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Abstract: Quantifying urban runoff during frequent rainfall events is a key element in quality
management of urban water due to their high contribution to the annual runoff flow. This explains
the growing interest among hydrologists in studying runoff flow on urban surfaces. In this paper,
we review most of the experimental approaches as well as the modeling ones conducted in the
literature to understand and estimate runoff flow on urban areas. This review highlights the
incoherence between our current understanding of the hydrological behavior of urban areas during
frequent events and our conception of the loss functions in the urban drainage models. Field studies
provided more insight into the determinant processes occurring on the different surface types during
frequent events with depression storage being a fundamental element varying between surface types
and for the same surface type and infiltration process being relatively important on paved areas
especially in their cracks that constitute preferential pathways for rainwater. Analyzing a wide range
of urban drainage models showed that these elements along with the temporal evolution of the
hydrological behavior of urban surfaces due to seasonal and state conditions are not fully integrated
in the models’ structures, which were initially developed for heavy rainfall events. Adapting the
assumptions of urban drainage models based on these new factors must improve the performance of
hydrological models for frequent rainfall events.

Keywords: impervious surfaces; interception; depression storage; infiltration; evaporation; urban
runoff models

1. Introduction

In a context of growing awareness of the detrimental impacts of urban runoff contamination
on receiving water bodies [1,2], more research and operational efforts are being invested in the
management of urban stormwater quality. Urban drainage has since seen the development of a large
variety of control techniques in response to the significant evolution of the stormwater management
paradigm over the last few decades [3–6]. Among the latest techniques developed in this respect are
the Low Impact Development devices (like infiltration trenches, vegetative swales, green roofs . . . ),
whose objective goes beyond stormwater management to incorporate a wide range of social, sanitary
and economic considerations [7,8]. Proper conception and implementation of these techniques and
other strategies relies on a precise assessment of their efficiency and suitability in given hydrological
conditions [3].

Given the complexity of processes governing runoff flow and the arduousness and high cost of
the experimental approach to quantify it [9], numerical modeling offers a powerful decision-making
tool to simulate urban catchment behaviors and select the most adapted management practice [10].
Most urban runoff models developed in the literature are typically structured by a series of two classes
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of functions: production functions and transfer functions [11–14]. The former simulates surface storage,
infiltration, and evaporation, whereas the latter simulates overland flow, subsurface flow, and sewer
flow. While the transfer processes can be described physically, the production mechanism especially
on impervious surfaces is still deemed highly complex and far from being fully understood [15,16].
It is therefore modeled in a conceptual fashion involving a high degree of empiricism contingent on the
conditions for which they are constructed [17]. These production functions were initially developed
for extreme rainfall events to support the need of flood risk assessment and are hence not adapted
to frequent rainfall events [18–21] that are crucial for water pollution management as they constitute
a major part of the annual mass of pollutants drained into surface waters [22–24]. So, models used
to assess the stormwater runoff quality should be capable of simulating catchment behavior during
small events. These events are usually characterized by a rainfall depth small enough that only the
impervious fraction of the catchment area contributes to its downstream flow. In order to properly
simulate these events, it is necessary to improve our understanding of the production functions on
the impervious surfaces and upgrade the conceptual structure of hydrological models accordingly.
Recent technologies and measurement techniques have been employed in this research line to better
characterize the phenomena governing the runoff production on urban areas [25–27].

Based on a comprehensive review of the latest experimental characterization of impervious runoff

from one side and the different structures of urban runoff models from the other side, this paper
explores the gap(s) between observations and modeling that could explain the inadaptability of these
models with small events. The paper is organized in two main sections. The first section presents all
the experimental findings on runoff flow on impervious surfaces. The second one reviews the different
structures of urban runoff modeling in order to identify the assumptions that could be at the origin of
their ineptitude for frequent events.

2. Experimental Assessment of the Physical Processes Governing Runoff Production during
Frequent Rain-Event

Runoff production represents the hydrological processes responsible for all the losses that rainwater
undergoes when reaching the catchment surface before being conveyed by overland flow and sewer
network to the catchment outfall. Urban catchments have a highly heterogeneous surface cover of
structures and irregularities that form a buffer zone for rainwater falling on the catchment before
evaporating or infiltrating. Rainfall exceeding the retention and infiltration capacities of the different
surface structures constitutes what we call net rainfall, excess rainfall or effective rainfall that actually
contributes to the outfall runoff. These production functions start with the beginning of the rainfall
event and last for a shorter or longer period of time in function of the characteristics of the retention
structures and the rate of input (precipitation) and output (evaporation and infiltration) flows. So,
the runoff volume results from a complex interaction of different hydrological processes that are
usually broken down into three processes: retention, evaporation, and infiltration. In this paragraph,
we present a review of the experimental studies realized in the literature to evaluate the relative
contribution of these processes to the runoff losses on urban impervious surfaces.

2.1. Retention

Rainwater retention occurs on the whole urban catchment with varying degrees of magnitude
depending on the macro- and micro-morphological characteristics of the retaining surface. The retained
volume is then drained by infiltration and/or evaporation. Based on the processes acting on this
volume, a distinction could be made between two kinds of retention: rainfall interception where water
is exposed only to evaporation, and depression storage where water is exposed to both evaporation
and infiltration (Figure 1).
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Figure 1. Diagram of physical processes governing runoff production in urban areas. 
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process (Figure 1) and make interception observations difficult to realize. Thus, the difference 
between the input rainfall and output runoff measured on typical urban structures has always been 
used to deduce the intercepted rainfall volume sometimes represented as the evaporated quantity. 
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[30] showed that runoff is only initiated by storms of at least 0.25 mm depth for both flat and 
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output runoff was used to deduce the output evaporation, which was assumed to be representative 
of the amount of water soaked up by the roof surfaces, and eventually released back to the 
atmosphere by evaporation. The average of monthly contribution of evaporation process (in other 
words the initial abstractions) to runoff losses was found to vary between 9.5% and 41.9% with an 
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was studied in [32] to estimate their potential for rainwater harvesting. For 25 monitored storm 
events, the interceptions observed on sloped clay tiles (CT) and flat gravel (FG) were 0.8 and 3.8 
mm respectively, whereas inclined metal (M) and plastic (P) roofs retained a negligible volume 
assumed to be zero. All the observations of rooftop interception found in the literature are 
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2.1.1. Rainfall Interception

Rainfall interception is defined as the part of rainfall retained by aboveground objects until it
returns to the atmosphere through evaporation [28]. This process mainly occurs at the early stage
of the rainfall event with a rate that rapidly approaches zero [29]. Urban areas are characterized by
complex geometry of natural (vegetation) and artificial (buildings) canopies that participate in this
process (Figure 1) and make interception observations difficult to realize. Thus, the difference between
the input rainfall and output runoff measured on typical urban structures has always been used to
deduce the intercepted rainfall volume sometimes represented as the evaporated quantity.

