definite quadratic form, G T (x) = G(x), det G(x) = 0, ∀x ∈ M.

All the functions are smooth. Fix two points x 1 , x 2 ∈ M . There are a lot of curves that connect these two points. Let a curve γ be one of them. Assume that this curve is given by the equation x = x(s), x(s 1 ) = x 1 , x(s 2 ) = x 2 .

(1.2)

So that s is a coordinate in γ.

Impose an additional ideal constraint that makes system (1.1) move along the curve γ only. We obtain a one-degree of freedom system with configuration space γ and the generalized coordinate s. Motion of this system along the curve γ is described by the parameter s such that s = s(t) and x = x(s(t)).

(1.3) Substituting this formula in (1.1) we obtain the Lagrangian of this new one-degree of freedom system:

L (s, s t ) = 1 2 x T s (s)G(x(s))x s (s) s 2 t -V (x(s)).
We want to choose the curve γ so that system (1.1) spends minimal time passing along γ from x 1 to x 2 at the energy level h:

1 2 x T s (s)G(x(s))x s (s) s 2 t + V (x(s)) = h. (1.4)
Let us assume that V (x) < h, ∀x ∈ M.

(1.5) Separating variables in (1.4) we see that the time of passing is given by the formula

τ (γ) = s 2 s 1 x T s (s)G(x(s))x s (s) 2(h -V (x(s)) ds.
Therefore we are looking for a stationary point of the functional τ under the boundary conditions (1.2). By other words, the Brachistochrone curve is a geodesic of the Riemann metric

G(x) 2(h -V (x)) . (1.6) 
From proposition 7 (see below) it follows that we can equivalently seek for a stationary point of the functional

T(x(•)) = s 2 s 1 x T s (s)G(x(s))x s (s) 2(h -V (x(s))) ds = s 2 s 1 T h -V ds
with the same boundary conditions. By the Hamilton principle it follows that the Brachistochrone curve is a trajectory of a dynamical system with Lagrangian

L(x, x s ) = T h -V . Introduce a function W = - 1 h -V .
Metric (1.6) presents as follows

G(x) 2(h -V (x)) = 1 2 (-W )G.
By the principle of least action in the Moupertuis-Euler-Lagrange-Jacobi form [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF] we conclude that the Brachistochrone is a trajectory of a system with Lagrangian L = T -W at the zero energy level:

T + W = 0.
1.2. Holonomic Constraints. Assume that the Brachistochrone problem is stated for the system with Lagrangian (1.1) and with ideal constraints w(x) = 0, (

where w = (w 1 , . . . w n ) T (x), n < m is a vector of smooth functions in M such that

rang ∂w ∂x (x) = n, ∀x ∈ M.
This statement brings nothing new: equations (1.7) define a smooth submanifold N in M and all constructed above theory works for the corresponding Lagrangian system without constraints on N .

The Brachistochrone Problem with Differential Constraints

2.1. Discussion. Assume that the Lagrangian system (1.1) is equipped with ideal differential constraints

B(x)x t = 0. (2.1) 
Here

B(x) =     b 1 1 (x) b 1 2 (x) • • • b 1 m (x) b 2 1 (x) b 2 2 (x) • • • b 2 m (x) . . . . . . . . . . . . b n 1 (x) b n 2 (x) • • • b n m (x)     is a matrix such that rang B(x) = n < m, ∀x ∈ M.
System (2.1) can equivalently be expressed in terms of differential forms

ω i (x) = b i k (x)dx k , T x = n i=1 ker ω i (x) ⊂ T x M.
Namely, x t (t) belongs to an element T x(t) of the differential system {T x } which is determined by equation (2.1), dim T x = m -n. Recall that if system (2.1) can equivalently be presented in the form (1.7) then it is referred to as a holonomic system. Otherwise (2.1) is a nonholonomic system. What the word "equivalently" means and when such a presentation is possible is a content of the Frobenius theorem [START_REF] Sternberg | Lectures on Differential Geometry[END_REF].

As above we substitute equation (1.3) into Lagrangian (1.1) and separating the variables in the energy integral (1.4) we get the functional τ . Then we notice condition (1.5).