Rooftops

The analysis of rainfall and runoff volumes on one flat and two pitched roofs in Hertforshire [30]
showed that runoff is only initiated by storms of at least 0.25 mm depth for both flat and pitched
rooftops. Water fluxes were quantified in [31] (rainfall, runoff and evaporation) from six roofs with
different slopes and orientations. The water balance between the input rainfall and output runoff was
used to deduce the output evaporation, which was assumed to be representative of the amount of
water soaked up by the roof surfaces, and eventually released back to the atmosphere by evaporation.
The average of monthly contribution of evaporation process (in other words the initial abstractions) to
runoff losses was found to vary between 9.5% and 41.9% with an average of 28% of the rainfall. Rainfall
interception was investigated by [29] on a Comprehensive Outdoor Scale Model (COSMO) made
of cubic concrete blocks uniformly spaced to represent an ideal building-street urban configuration.
The study estimated rainfall interception on individual surface scale and on catchment scale. The local
interception of each surface type (roofs, walls, and streets) was made by artificially pouring water onto
these surfaces and then using a towel to estimate the maximum retained volume. The global interception
was based on an event scale analysis attributing all the residues of input rainfall to the interception
process whose contribution was found to vary between 0 and 5.1 mm constituting on average 6%
of the gross rainfall depth. For weak events characterized by a rainfall depth less than 10 mm and
average rainfall intensity less than 1.3 mm/h, high interception values were recorded reaching 48%
on average. Events with rainfall depth less than 0.5 mm did not generate any runoff. Runoff from
four different rooftops was studied in [32] to estimate their potential for rainwater harvesting. For 25
monitored storm events, the interceptions observed on sloped clay tiles (CT) and flat gravel (FG) were
0.8 and 3.8 mm respectively, whereas inclined metal (M) and plastic (P) roofs retained a negligible
volume assumed to be zero. All the observations of rooftop interception found in the literature are
recapitulated in Table 1.
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Table 1. Retention measured on urban structures (expressed as water depth by unit of surface during a
frequent rain-event).

Retention Reference Estimation Method Surface Type Interception (mm)

Rainfall
interception
on rooftops

[30]

Intercept value with the rainfall axis in
rainfall-runoff regression

Flat asphalt roof 0.37

Front pitched roof 0.11

Garage-side pitched roof 0.39

Minimum event generating runoff

Flat asphalt roof 0.25

Front pitched roof 0.25

Garage-side pitched roof 0.25

[29]

Difference of towel weight before and after
using it to absorb water poured on the

studied surface
Concrete rooftops 0.24

Difference between rainfall depth and
runoff depth

Outdoor scale model of
4 concrete blocks

(buildings)

0–5.1

Minimum event generating runoff 0.5

[32]
Intercept value with the rainfall axis in

rainfall-runoff regression

Sloping Clay tiles (CT) 0.8

Sloping metal roofs (M) 0

Sloping plastic roofs (P) 0

Flat gravel roofs (FG) 3.8

Rainfall
interception on

urban trees

[33]
Difference between gross rainfall above canopy

and net throughfall below canopy
Douglas-fir 20.4

Western red cedar 32.3

[34] Difference between gross rainfall above canopy
and net throughfall below canopy Quercus ilex tree 0.26

[35] Difference between gross rainfall above canopy
and net throughfall below canopy Ficus benjamina tree 1.5

[36] Difference between gross rainfall above canopy
and net throughfall below canopy Oaks and pines 2.6

[37]
Difference between gross rainfall above canopy
and net throughfall below canopy measured

with the aid of an artificial catchment

Pear tree 1

Oak tree 2

[38]
Rainfall simulator and electronic

weighing balance

Platycladus orientalis Cmin = 0.38
Cmax = 0.88

Pinus tabulaeformis Cmin = 0.43
Cmax = 0.85

Quercus variabilis Cmin = 0.17
Cmax = 0.30

Acer truncatum Cmin = 0.46
Cmax = 0.59

[39]
Rainfall simulator and electronic

weighing balance

Broadleaf deciduous 0.77

Broadleaf evergreen 0.78

Coniferous evergreen 1.25

Depression storage

[30] Minimum event generating runoff Traditional pavement 1

[40] Input volume before the onset of runoff
Six sections of residential

roads with their
curbsides

0.5–10.5

[41] - Traditional pavement 0.2

[26] Terrestrial Laser Scanner (TLS)

Traditional pervious
pavements

(Limestone, sandstone,
red brick blocks)

0.08–0.58

Modern pervious
pavements

(Granite blocks, concrete,
natural stone, rubber

blocks . . . )

0.07–0.22

Modern infiltration
active (concrete paving) 0.56–1.41

Non-pervious asphalt 0.08

Urban Trees

Considerable research studies were conducted on the impact of tree interception on hydrological
processes in naturally forested areas. They reported a wide range of interception loss depending on
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forest structure, canopy structure, and meteorological factors: between 20–40% in coniferous and
between 10–20% in deciduous forests on annual scale [42,43]. The effect of urban trees on rainfall
interception is however rarely quantified and the observations made in forested areas cannot be applied
on urban areas due to the different conditions between the two contexts (available growing space,
edge effect, isolation, wind penetration, canopy cover, age, diversity, and microclimate . . . ) [35,44,45].

In almost all studies conducted in urban conditions, interception loss was estimated as the
difference between the gross rainfall (the amount that would reach the ground in the absence of
the tree) and the volume that actually fell under the tree crown with some differences in the way
each volume was measured. Interception by two tree species was measured in [33]: Douglas-fir and
Western red cedar in variable landscape sites (streets, parks, and natural forested areas). The average
canopy interception during seven rainfall events for Douglas-fir and Western red cedar was 49.1%
and 60.9% corresponding to an average net loss of 20.4 and 32.3 mm respectively. The extremely high
values obtained in this study are majorly attributed to the very long durations of the sample rainfall
event (between 15 h and 179 h). Interception loss by an isolated Quercus ilex tree was estimated
by the difference between gross and net rainfall monitored below the tree crown over 2 years [34].
Total interception reached 22% of the gross rainfall with a canopy storage capacity estimated at 0.26 mm
per unit of crown-projected area. Very high interception losses were found in [35] on an isolated Ficus
benjamina tree in urban area. The total interception on 19 rainfall events was found to be 59.9% of
gross rainfall with higher values (78–100%) recorded for small events (<8.4 mm). Canopy saturation
was estimated at 1.5 mm, and the average time of saturation was around 19.5 min using the inverse
procedure of Rutter’s model describing rainfall interception by vegetation. In [46], the impact of trees
on surface flow on urban areas was assessed by comparing the runoff measured on an asphalt plot and
that measured on an asphalt plot with a tree planted in the center. Trees and their associated tree pits
were found to reduce runoff by as much as 62%. However, these results cannot be attributed purely to
interception but to the mixed effect of interception and infiltration in tree spit. Rainfall interception
by deciduous oaks and pine trees in 16 residential yards was quantified in [36] for 14 rainfall events.
During 14 rainfall events, 9.1% of the total gross rainfall was intercepted by these trees representing on
average 19.9% per event. Two trees planted in an urban street setting made the object of an experimental
study during a 5-month period [47]. E. nicholii, having dense canopy, intercepted more of the smaller
rainfall events so that 44% of the annual rainfall was intercepted as compared to 29% for the less dense
E. saligna canopy. The variation of canopy interception as a function of rainfall characteristics was also
studied. E. nicholii was able to intercept the majority of rainfall events that are <4 mm, whereas the
thinner more sparse canopy of E. saligna intercepts less than 40% of even small rainfall events <2 mm.

An upgraded measurement system was tested in [37] by constructing an artificial catchment
beneath a 9-year-old pear tree and a 8-year-old oak tree with a collection area extending beyond crown
edges to monitor rainfall interception during 3 years. Interception losses accounted for 15% of gross
precipitation for the pear tree and 27% for the oak tree. Analysis of temporal pattern of interception
indicated that it varies from 100% at the beginning of the rainfall event to about 3% at maximum
rain intensity.

In [38], researchers used a rainfall simulator and an electronic weighing balance positioned above
and below four trees of four different species to measure the interception during a wide range of
rainfall conditions and examine the effect of rainfall traits and crown structure on interception process.
Results indicated that interception is a dynamic process that evolves in three phases: (1) wetting
phase during which the dry crown intercepts rainfall till, reaching its maximum capacity (Cmax);
(2) saturation phase where no more rainfall is intercepted; and (3) drainage phase following the rainfall
event during which a percentage of the retained water drains off to reach the minimum interception
storage (Cmin). Cmax and Cmin were found to be highly dependent on the tree species and rainfall
intensity. In [39], the same measurement system was employed (rainfall simulator and digital balance)
to measure surface storage capacity of 20 urban tree species. Eight samples were taken from each
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species and 12 rainfall intensities were simulated. The mean value of rainfall interception among all
species was 0.86 mm.

2.1.2. Depression Storage

Rainfall volume trapped in depressions present on urban surfaces held until it infiltrates or
evaporates is referred to as depression storage (Figure 1). The process of filling depressions is relatively
fast and is a function of the depression capacity, precipitation intensity, evaporation, and infiltration
rates, and is in the order of seconds to minutes [48]. Direct measurement of depression storage is
hardly accessible and thus indirect methods are usually used to estimate this quantity. Road runoff

was studied in [30] on a section in Hertforshire, England. A storage capacity of 1 mm was estimated
from the minimum rainfall event causing runoff. Nehls et al. [26] is one of the few studies using a
direct method to quantify the surface storage on pavements. They employed a terrestrial laser scanner
(TLS) on 11 ideal typical urban paved surfaces of different materials having a 2% slope and that
had never been subjected to human or car loads. Measured values range between 0.07 for granite
paving blocks to 1.4 mm for concrete pavement with infiltration joints. A systematic underestimation
of 30% was noted in the laser scanner measurements relative to direct measurements. In [40], a few
irrigation experiments were carried out on six sections of residential road to study the runoff on
paved areas and determine runoff losses including initial losses. Depression storage was deduced
from the volume sprayed before runoff started. Mixed results were obtained with two sections (4 &
5) behaving in a classical manner, two others (2 & 3) with highly variable initial losses, and the
last two (1 & 6) showing no reaction to irrigation flow exceeding their initial loss estimated from
other experiments. The significant variability of depression storage reaching up to two orders of
magnitude (0.07–10.5 mm) reflects the complexity of this phenomenon, whose variability depends on
multiple factors related to site and events characteristics. Despite the latest technological advances
of measurement techniques, quantifying depression storage is still one of the most challenging tasks
for hydrologists. The difficulty in distinguishing this process from other surface processes especially
infiltration explains why experimental measurements of depression storage are rarely available in the
literature (Table 1).

All the experimental results of the literature reviewed in this part reveal the important contribution
that the retention process could have to runoff losses during small rainfall events as retention values
were found to be of the same order of magnitude of rainfall height of a small event. These results
also prove that retention is still neither easily commensurable nor fully understood due to its high
multifactorial variability. Retention values measured on different urban surfaces (Table 1) are found
to be extremely variable from one surface type to another and even for the same surface type when
different measuring methods are applied or different rainfall events samples are studied. So, not only
the surface type but also its geometrical characteristics and the rainfall events sample influence the
retention capacity. However, among all these parameters, some were found to be determinant for
certain retention types. Surface slope was found to explain a big part of the rooftop interception [32].
Trees’ capacity of retention was proved to be highly dependent on their crown structure [38].

2.2. Infiltration

Urbanization has always been associated with rainproofing due to the very low permeability of
urban soil covers from one side and their relatively smooth surface that shortens the residency time of
the runoff flow from the other side. However, on asphalt and concrete pavements, the decrease of direct
recharge from their low-permeability matrix might be offset by an increase in localized recharge through
fractures and joints that provide potential preferential avenues for infiltration. For that reason, the effect
of urbanization, especially the paved areas on the infiltration mechanism, is still not fully understood
and has consequently made the subject of intensive research in recent years, which addressed it using
direct or indirect measurement techniques [27].
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2.2.1. Indirect Quantification

Among the indirect approaches, Davies [30] calculated the runoff losses during a rainfall event
due to infiltration on paved surfaces as the residue of the water balance between the depression storage
estimated from rainfall-runoff regression and the evaporation deduced from another mass balance
analysis of an urban surface (asphalt roof), on which infiltration is considered zero. Of the total 83%
runoff losses observed, infiltration was found to contribute to 36%. A similar approach was conducted
by [47], which consisted in artificially irrigating some pavement sections of bituminous macadam
with its curbsides and measuring the runoff rate at the outfall to deduce the continuous losses due to
infiltration by subtracting the runoff rate from the irrigation rate when these two reached their steady
state. Infiltration fluxes were found to be very important, and the infiltration rate was of the order
of 0.36 mm/h. The water balance concept was also applied [49] to small-scale samples (300 mm ×
300 mm) of various paving materials (concrete, brick paving, asphalt, and macadam) to assess the
importance of runoff, evaporation and infiltration processes on these surfaces. Results showed that
infiltration in the road structure itself is very low (between 0 and 2% of the rainfall depth), but in the
joints present between brick paving it was responsible for the most significant output (52%). Identical
behavior was recorded for asphalt and concrete samples with almost 2/3 of the rainfall appearing as
runoff, while the dense bituminous macadam detained 2/3 of the rainfall that were lost by evaporation,
probably because of the surface texture. However, the experimental setup did not allow the evaluation
of the impact of depressions and cracks in the paving materials on runoff losses.

2.2.2. Direct Quantification

Field experiments carried out by [50] on two small scale concrete and asphalt pavements having
different slopes and for different rainfall intensities and durations recorded very high runoff levels of
the total rainfall depth with infiltration losses not exceeding 2%. Using a double-ring infiltrometer,
the permeability of asphalt, concrete, and asphalt-concrete pavements was estimated in [51]. High values
of hydraulic conductivity were measured (Table 2), ranging between 1.43 and 2405 mm/h, which is
comparable to that of fine-grained sands, sandstones, silts, and loams. However, all sampled points
have expansion joints or fractures, except three on which no infiltration was observed. Ragab et al. [52]
measured infiltration on roads in residential areas using soil moisture sensors installed underneath
paved structures and found 6–9% of the total annual rainfall infiltrate through these structures.
Other studies [53,54] observed a direct relation between water content in pavement structure measured
on long periods (3 years) and rainfall depth. Findings showed that the annual infiltration on the
pavement surface represents 25–30% of the total rainfall depth with an infiltration rate of 0.36 mm/h
equivalent to that of a silty soil. An urban lysimeter was developed in [25] to study the water budget
on asphalt concrete plates of 0.5 m2 extracted from in-situ roads that had been operating for 20 years.
The method consists in measuring runoff, infiltration and storage variation to deduce rainfall and
evaporation rates. Infiltration was almost negligible (between 2–3%) with 73% and 74% of rainfall
converted into runoff flow. Complementary measurements of the hydraulic conductivity (Ks) were
realized in an attempt to explain the weak role of infiltration in the hydrologic behavior of these
plates [55]. Using the irrigation technique until reaching a steady infiltration flux, Ks was estimated at
0.007–0.01 mm/h, which is low compared to other values reported in the literature for the same type of
surface material (Table 2).

2.2.3. Temporal and Spatial Variability

The infiltration process on paved surfaces is highly variable both in space and time. Infiltration
losses measured on six pavements [47] showed a decreasing temporal evolution declining rapidly
at the beginning to reach a stable rate until the end of the rainfall event (Figure 2). The double ring
infiltrometer was used by [56] to carry out a series of infiltration measurements on five different points
in a parking lot. High spatial variability was observed with the average permeability ranging between
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1.08 and 21.6 mm/h (Table 2). Monitoring infiltration during rainfall event showed a rapid decrease
of infiltration rate by one order of magnitude within 16 min as illustrated in Figure 3. An extensive
investigation of the infiltration capacity of pavement structures was realized by [57] through lab tests
and field measurements. Several types of pavements have been evaluated. Remarkably high infiltration
rates were obtained even on pavements that are generally considered to be hardly permeable. Figure 4
illustrates numerous types of variability of the infiltration rate. It was found to exceedingly vary from
one site to another irrespective of the particular type of the pavement and within each site. Another
significant variability was also reported between the initial and final rate on each monitored point.
Not only the values but also the temporal evolution of these rates (initial and final) vary among sites.
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Table 2. Infiltration rate measured on different types of paved surfaces (mean value or min-max values).