But now we must pick only motions that satisfy constraints (2.1). Substituting (1.3) We postpone the discussion of the boundary conditions for a while but note that by the same reason (proposition 7) we can replace τ with T.

We have obtained the problem of stationary points for the functional T defined on a set of curves x = x(s) that obey constraints (2.2). Such a problem is called the Lagrange problem or the problem of vakonomic mechanics.

This problem provoked a lot of confusion and mistakes in classical mechanics. Many researches thought that such a variational problem is equivalent to the Lagrange-d'Alembert equations for the mechanical system with the Lagrangian L and ideal constraints (2.2) (the variable s plays a role of time). If constrains (2.2) are nonholonomic it is not so.

Here is what in this concern Bloch, Baillieul, Crouch and Marsden write in [START_REF] Bloch | Nonholonomic Mechanics and Control (Interdisciplinary Applied Mathematics)[END_REF]:

It is interesting to compare the dynamic nonholonomic equations, that is, the Lagrange-dAlembert equations with the corresponding variational nonholonomic equations. The distinction between these two different systems of equations has a long and distinguished history going back to the review article of Korteweg [START_REF] Korteweg | Uber eine ziemlich verbreitete unrichtige Behandlungsweise eines Problemes der rollenden Bewegung und insbesondere ber kleine rollende Schwingungen um eine Gleichgewichtslage[END_REF] and is discussed in a more modern context in Arnold, Kozlov, and Neishtadt [START_REF] Arnold | Neishtadt: Dynamical Systems III[END_REF]. (For Kozlovs work on vakonomic systems see, e.g., [START_REF] Kozlov | Realization of nonintegrable constraints in classical mechanics[END_REF] and [START_REF] Kozlov | The problem of realizing constraints in dynamics[END_REF])

As Korteweg points out, there were many confusions and mistakes in the literature because people were using the incorrect equations, namely the variational equations, when they should have been using the Lagrange-dAlembert equations; some of these misunderstandings persist, remarkably, to the present day. The upshot of the distinction is that the Lagrange-dAlembert equations are the correct mechanical dynamical equations, while the corresponding variational problem is asking a different question, namely one of optimal control. Perhaps it is surprising, at least at first, that these two procedures give different equations. What, exactly, is the difference in the two procedures? The distinction is one of whether the constraints are imposed before or after taking variations. These two operations do not, in general, commute. With the dynamic Lagrange-dAlembert equations, we impose constraints only on the variations, whereas in the variational problem we impose the constraints on the velocity vectors of the class of allowable curves.

In case of differential constraints (2.2) the situation with boundary conditions is much more complicated than (1.2).

The main question is as follows. Assume that the points x 1 , x 2 ∈ M are connected with a curve x(s). This curve is a stationary point of τ or T on the set of curves that satisfy constraints (2.2) and connect

x 1 , x 2 .
Is the collection of other smooth paths that connect x 1 , x 2 and satisfy (2.2) large enough to reduce the variational problem to the differential equations? Or by other words, is this collection large enough to construct the Lagrange multipliers method? In general the answer is "no". See remark 1 below.

The author does not know whether the situation will be fixed if we demand the constraints to be completely nonholonomic. Such questions seem to be closely related to the Rashevsky-Chow theorem [START_REF] Rashevsky | Any two points of a totally nonholonomic space may be connected by an admissible line[END_REF], [START_REF] Chow | Uber Systeme von linearen partiellen Differentialgleichungen erster Ordnung[END_REF].

To avoid these hard questions we suggest considering the Brachistochrone Problem with another boundary conditions which guarantee the correct employment of the Lagrange multipliers method in the case of nonholonomic constraints.

The boundary Conditions and the Lagrange multipliers

method. Let Σ ⊂ M be a smooth n-dimensional submanifold such that x ∈ Σ =⇒ T x M = T x Σ ⊕ T x .
For briefness of the story sake we proceed with local constructions. Any point x ∈ Σ has a neighborhood U ⊂ M such that there are local coordinates x in U :

x =          y 1 . . . y n z 1 . . . z m-n          = y z , (2.3) 
and

U ∩ Σ = {z = z 2 }, B(x)x s = R(x)y s + Q(x)z s ,
where z 2 is a constant vector; R is an n × n matrix and det R(x) = 0, ∀x ∈ U.