Reference Pavement Type Infiltration Rate f
(mm/h) Method

[58] Concrete road 7–27 Pavement irrigation

[47] Bituminous macadam
dressed by granite chippings 0.6–3.6

Mass balance between
irrigation inflow and gully

pot outflow

[59]

Paved area good state 0.036 Unknown

Paved area slightly degraded 0.36 Unknown

Paved area highly degraded 36 Unknown

[60] Asphalt road 0.36
Variation of water content in

all the layers of the
pavement structure

[55] Asphalt concrete plates 0.007–0.01 Lysimeter

[51]

Urban pavement: 2.1

Double-ring infiltrometerAsphalt pavement 2.9–76
Concrete pavement 1.4–2404

Combined 1.4–243

[56] Urban pavement 1.08–21.6 Double-ring infiltrometer
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2.2.4. Influential Factors

Multiple factors have been identified in the literature for being determinant of the infiltration
process on urban surfaces.

1. Depression Storage: The presence of depression storages on paved areas is an influential factor on
infiltration as water is held for a longer time and will thus be more subjected to infiltration [26].

2. Mixture properties: The effect of the asphalt mixture properties on the pavement permeability
was studied by [61]. Based on the experimental data collected on five sites, an exponential
relationship was observed between field permeability and the in-place air voids. In this respect,
the aggregate size was found to be significantly determinant for the air void ratio and hence
the pavement permeability. Excessive permeability of 36 mm/h, 43.2 mm/h, and 54 mm/h were
recorded for coarse-graded mixes having NMAS (Nominal Maximum Aggregate Size) of 9.5, 19,
and 25 mm at an air void ratio of 7.7, 5.5, and 4.4 respectively. Based on controlled experiments in
the laboratory, [62] highlighted the positive correlation between roads porosity and permeability.
In [63], five types of asphalt mixtures were tested for their hydraulic conductivity using a dual
mode permeameter. For open graded large stone mixture, the pseudo-coefficient of permeability
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varies between 9720 mm/h and 53,280 mm/h. For open graded drainable base, it varies from 88,920
to 129,960 mm/h. For dense mixtures, it varies from 10.8 mm/h to 417.6 mm/h. This coefficient
showed an exponential variation in terms of the effective porosity.

3. Pavement age: Some researchers were interested in studying the impact of a pavement age
on its infiltration capacity. Contrasting results were obtained according to the pavement type.
Based on in-situ measurements of infiltration on a classical cement pavement in Brussels over
a 1 month period (November), Van Ganse (1978), cited in [60], noticed a clear increase in the
pavement permeability with ageing. A slight degradation of the pavement state could increase
the infiltrated volume of rainfall from 5% (rate observed for a new pavement) to almost 50%.
Another observation made in [59] noticed a decrease by one to three orders of magnitude of the
pavement permeability with increasing degradation. However, an inverse effect of ageing on
pavement infiltration capacity was obtained when in-situ measurements were carried out on
porous paving blocks and permeable interlocking concrete pavement [64]. Results of the field
tests show a clear decrease in the long-term infiltration performance with age interpreted by
the entrainment of mineral and organic fines responsible for the clogging of joints and pores of
porous paving blocks. This recession was found to reach its asymptotic capacity after 8–12 years
of the construction of these types of pavements.

4. Cracks and joints: Numerous studies attributed the high permeability of paved areas to cracks
and joints. The infiltration rates (7–27 mm/h) obtained by the irrigation experiment realized
by [58] were much higher than those obtained in the laboratory experiments on solid road
samples (0.5 mm/h). This result corroborates previous findings in [65] who explained the high
infiltration rates by the fractures capacity of absorbing water. Extensive quantification of the
fractures and joints permeability was carried out on 200 points on asphalt and concrete pavements
using a double-ring infiltrometer [51]. High values of infiltration rates were recorded without
showing any correlation with the aperture of fractures and expansion joints on either pavement.
These findings were interpreted by the fact that fractures and joints are filled with sediments and
thus the sub-grade permeability is the controlling factor of the overall pavement permeability.

2.3. Evaporation

Evaporation represents a major component of the global water balance [66]. It might be considerably
less in urban areas than in rural ones, mainly due to reduced surface depressions leading to a lower
quantity of water being retained and exposed to evaporation. This process does not participate directly
in runoff losses, but intervenes in draining the depressions and interceptions to recover the surface
retention capacity. Almost 21% of the annual precipitation falling on paved surfaces was supposed to
be lost by evaporation process [30]. One of the reasons behind that is the increase in temperature of
urban centers. Evaporation on paved areas was shown to occur in different compartments of the paved
structure [67]: the upper surface storage of pavers, the porous matrix of pavers, the joints between
pavers, the retained water in the surface depression, and cracks. In practice, evaporation is most often
restricted to the uppermost compartment consisting of the pavement material and joints with the
infiltrated water supposed to be shielded by the pavement structure [67]. A high-quality experimental
setup was installed on an open parking lot [68] to meticulously measure all components of the water
budget during artificial rainfall events generated by a sprinkler system. Of the 10 studied events,
evaporation contribution was estimated at 17%. In their investigation of the hydraulic behavior of road
structures on three car parks and one internal road, Ragab et al. [52] reported a seasonal variability
of the runoff flow having annual average of 70% with a peak of 90% in winter and a minimum of
50% in summer. Given that infiltration was estimated to participate by 6–9% of annual rainfall loss,
evaporation was therefore supposed to represent 21–24% of annual rainfall, with more evaporation
taking place during summer than winter.
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2.4. Bulk Runoff Losses on Urban Surface

Some studies were interested in evaluating the bulk runoff losses, which is an integral measure of
all losses occurring on the entire watershed rather than individual surface scale. This type of approach
usually distinguishes initial losses from continuous losses, the former is mostly attributed to retention
processes, whereas the latter is mostly attributed to infiltration and evaporation. Around 763 storms
on 26 urban basins located in 12 countries were analyzed in [69] using regression plots. Initial losses
were estimated between 0 and 6.12 mm with an average value of 0.85 mm. Fifteen residential urban
catchments were monitored for rainfall and runoff over a 4-year period [70] and then analyzed to
estimate some impervious area parameters including the depression storage. A narrow range of [0–1.29]
was obtained. Data collected on 18 urban European catchments [71] showed that initial losses deduced
from rainfall axis intercept in a rainfall-runoff regression analysis ranges between 0.13 and 1.5 mm.
Default values adopted by computer software (MOUSE, ILSAX, SWMM etc . . . ) of urban drainage
modeling are within the range of 0.5–2.5 mm with an average of 0.58 mm.

Many attempts are made in the literature to relate the bulk retention capacity considered to be
representative of initial abstractions with the catchment characteristics in order to derive general
relationships that could be used on ungauged sites (Table 3). The parameter that comes out the
most as an explanatory factor of the retention capacity is the surface slope. A good correlation was
found between these two variables using power function on the 18 urban catchments studied by [71]
(Figure 5). A similar regression relation was empirically determined and incorporated in the Wallingford
Procedure [72] and is now commonly used in UK and Belgium to estimate maximum surface retention.
The same power function gave also the best fit of retention capacity data against surface slope [73]
but with different coefficients than those of [71]. Data collected on four small impervious areas near
Baltimore [28] having a slope range between 1–3% showed that depression storage varies linearly as
a function of the catchment slope (Figure 5). On another slope interval (0.7–3.4%), a similar linear
relationship was proposed by Willeke (1966), cited in [74]. Chocat et al. [75] mentioned that a linear
relation between retention volume and surface slope is applicable on pervious surfaces as well as
impervious ones but with different coefficient values between the two surface types. Jovanovic [76]
combined several experimental studies carried out on impervious areas and noticed a clear decrease
in the storage capacity with increasing ground slope. However, these common results of the good
representation of the retention capacity by the surface slope were contrasted by the findings of [70]
where no correlation could be obtained between these two parameters.