Let us impose the boundary conditions:

x(s 1 ) = x 1 = (y T 1 , z T 1 ) T ∈ U, z(s 2 ) = z 2 . (2.4)
We put no restrictions on y(s 2 ).

The geometric sense of these conditions is clear: the left end of the curve x(s) is nailed at x 1 while the right one can slide along the surface Σ :

x(s 1 ) = x 1 , x(s 2 ) ∈ Σ.

(2.5) Observe that boundary conditions (2.4) differ from ones in the vakonomic mechanics [START_REF] Arnold | Neishtadt: Dynamical Systems III[END_REF]. In vakonomic mechanics the ends of the trajectory are fixed and the variations are not supposed to satisfy the equations of constraints. They satisfy the constraints in some asymptotic sense. Theorem 1. Let x(s) be a stationary point of the functional T on the set of functions x(s) that satisfy (2.2), (2.4).

Then there is a smooth function λ(s) = (λ 1 , . . . , λ n )(s) such that x satisfies the equations d ds

∂L * ∂x s - ∂L * ∂x = 0, L * (s, x, x s ) = L(x, x s ) + λ(s)B(x)x s , (2.6 
)

and ∂L ∂y s (x(s 2 ), xs (s 2 )) + λ(s 2 )R(x(s 2 )) = 0. (2.7)
This theorem is a direct consequence from theorem 4. Condition (2.7) can be presented in an invariant form:

∂L * ∂x s (s 2 , x(s 2 ), xs (s 2 ))v = 0, ∀v ∈ T x(s 2 ) Σ.
By proposition 1 the stationary point x preserves the "energy":

xT s (s)G(x(s))x s (s) 2(h -V (x(s))) = const.
Show that system (2.6), (2.2) can be presented in the normal form that is

x ss = Ψ(x, x s , λ), λ s = Λ(x, x s , λ).

(2.8) Indeed, system (2.6) takes the form

x T ss + λ s B = α(x, x s , λ), B = B G h -V -1
.

(2.9)

Differentiate (2.2) to have

Bx ss + γ(x, x s ) = 0.

(2.10)

Substituting the second derivatives from (2.9) to (2.10) we obtain

λ s BB T = ψ(x, x s , λ). (2.11)
It is clear det BB T = 0 and we can express λ s from (2.11) and plug it in (2.9). The way we construct (2.8) shows that the vector-function

f (x, x s ) = B(x)x s
is a first integral of (2.8).

Observe also that equations (2.8) are invariant under the substitution

s → -s, λ → -λ.
If we choose y(s 2 ) and z s (s 2 ) then λ(s 2 ) and y s (s 2 ) are defined from equations (2.7), (2.2); and at least for s 2 -s 1 small, we can solve the Cauchy problem for (2.9), (2.11) backwards. Thus the problem is to find y(s 2 ) and z s (s 2 ) so that the boundary conditions x(s 1 ) = x 1 are satisfied.

These observations prompt the following theorem.

Theorem 2. Assume that x 1 is close enough to Σ and s 2 -s 1 > 0 is small enough. Then the problem (2.6), (2.7), (2.5), (2.2) has a unique smooth solution.

2.3. Proof of Theorem 2. Integrating (2.8) twice we get

y 1 = (s 1 -s 2 )y s (s 2 ) + y(s 2 ) + s 1 s 2 ds s s 2 dξ Ψ y (x(ξ), x s (ξ), λ(ξ)), z 1 = (s 1 -s 2 )z s (s 2 ) + z 2 + s 1 s 2 ds s s 2 dξ Ψ z (x(ξ), x s (ξ), λ(ξ)).
(2.12) Here Ψ = (Ψ T y , Ψ T z ) T . Without loss of generality put x 1 = 0. Then the closeness of x 1 to Σ means that |z 2 | is small.

Taking into account (2.2) rewrite (2.12) as

0 = -(s 1 -s 2 )R -1 (x(s 2 ))Q(x(s 2 ))z s (s 2 ) + y(s 2 ) + s 1 s 2 ds s s 2 dξ Ψ y (x(ξ), x s (ξ), λ(ξ)), 0 = (s 1 -s 2 )z s (s 2 ) + z 2 + s 1 s 2 ds s s 2 dξ Ψ z (x(ξ), x s (ξ), λ(ξ)).
(2.13) Introduce notations:

ε = s 2 -s 1 , z 2 = εẑ 2 , y(s 2 ) = εα 1 , z s (s 2 ) = α 2 ;
and put

C(ε, εα 1 ) = -R -1 (x)Q(x) x=ε(α T 1 ,ẑ T 2 ) T .
System (2.13) takes the form

F 1 (ε, α 1 , α 2 ) = -C(ε, εα 1 )α 2 + α 1 + O(ε) = 0, F 2 (ε, α 1 , α 2 ) = -α 2 + ẑ2 + O(ε) = 0. (2.14)
Here we little bit informally write

s 1 s 2 ds s s 2 dξ Ψ(x(ξ), x s (ξ), λ(ξ)) = O(ε 2 ).
The proof is accomplished by application of the Implicit Function Theorem to (2.14):

det ∂F i ∂α j = 0, ε = 0, α 2 = ẑ2 , α 1 = C(0, 0)ẑ 2 .

Minimum of the Functional T

Here we prove that if x 1 is close enough to Σ then the functional T attains a minimum in the class of curves x(s) such that (2.5) and (2.2) holds. The uniqueness follows from theorem 2.

In this section all the inessential positive constants we denote by c, c 1 , c 2 , . . ..

3.1.

The Main Spaces. For details on the Sobolev spaces see [START_REF] Adams | Sobolev Spaces[END_REF].

Let H 1 (s 1 , s 2 ) be the standard Sobolev space of vectors

x(s) = (x 1 , . . . , x m ) T (s) such that

x 2 H 1 (s 1 ,s 2 ) = m i=1 s 2 s 1 (x i (s)) 2 + (x i s (s)) 2 ds < ∞. (3.1) 
Recall that the space

H 1 (s 1 , s 2 ) is compactly embedded in C[s 1 , s 2 ].
Introduce a subspace

H 0 = {x ∈ H 1 (s 1 , s 2 ) | x(s 1 ) = 0}.
A function

x 2 = m i=1 s 2 s 1 x i s (s) 2 ds
is a norm in H 0 and this norm is equivalent to the norm (3.1). Moreover,

x C[s 1 ,s 2 ] ≤ c 1 √ s 2 -s 1 x . (3.2) Let a set J ⊂ H 0 consist of functions x(s) = (y T , z T ) T (s) such that z(s 2 ) = z 2
and for almost all s ∈ (s Take a point x ∈ U ∩ Σ such that V (x ) < h. Then for some ρ > 0 we have

B ρ (x ) ⊂ U and max{V (x) | x ∈ B ρ (x )} = V * < h. Assume that the point x 1 is close to x such that |x 1 -x | < µ < ρ.
Without loss of generality put x 1 = 0. This particularly implies

|z 2 | < µ. (3.3)
Assume that for all x ∈ M and for all ξ ∈ R m we have

ξ T G(x)ξ ≥ c 2 |ξ| 2 . (3.4)
In addition to (1.5) assume that

V (x) ≥ c 9 , ∀x ∈ M. (3.5) 
Theorem 3. If µ > 0 is small enough then the functional T attains its minimum in the set of functions

x : [s 1 , s 2 ] → U, x(•) ∈ J .
It is not hard to show that the minimum x, as long as it exists, is actually smooth. Particularly x satisfies equation (2.6).

Proof of Theorem 3. Construct a function

x + (s) = (y T + , z T + ) T (s) ∈ J as follows z + (s) = s -s 1 s 2 -s 1 z 2
and y + is determined from the Cauchy problem

(y + ) s = A(s, y + ) z 2 s 2 -s 1 , y + (s 1 ) = 0, here A(s, y) = -R -1 (x)Q(x) x=(y T ,z T + (s)) T
.