Table 3. Regression relationship between retention capacity and catchment slope.

Reference Retention Capacity = f (Slope)

[71] ds = 0.77 S−0.49

[72]
ds = k S−0.5

For pervious surfaces, k = 0.28
For impervious surfaces, k = 0.71

[73] ds = 1.075 S−0.27

[28] ds = 3.3− 76.5 S

Willeke (1966) cited in [74] ds = 4.1− 100 S

[75]

ds = a + b(3− S) S ≤ 3%
ds = a S > 3%

For pervious surfaces, a = 2, b = 4
For impervious surfaces, a = 0.5, b = 1

ds = retention depth [mm], S = catchment slope [%].
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Other studies were interested in evaluating the contributions of infiltration and evaporation to the
continuous runoff losses. Howver, since these processes occur on a longer period of time than rainfall
duration with even higher post-event contribution than during the event, these evaluations considered
a large temporal scale (annual or seasonal) on which the retention process or the initial losses dissolve.
Retention constitutes a temporary buffer rather than actual losses, but is sometimes considered as runoff

loss when working on event scale as evaporation and infiltration of the retained quantity occurs after
rainfall event. Findings of these studies represented in Table 4 suppose that infiltration is dependent on
pavement type, whereas evaporation is dependent on weather conditions. Classical asphalt pavement
seems to absorb less rainwater (2 to 9%) than porous pavements, infiltrating up to 86% on rubber pavers
and 89% on concrete cobblestones. Seasonal variability of infiltration contribution to runoff losses
was found to be very weak on asphalt pavements and significant on porous pavements, always with
higher contribution in winter than in summer. Inversely, evaporation recorded higher contributions in
summer than winter with minor variability between different pavement types.

Table 4. Observed annual hydrological balances of different paved surfaces with seasonal (summer
and winter) values (F: Infiltration, R: Runoff, E: Evapotranspiration).

Reference Pavement Type
Annual Summer Winter

F (%) R (%) E (%) F (%) R (%) E (%) F (%) R (%) E (%)

[30] Paved surface 36 17 21

Wessolek (1993,
1994) cited by [77]

Mosaic cobblestone 33 54 13 23 60 17 48 46 6
Concrete paving slab 20 70 10 12 74 14 32 64 4

Wessolek (2001)
cited by [67]

Asphalt road 8 72 20 8 69 23 9 75 16
Concrete and

cobblestones sidewalk 38 31 31 34 24 42 43 40 17

Diestel and
Schmidt (2001)

cited by [67]

Small granite stones 74 7 19
Small cobblestones 67 9 24

Interlocking concrete 78 10 12
Rubber pavers 86 11 3
Grass pavers 68 6 26
Brick pavers 76 10 14

[52]

Asphalt car park 8 70 22
Asphalt car park 9 70 21

Block paving car park 6 70 24
Asphalt road 6 70 24

[25] Asphalt concrete 3 74 23
2 73 25
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Table 4. Cont.

Reference Pavement Type
Annual Summer Winter

F (%) R (%) E (%) F (%) R (%) E (%) F (%) R (%) E (%)

[49]

Flat concrete slab 1 69 30
Hot-rolled asphalt 0 56 44

Inclined concrete slab 2 93 5
Dense Bitumen

Macadam 0 36 64

Brickwork 54 9 37

Flotter (2006) cited
by [77]

Concrete cobblestone 80 12 8 68 18 14 89 8 3
Concrete paving slab 54 41 5 47 44 9 59 39 2

[77] Small cobblestones 70 15 15 60 22 18 81 7 12
Large concrete pavers 64 26 10 54 35 11 75 16 9

In conclusion, runoff losses are governed by two major processes: retention and drainage processes.
Retention includes interception, which is the part retained by rooftops and plants and is drained only by
evaporation and depression, which is the part retained by ground depressions and is drained by both
evaporation and infiltration. Retention occurs mainly at the beginning of rainfall events and is thus
considered as initial losses, whereas infiltration and evaporation contribute to runoff losses during and
after the rainfall event and are thus considered to be continuous losses. Experimental characterization
of retention processes showed relatively important retention values that are comparable to the rainfall
height of small events. Contrary to former beliefs, site investigations revealed non-negligible rates
of infiltration on classical pavement surfaces associated with high variability in space and time and
attributed majorly to joints and cracks. Evaporation proved to contribute more than infiltration to
runoff losses on classical pavements with higher rates in summer than winter.

3. Models and Uses of Runoff Losses on Paved Surfaces

The large variability of modeling approaches reported in the literature stems from the level of
the physical representation of processes responsible of continuous losses. Two classes were identified
for these runoff models according to the way they describe these processes: global approach and
detailed approach.

3.1. Global Approach

Due to the complexity of the hydrological processes on urban catchments during rainfall events,
many researchers adopted a global approach in quantifying the runoff losses by lumping them all
into a single coefficient determined from the regression analysis of observed data of runoff flow and
rainfall depth.

3.1.1. Model Structure

Without accounting for the initial losses, the approach is known as the rational method, which is
the oldest method that is still used today to model rainfall-runoff transformation for its simplicity and
widespread acceptance. In its original version, the rational method relates the peak runoff flow to
the rainfall intensity, usually taken from Intensity–Duration–Frequency curve for a particular length
of time (time of concentration), using a point runoff coefficient. However, this method was later
applied on volumetric variables to determine the runoff volume rather than the peak flow out of the
precipitation volume using a volumetric runoff coefficient. Since this coefficient depends on the land
use, soil type, surface slope, rainfall intensity, and antecedent hydrological conditions, it varies in time
and space and is thus taken as a constant average for the whole basin.
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R = Cr × I×A (1)

R = Runoff volume [l3]
Cr = Volumetric runoff coefficient [-]
I = Rainfall depth [l]
A = Catchment area [l2]

However, this method is usually applied while accounting for the initial losses that are assumed
either constant or variable from one event to another. In the second case, a complementary equation
is needed to estimate the initial loss for each rainfall event as a function of its antecedent conditions.
Some researchers [13] found that the potential evapotranspiration during the dry period preceding the
rainfall event is capable of explaining the initial loss, and thus, established relationship between them.
Alhoujayri [78] chose the antecedent dry weather period to explain the initial loss.

R = Cr × (I− IL(ev)) ×A (2)

IL(ev) = Initial loss of a certain storm event [l].

Other researchers considered that continuous runoff losses, especially infiltration, will decrease
during a storm event and encoded this concept in their models using a variable runoff coefficient.
Both [79,80] considered an exponential increase of the runoff coefficient (Figure 6) until no more runoff

loss occurs when depressions are full, infiltration slows practically to nothing and evaporation becomes
insignificant. In the hydrological module used in CANOE [81], runoff coefficient is considered to
evolve as a function of the storm event characteristics taking three constant values according to the
rainfall intensity (low, middle, high) (Figure 6).