By the standard estimates we yield

|y + (s)| ≤ c 3 s -s 1 s 2 -s 1 µ, s ∈ [s 1 , s 2 ].
Here we use formula (3.3). Thus |x + (s)| < c 4 µ and for µ > 0 small enough we obtain

x + (s) ∈ B ρ (x ), ∀s ∈ [s 1 , s 2 ], x + ∈ J .
Observe that

T(x + ) ≤ c 5 µ 2 s 2 -s 1 . (3.6)
Let {u k } be a minimizing sequence for T :

T(u k ) → inf .
Then for all big enough k it follows that

T(u k ) ≤ T(x + ).
Consequently, from formulas (3.6), (3.4) and (3.2) one concludes

c 7 u k 2 C[s 1 ,s 2 ] s 2 -s 1 ≤ c 6 u k 2 ≤ µ 2 s 2 -s 1 .
This particularly implies

u k C[s 1 ,s 2 ] ≤ c 8 µ
and for µ > 0 small enough we obtain

u k (s) ∈ B ρ (x ), ∀s ∈ [s 1 , s 2 ].
The further argument is completely standard [START_REF] Taylor | Partial differential equations III[END_REF]: since the sequence

{u k } is bounded in H 1 (s 1 , s 2 ) it contains a subsequence {u k i } that is convergent in C[s 1 , s 2 ]
and weakly in H 1 (s 1 , s 2 ). Therefore the exists an element ũ ∈ H 0 such that

u k i -ũ C[s 1 ,s 2 ] → 0, s 2 s 1 ((u k i ) s -ũs ) T ϕds → 0, ∀ϕ ∈ L 2 (s 1 , s 2 ).
The element ũ is exactly the desired minimum x. This follows from the inequality:

T(u k i ) ≥ T(ũ) + 1 2 s 2 s 1 ũT s G(u k i ) h -V (u k i ) - G(ũ) h -V (ũ) ũs ds + s 2 s 1 ũT s G(u k i ) h -V (u k i ) - G(ũ) h -V (ũ) (u k i ) s -ũs ds + s 2 s 1 ũT s G(ũ) h -V (ũ) (u k i ) s -ũs ds.
The last three integrals vanish as k i → ∞. The theorem is proved.

Some Useful Facts From the Calculus of Variations

Here we collect several standard facts from the Calculus of Variations.

Let Ω ⊂ R m be an open domain with standard coordinates

x = (x 1 , . . . , x m ) T .

To proceed with formulations we split the vector x in two parts as above (2.3). Let F : Ω × R m → R be a smooth function.

We are about to state the variational problem for the functional

F x(•) = s 2 s 1 F (x(s), x s (s))ds (4.1)
with boundary conditions

z(s 1 ) = z 1 , z(s 2 ) = z 2 , y(s 1 ) = y 1 , s 1 < s 2 (4.2)
and constraints a(x, x s ) = 0. (4.3) Here a = (a 1 , . . . , a n ) T is a vector of functions that are smooth in Ω × R m .

There also must be

(y T 1 , z T 1 ) T ∈ Ω, {(y T , z T ) T | z = z 2 } ∩ Ω = ∅. Assume that det ∂a ∂y s (x, x s ) = 0, (x, x s ) ∈ Ω × R m (4.4) 
and equation (4.3) can equivalently be written as

y s = Φ(y, z, z s ). Definition 1. Let a smooth function x : [s 1 , s 2 ] → Ω, x(s) = (ỹ T , zT ) T (s) be such that a(x(s), xs (s)) = 0, x(s 1 ) = x 1 = (y T 1 , z T 1 ) T , z(s 2 ) = z 2 .
We shall say that x is a stationary point of functional (4.1) with constraints (4.3) and boundary conditions (4.2) if the following holds.