Cr(t) = Clim ×
(
1− eV/K

)
(3)

Cr(t) = Instantaneous runoff coefficient (-)
Clim = Maximum runoff coefficient attained when all depressions are saturated (-)
V = Cumulative rainfall depth from the beginning of the rainfall event (l)
k = Constant specific to the rainfall event (l)
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Some attempts were made in the literature to establish relationships between event runoff coefficients
and other parameters describing input rainfall and hydrograph characteristics. Mosini et al. [82] carried
out a multiple regression analysis not on the event runoff coefficient but on the statistical one,
which relates statistical values (quantiles) of the flow rate and rainfall intensity determined from
QDF (Flow–Duration–Frequency) and IDF (Intensity–Duration–Frequency) curves respectively.
This coefficient was found to be well represented by a logarithmic model (Equation (4)) depending
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on three parameters only: return period, rainfall duration, and imperviousness coefficient of the
catchment. The confidence level of this model was quite satisfactory with a correlation coefficient
of 0.9.

CS = Cimp × [1− (1.27− 0.0548 log(D× p))] (4)

Cimp = Imperviousness coefficient (-)
D = Rainfall event duration (min)
p = Return period of the rainfall event (month)

3.1.2. Model Evaluation

Global models of rainfall-runoff were applied on catchment scale as well as individual surface
scale (rooftops and paved areas). The most commonly adopted approach is the constant initial loss and
constant runoff coefficient e.g., [18,32,83–86]. Few others considered variable initial losses to substitute
for a continuous simulation and the effect of dry weather on initial conditions e.g., [13,78]. Results
of the reviewed models are summarized in Table 5. Comparison between the different models is not
obvious regarding the threefold heterogeneity of the evaluation metrics: in terms of the numerical
criterion, in terms of the hydrological variable, and in terms of the temporal scale. So, the performance
criterion is represented by X_Y(Z) with:

• X being the objective function used to evaluate the model performance, and that is one of the three
frequently used functions: the Nash-Sutcliffe Efficiency (NSE) criterion, the absolute relative error
(ARE), or the determination coefficient (R2)

• Y being the variable on which this function is applied and is either the flow rate (Q), the runoff

volume (V) or the runoff coefficient (Cr)
• Z being the temporal scale used with three possible options: event, annual, or the whole

simulated period

Table 5. Application and performance evaluation of some global modeling approaches of rainfall-runoff

transformation in urban catchments.

Reference Model A (ha) Cimp(%) Data Performance

[83] Constant IL +
constant Cr

4.7 37

Calibration
1 year

NSE_Q (annual) = 0.67
ARE_V (annual) = 7.69%

Validation
6 years

NSE_Q (annual) = 0.60–0.75
ARE_V (annual) = 4.87–28.5%

13.4 39 Validation
7 years

NSE_Q (annual) = 0.63–0.77
ARE_V (annual) = 0.45–42.01%

[84] Constant IL +
constant Cr

4.8 37

Calibration
361 events R2 _Cr (event) = 0.26

Validation
405 events R2 _Cr (event) = 0.36

[85] Constant IL +
constant Cr 14.9 32 33 events R2 _V (event) = 0.95

[32] Constant IL +
constant Cr

0.12 100 25 events
h = 1–14 mm R2 _V (event) = 0.96

0.0041 100 22 events
h = 1–49 mm R2 _V (event) = 0.99

0.0041 100 23 events
h = 1–49 mm R2 _V (event) = 0.98

0.0057 100 22 events
h = 2–21 mm R2 _V (event) = 0.91
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Table 5. Cont.

Reference Model A (ha) Cimp(%) Data Performance

[18]
Constant IL +
constant Cr +
flow routing

13.4 39

1739 events
h = 1–4–51

Imax =
2.1–12.1–111.7

min-mean-max

NSE_Q (event) = 0.68–0.86
ARE_V (event) = 10–22%

[13]

Variable IL
(function of

PET) +
constant Cr +
flow routing

0.0479 100

314 events
h = 5.2(5.4)

Imax = 10.8(8.4)
Mean(std)

NSE_Q (all) = 0.85
ARE_V (all) = 0.07%
R2 _Q (event) = 0.86
R2 _Cr (event) = 0.17

0.0311 100

335 events
h = 5.2(5.4)

Imax = 10.8(8.4)
Mean(std)

NSE_Q (all) = 0.76
ARE_V (all) = 2%

R2 _Q (event) = 0.79
R2 _Cr (event) = 0.41

[78]

Variable IL
(function of
ADWP) +

constant Cr

0.29 -

61 events
h = 0.91–3–11.9

Imax =
1.55–9.95–76.4
min-mean-max

R2 _Cr (event) = 0.054

12 52

35 events
h = 0.97–3–9.54

Imax =
1.58–17.63–83.9
min-mean-max

R2 _Cr (event) = 0.036

[86] Constant IL +
constant Cr

185 72

477 events
h = 1.2–9–134.6

Iavg =
0.21–1.7–23.1

min-mean-max

NSE_Q (event) > 0.70

120 N.A.

398 events
h =

2–9–10.6–91.4
Iavg =

0.3–2–16.3
min-mean-max

NSE_Q (event) > 0.70

A: Catchment surface; Cimp: Imperviousness coefficient; IL: Initial loss; Cr: Runoff coefficient; PET: Potential
evapotranspiration; Imax: Maximum rainfall intensity; Iavg: Average rainfall intensity; h: Rainfall depth.

Before comparing the different models, one can easily notice the high contribution of runoff losses
in the surface runoff production whether on catchment scale or on individual surface scale. On the
catchment scale, a runoff coefficient of 32% was calibrated [18] on the P13 Rezé catchment, which was
found to be less than its impervious coefficient (39%) since not all impervious areas were connected
to the sewer. However, a higher runoff coefficient (55%) than the impervious one (32%) was found
by [85] on the Sulsted catchment, demonstrating the contribution of its pervious part to the overland
flow. On the roof scale, Davies [30] estimated an average overall runoff coefficient of 76% for sloped
and flat asphalt roofs in Redbourn (Hertfordshire) on 3 autumn-winter months. The global runoff

coefficients of four different rooftops were estimated in [32] at 84%, 92%, 91%, and 62% for clay tiles
(CT), metal (M), plastic (P), and flat gravel (FG) respectively. In their study of the optimum storage
volume of rooftop rainwater harvesting systems, Liaw and Tsai [87] adjusted a runoff coefficient on
level and V-inverted cement rooftops on approximately 100 storms. It was found to be similar for
both roof types recording on average a value of 82%. On the road scale, low runoff coefficient was
obtained [30] on paved areas of only 17% on average of 3 autumn-winter months. On the contrary,
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high runoff coefficients were observed (78% and 68%) on two street stretches typical of urban roads
monitored for 314 and 335 storm events respectively [13].

For the volumetric criteria, results, especially those assessed using the relative error on runoff

volume, do not always show satisfactory results. The error on the annual volume simulated by
Rodriguez et al. [83] reaches 40% for the validation results. The very similar approach adopted by
Berthier and Le Delliou [18] of the constant initial loss and constant runoff coefficient complemented by
a routing model confirmed these results on small events scale even on calibration periods. The relative
error produced by this approach on runoff volume for events of return period of half a month was
found to be 22% on average and can reach up to 119% for certain events. However, the determination
coefficient calculated on the event runoff volume showed better results, always higher than 90%.
However, when the runoff volume is evaluated by the runoff coefficient-based criterion, the errors on
the simulated results are much higher whether in calibration or validation. Introducing variability
in the calculation of the initial losses, as made in [13,78], seems to reduce the error on the total water
balance but does not necessarily improve the model performance in terms of the runoff coefficient.
Models including a flow routing module examined their results in terms of runoff dynamics using NSE
criterion or determination coefficient of the runoff flow rate at a time step of a few minutes. Almost all
these models yielded moderate results on both event and annual scale where optimal values of NSE
range between 0.6 and 0.86 and those on the determination coefficient between 0.8 and 0.86.

3.2. Detailed Approach

The other type of runoff losses modeling is the explicit approach. The following paragraph details
the different structures that this model could have along with their application on different study cases.