For any smooth function

X : [s 1 , s 2 ] × (-ε 0 , ε 0 ) → R m , X(s, ε) = (Y T , Z T ) T (s, ε), ε 0 > 0 such that 1) X [s 1 , s 2 ] × (-ε 0 , ε 0 ) ⊂ Ω; 2) X(s, 0) = x(s), s ∈ [s 1 , s 2 ]; 3) Z(s 1 , ε) = z 1 , Z(s 2 , ε) = z 2 , Y (s 1 , ε) = y 1 , ε ∈ (-ε 0 , ε 0 ) ; 4) a(X(s, ε), X s (s, ε)) = 0, (s, ε) ∈ [s 1 , s 2 ] × (-ε 0 , ε 0 ) we have d dε ε=0 F X(•, ε) = 0.
The functions X with properties 1)-4) are referred to as variations. This theorem remains valid if the functions a, F depend on s.

For completeness of the exposition sake we prove this theorem in section 4.2.

4.1. The Homogeneous Case. In this section it is reasonable to assume the second argument of the functions a, F to be defined on a conic domain K ⊂ R m . All the formulated above results and the argument of section 4.2 remain valid under such an assumption.

Recall that by definition the domain K is a conic domain iff

x ∈ K =⇒ αx ∈ K, ∀α > 0.
Proposition 1. Assume that the function a is homogeneous in the second argument:

a(x, αx s ) = αa(a, x s ), ∀α > 0, ∀(x, x s ) ∈ Ω × K. (4.6)
Then the stationary point x preserves the "energy":

H(x, x s ) = ∂F ∂x s x s -F that is H(x(s), xs (s)) = const.
Proof of Proposition 1. Consider a function X(s, ε) = x(s + εϕ(s)) with a smooth function ϕ such that supp ϕ ⊂ [s 1 + s , s 2 -s ] and |ε|, s > 0 are small enough.

The function X satisfies all the conditions of Definition 1. Property (4.6) is needed to check condition 4) of Definition 1. Here we use integration by parts. Since ϕ is an arbitrary function the proposition is proved.

4.1.1. The Both Functions a, F are Homogeneous in x s .

Proposition 2. Let x(s) be a stationary point of F. Define a function

x(ξ) = x(f (ξ))
,

where f : [ξ 1 , ξ 2 ] → [s 1 , s 2 ] is a smooth function, f ξ (ξ) > 0, f (ξ r ) = s r , r = 1, 2.
Then x is a stationary point of F with the integral taken over [ξ 1 , ξ 2 ].

Indeed, such a reparameterization neither changes the shape of constraints (4.3) nor the shape of integral (4.1):

s 2 s 1 F (X(s, ε), X s (s, ε))ds = ξ 2 ξ 1 F ( X(ξ, ε), Xξ (ξ, ε))dξ, X(ξ, ε) = X(f (ξ), ε). Proposition 3. If F (x(s), xs (s)) > 0, s ∈ [s 1 , s 2 ]
then for any constant c > 0 we can choose a parametrization of x such that

F (x(ξ), xξ (ξ)) = c, ξ ∈ [ξ 1 , ξ 2 ].
Indeed, the desired parametrization is obtained from the equation dξ ds = 1 c F (x(s), xs (s)).

Introduce a functional

P x(•) = s 2 s 1 F (x(s), x s (s)) 2 ds
with the same constraints and boundary conditions (4.3), (4.2).

Proposition 4. Let x(s) be a stationary point of F and assume that x(s) is parametrized in accordance with Proposition 3:

F (x(s), xs (s)) = c. Then x(s) is a stationary point of P. Indeed, d dε ε=0 P X(•, ε) = 2c d dε ε=0 F X(•, ε) = 0. (4.7)
Proposition 5. Let x * (s) be a stationary point of P. Then F is the energy integral:

F (x * (s), x * s (s)) = const. Indeed, since F is homogeneous in x s it follows that ∂F ∂x s x s = F.
And the assertion follows from Proposition 1:

H = ∂F 2 ∂x s x s -F 2 = F 2 .
Proposition 6. Let x * (s) be a stationary point of P such that F (x * (s), x * s (s)) = c > 0. Then it is a stationary point of F. Indeed, it follows from (4.7). Summing up we obtain the following proposition. Proposition 7. If x(s) is a stationary point of F and F (x(s), xs (s)) > 0 then after some reparametrization it is a stationary point of P.