3.2.1. Model Structure

Unlike the global approach based on the empirical relationship between urban runoff and rainfall,
the detailed approach is more physically based. Almost all detailed approaches developed in the
literature are based on the reservoir concept where the reservoir constitutes the central element of
the model structure (Figure 7). The runoff rate is determined by applying the mass balance equation
between the input rainfall and the output from the continuous losses due to infiltration and evaporation.
Initial losses are commonly represented by a storage volume beyond which ponded water starts
to generate runoff flow. So, when retained volume exceeds the reservoir storage capacity, runoff is
determined by solving the differential equation (Equation (5)) using any numerical scheme (Euler,
Runge–Kutta of any order . . . ).

∂d
∂t

= i− e− f− r (5)

d = water depth in the reservoir [l]
i = Rainfall rate [l/t]
e = Evaporation rate [l/t]
f = Infiltration rate [l/t]
r = Runoff flow rate [l/t]
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Among the numerous detailed models available in the literature, we present in this section those
that are most relevant and commonly used in the context of our study, i.e., runoff losses occurring on
the surface part of the urban catchments and that cover a wide range of model complexities in terms
of its physical conceptualism and spatial distribution. Figure 8 depicts the different structures used
in hydrological models for the reservoir unit. Tables 6–8 present in details the conception of some of
these models and others for which a research application was found.
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Spatial distribution: There are three distinct levels of spatial distribution:

• Distributed: The catchment area is discretized on a grid basis (Table 6).
• Semi-distributed: The catchment area is divided into several sub-catchments based on surface

characteristics (land use, imperviousness . . . ) or on main inlets to the drainage network (Table 7).
• Lumped: A single entity is taken to model the whole system, which could represent the entire

catchment or only the impervious part (Table 8).

Production and transfer processes: Most of these models are composed of two coupled modules:
the production module that calculates the runoff and the transfer module that routes the runoff

to the hydrological unit outfall and thence to the watershed outfall if the model is distributed or
semi-distributed. Models that focus only on simulating the volume of runoff flow do not consider the
routing processes (Aquacycle and lumped models developed by [84]), while others represent it with
different degrees of complexities varying from (non-)linear reservoir until applying the full shallow
water equations model, also called dynamic wave model. The connection between these modules is
not always unidirectional with the production module executed first to entirely define the input to the
transfer module without any backward feedback. In certain structures like SWMM, the montage is
interactive with both modules executed at the same time and influencing one another.

Sub-models describing the runoff loss processes: The sub-models taken to simulate each of
the physical processes might vary in their degrees of complexity from one model to another but are
generally compatible within the same model.

1. Initial losses: As described in the previous part of this paper, initial losses refer to two physical
quantities: rainfall interception, which is the part of rainfall retained by surface objects and
subjected to evaporation process only; and depression storage, which is the part of rainfall
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retained in surface ponds and is subjected to both evaporation and infiltration. Most hydrological
models except for example MOUSE model B (Figure 8) do not make any distinction between
these two quantities and hence account for the initial loss using a single parameter representing
the maximum storage capacity of surface depressions that once filled will generate surface runoff.
This parameter is often supposed to be constant with [12,14] or without [88,89] distinction between
different types of land use (Figure 8). However, it is not always taken the same at the beginning
of each rainfall event. Some models introduce a temporal variability of this parameter to account
for antecedent conditions of each rainfall event [19,84,90] or seasonal effects [83].

Table 6. Structure of some fully distributed modeling approaches of rainfall-runoff transformation in
urban catchments.

Reference Model Number of Parameters Runoff Loss Model

[91] SURF 12

Potential evapotranspiration
Infiltration into vadose storage modeled by Horton

interception formulation (Linsley et al., 1975) modified
to include a seasonal component of the storage capacity.

Vadose zone supplies interflow that joins the surface
runoff and the groundwater flow, which is considered
as loss. These flows are modeled based on Darcy’s laws

for unsaturated and saturated soils.
The water balance of the vadose zone is common for all

pixels having the same land use type.

[92] FullSWOF - GreenAmpt model for infiltration

[93] Urban Flood model 11

Distinction between impermeable surfaces (buildings
and roads), semi-permeable surfaces (pavements),

permeable surfaces, and water surface.
Interception, storage, infiltration,

and evapotranspiration are modeled on all these
surfaces except infiltration on the impermeable surfaces.

Table 7. Structure of some semi-distributed modeling approaches of rainfall-runoff transformation in
urban catchments.

Reference Model Number of
Parameters

Description of
Impervious Area Runoff Loss Model

[94] ILLUDAS -
Connected paved

areas are
considered

Initial retention

[11] Conceptual model 7 Whole impervious
area is considered

Depression storage using Linsley
expression (Viesmann et al., 1972)

[12,95] Aquacycle 11 Whole impervious
area is considered

Constant initial loss +
evaporation

[96] ILSAX 4 Whole impervious
area is considered Depression storage

[81] CANOE 14

Distinction
between directly

and indirectly
connected areas

Directly connected areas:
constant initial loss + continuous

loss proportional to
rainfall intensity

(weak, moderate and
heavy events)

Indirectly connected areas:
constant initial loss + continuous

loss proportional to
rainfall intensity

(weak, moderate and
heavy events)
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Table 7. Cont.

Reference Model Number of
Parameters

Description of
Impervious Area Runoff Loss Model

[13] Detailed model 8 Only paved areas
are considered

Surface water budget module:
(applied on each sub-stretch of

the street)
Evaporation (PET multiplied by
a coefficient depending on the

hydrological state of the street) +
Infiltration (diffusion equation in

the porous media representing
the road)

[14] SWMM 8 Whole impervious
area is considered

Depression storage
Evaporation using either:

Single constant value
Set of monthly average values

User defined times series of
daily values

Daily values computed by
Hargreaves method from daily
max-min temperatures and the

study area’s latitude

Table 8. Structure of some lumped modeling approaches of rainfall-runoff transformation in
urban catchments.

Reference Model Number of
Parameters

Description of
Impervious Area Runoff Loss Model

[84] - 2 Whole impervious area
is considered

Variable initial loss + Evaporation +
runoff coefficient

[84] - 5 Distinction between
roofs and roads

Roofs: Variable initial loss +
Evaporation + runoff coefficient

Roads: Variable initial loss +
Evaporation + Infiltration + runoff

coefficient

[97] - 9 Whole impervious area
is considered Constant initial loss

[98] - 5 Only paved areas are
considered

Infiltration: occurring proportional
to available storage volume using a

constant coefficient
Evaporation: occurring at a constant
rate that takes a different value in the
three following cases: (1) rainfall and
surface storage, (2) no rainfall with

surface storage, (3) no rainfall and no
surface storage

[19] - 5 Distinction between
roofs and roads

Roofs: Variable initial loss
Roads: Variable initial loss +

infiltration

[6,90] MUSIC 8
Only Effective

Impervious Areas
(EIA) are considered

Constant depression storage
(reset on daily basis) + Evaporation

[90] KAREN 4
ONLY Effective

Impervious Areas
(EIA) are considered

Depression storage filled during
rainfall events and drained by a

permanent loss during dry weather
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2. Evaporation: In wet weather conditions, evaporation is theoretically weak and thus has very low
contribution to runoff losses. It mainly intervenes after rainfall events to gradually drain the
rainfall stock on the catchment surface to restore its retention capacity. A simplified approach is
commonly adopted to represent the runoff losses due to evaporation either by directly applying
the Potential Evapotranspiration (PET) rate taken to be constant on hourly, daily or monthly
scale [14,84,91], or by limiting it by the hydrological state of the surface, more precisely the water
depth or the moisture content of the upper surface layer [12,13,90].