If x * (s) is a stationary point of P and F (x * (s), x * s (s)) = c > 0 then it is a stationary point of F. Remark 1. That is why we can not impose condition x(s 2 ) = x 2 as it is usually done for the holonomic case. The value Y (s 2 , ε) has already been uniquely defined by other boundary conditions and the constraints.

In other words if we add the condition Y (s 2 , ε) = y 2 to the conditions 1)-4) of Definition 1 then the set of variations {X(s, ε)} may turn up to be insufficiently large to prove theorem 4.

For example, consider a plane R 2 = {x = (y, z) T }. There is a unique smooth path from x 1 = (0, 0) T to x 2 = (0, 1) T that satisfies the equation y s = 0. (Much more complicated example by C. Caratheodory see in [START_REF] Arnold | Neishtadt: Dynamical Systems III[END_REF].) Cauchy problem (4.9) has the suitable solution at least for |ε| and s 2 -s 1 small. Observe also that Y ε (s 1 , ε) = 0. This is a system of linear ordinary differential equations for λ. Due to assumption (4.4) this system can be presented in the normal form that is λ s = Λ(s, λ). Since we know λ(s 2 ), by the existence and uniqueness theorem we obtain λ(s) as a solution to the IVP for (4.14).

Equation (4.13) takes the form

s 2 s 1 [F * ] z δzds = 0.
Since δz is an arbitrary function we get [F * ] z = 0. Together with (4.14) this proves the theorem.

2 s 1 H

 21 Furthermore we haveX = x(s) + εϕ(s)x s (s) + O(ε 2 ), X s = xs (s) + ε ϕ s (s)x s (s) + ϕ(s)x ss (s) + O(ε 2 ) xs ) + ϕ s (s) ∂F (x,xs ) ∂x s xs (s) ds = s (x(s), xs (s))ϕ s (s)ds = 0.

4. 2 .

 2 Proof of Theorem 4. Introduce a notation [F ] y = -F ] x = ([F ] y , [F ] z ). Let us put Z(s, ε) = z(s) + εδz(s), supp δz ⊂ [s 1 , s 2 ]. (4.8)Then the function Y is uniquely determined from the following Cauchy problemY s (s, ε) = Φ(Y (s, ε), Z(s, ε), Z s (s, ε)), Y (s 1 , ε) = y 1 .(4.9)

(4. 10 ) 1 [ 2 s 1 λdε ε=0 A = s 2 s 1 [ 2 s 1 [F

 101212121 Using the standard integration by parts technique and from formulas(F ] z δz + [F ] y Y ε ds + ∂F ∂y s (x(s 2 ), xs (s 2 ))Y ε (s 2 , 0) = 0. (4.11)The function λ(s) is still undefined but due to condition (4.4) the value λ(s 2 ) is determined uniquely from (4.5).From condition 4) of definition 1 it follows thatA(ε) = s (s)a(X(s, ε), X s (s, ε))ds = 0.By the same argument as above we haved λa] z δz + [λa] y Y ε ds + λ(s 2 ) ∂a ∂y s (x(s 2 ), xs (s 2 ))Y ε (s 2 , 0) = 0. (4.12)Summing formulas (4.12) and (4.11) we yields * ] z δz + [F * ] y Y ε ds = 0. (4.13) To construct the function λ consider an equation [F * ] y = 0. (4.14)

  Theorem of Existence of Minimum. Let U ⊂ R m be a coordinate patch in M with coordinates (2.3). Let | • | stand for the standard Euclidean norm in R m and let B r (x) ⊂ R m stand for the open ball of radius r and with center in x.

1 , s 2 ) equation (2.2) holds. 3.2.

  (s, x, x s ) = F (x, x s ) + λ(s)a(x, x s ),

	Theorem 4 ([2]). If the function x is a stationary point of functional
	(4.1) with constraints (4.3) and boundary conditions (4.2) then there
	is a smooth function λ(s) = (λ 1 , . . . , λ n )(s) such that x satisfies the
	equations			
	d ds = 0, F and ∂F * ∂x s -∂F * ∂x ∂F ∂y s (x(s 2 ), xs (s 2 )) + λ(s 2 )	∂a ∂y s	(x(s 2 ), xs (s 2 )) = 0.	(4.5)
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