3. Infiltration: In the hydrological literature, three methods stand out as the most commonly used
approaches to model the infiltration process: Curve number, Horton, and Green and Ampt models.
Despite the recurrent feedback of the experimental studies in the literature on the significant
contribution of infiltration on impervious surfaces, the vast majority of models still assume that
infiltration occurs only on pervious areas and neglect it on “impervious” ones. Even in the most
detailed representation of the catchment surface tested by [20], the pervious property of paved
surfaces identified by on-site observations due to cracks was neglected, leading to overestimation
of the other properties (depression storage and manning coefficient) during calibration. Only the
fully distributed models (SURF and FullSWOF), the semi-distributed detailed model of [13],
and the two lumped models in [19,84] account for the runoff losses on impervious areas due
to infiltration. SURF infiltrates rainfall using a modified Horton model, whereas FullSWOF
uses modified Green-Ampt formulation. The infiltrated quantity is calculated in [13] with the
resolution of the diffusion equation (Richard’s equation) in the porous media of the paved
structure. Lumped models developed by [19,84], however, assume infiltration to occur according
to a constant rate in time and are only varied according to the surface type. Rodriguez et al. [83]
compared the SURF model with and without infiltration on buildings and noticed considerable
improvement in the model performance when infiltration capacity on buildings was introduced.

3.2.2. Model Evaluation

Results of model evaluation are summarized in Table 9 for distributed models, Table 10 for
semi-distributed models, and Table 11 for lumped models. In several modeling attempts, a clear
degradation of the runoff flow results was observed when simulating weak rainfall events. A lumped
rainfall-runoff model was applied in [19], where results showed that events having a rainfall depth
lower than 4 mm recorded more than 50% error on the total runoff volume (Table 11). The application
of SWMM on three catchment areas in [20] gave better results for larger events than for smaller events
(Table 10). In their investigation of the effect of scale delineation on SWMM parameters and outputs,
one of SWMM limitations was identified by [21] in simulating small rain events where both micro- and
macro-simulated flow bounds failed to envelope the observations of small rainfall events.

Lumped models seem to offer the least satisfactory performance among the three categories of
spatial distribution. This is particularly true when comparing the models’ results on the validation
period. The performance of the (semi-)distributed models becomes stable once the model is calibrated,
whereas lumped models performance clearly degrades on the validation period. These findings do
not, however, imply any correlation between the spatial distribution of the model and its performance,
since the fully distributed models show similar or even less satisfactory results than semi-distributed
ones for both runoff volume and flow dynamics. Therefore, the degree of spatial distribution necessary
to accurately predict the runoff flow is still vague and has incited many researchers to investigate the
trade-off between model complexity and performance.
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In [20], different configurations of spatial discretization were compared:

1. High-resolution configuration (HR) in which a distinction between all surface types and land
uses is made to delineate the sub-catchments that communicate by overland flow before draining
to the sewer network, which is fully represented except for the very upstream branches within
each sub-catchment.

2. Low-resolution configuration (LR-IS) that conserves the definition of sub-catchments of the HR,
but without any surface exchange between sub-catchments whose outflow is conveyed directly
to the sewer inlet.

3. Low-resolution configuration (LR-WA), which lumps all the sub-catchments draining into
the same sewer inlet using the weighted average of sub-catchments modeled in the (HR) or
(LR-IS) configuration.

4. Lowest resolution configuration (LR-1-IS) similar to (LR-IS) but without sewer network
5. Lowest resolution configuration (LR-1-WA) similar to (LR-WA) but without the sewer system

The performance metrics: NSE, R, and VE illustrated in Figure 9 for one of the studied catchments
indicate a similar or even better performance especially in terms of VE of the LR discretization relative
to the HR one. However, the peak error is significantly affected by the change of spatial resolution
with the lowest resolution configuration, showing high responsiveness to rainfall and exaggeration in
peak flow.

In their investigation of the interest of increasing the quantity of geographical data to parameterize
SWMM, Petrucci and Bonhomme [99] tested several scenarios that were all based on the same number
of sub-catchments (19 for 2.3 km2 catchment area) with some scenarios dividing each sub-catchment
into subareas of homogeneous land use and others not. The distinction between the different land
uses resulted in a significant improvement in the model performance, eliminating in certain cases the
necessity of calibration.

The sensitivity of a conceptual model [11] to the spatial discretization was studied by testing
several configurations with different numbers of sub-catchments (32, 18 and 10). Results revealed
a very marginal effect on peak values, runoff volume and time to peak. Park et al. [100] evaluated
the proper level of spatial resolution for hydrological models using SWMM approach. Findings show
that the simulated runoff volume is not affected by perturbations in spatial resolution. Ghosh and
Hellweger [101] evaluated the impact of spatial resolution on simulated runoff using SWMM in a
3.7 km2 catchment dominated by residential housing. Total outflow volume was relatively insensitive
to spatial scale. However, peak flows showed a dual scale effect depending on the storm characteristics.
For larger storms, model aggregation reduced peak flows, whereas for smaller storms, aggregation
increased peak flows. Stephenson [102] tested whether finer sub-catchments allow closer approximation
of the physical model with all parameters being directly measurable. Comparing four levels of spatial
discretization, he reported that finely discretized model predicted runoff volumes more accurately than
coarse models but that peak flow rates are better predicted by coarser models. Warwick and Litchfield
(1993), mentioned in [103], found that aggregation of SWMM did not affect the flow for moderate
aggregation, but that lumping to a single sub-catchment altered the flow to an unacceptable degree.

A major advantage of a (semi-)distributed modeling strategy that distinguishes between different
surface types is that calibrated values of parameters approach their real physical significance and
could be transferred to other similar watersheds. The interest of a semi-distributed model was well
proven [20] in this respect when SWMM parameters were calibrated independently on three catchments
described with a very high resolution and obtained similar parameter values for same surface types.
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spatial discretization scenarios.

Among the semi-distributed ones (Table 10), SWMM is one of the most applied approaches.
Like its matches, except ILLUDAS, it produces promising results with NSE values above 0.73, except
for very few rainfall events. The best results of the semi-distributed models were obtained by the
Aquacycle with NSE values above 0.90 and a relative error on volume not exceeding 8% on the
validation period.

Since the performance criteria is generally chosen according to the modeling objective, the modeling
attempts reviewed herein having different objectives were evaluated using different criteria, which are
not always representative of the runoff loss model performance. The runoff loss model affecting mainly
the volume production is best assessed using volume-based criteria. So, when using flow-based criteria,
not only the production but also the transfer function is evaluated. So, the better results of NSE_Q
obtained for some models cannot be attributed to the runoff loss model but to the combination of
both modules: production and transfer. Among the commonly used transfer models, the dynamic
wave is the most accurate one accounting for all routing processes (wave translation, backwater effects,
wave attenuation, and flow acceleration). However, the kinematic wave model accounting only for
wave translation yields less accurate results but is less time consuming. As the routing models have
different precision levels, it is hard in the cases when flow-based metrics are used to deduce the quality
of runoff loss calculation out of the overall evaluation.

Table 9. Application and performance evaluation of some fully distributed modeling approaches of
rainfall-runoff transformation in urban catchments.

Reference Model A Cimp (%)
Calibration Validation

Data Performance Data Performance

[83] SURF

13.4 39 - - 7 years NSE_Q (annual) = 0.77–0.85
ARE_V (annual) = 0.51–31.74%

4.7 37 1 year NSE_Q (annual) = 0.77
ARE_V (annual) = 6.5% 6 years NSE_Q (annual) = 0.68–0.84

ARE_V (annual) = 6.63–27.93%

[104] FullSWOF 0.2661 - 6 events NSE_Q (event) = 0.675–0.913 - -

[93] Urban Flood
model 14109 38 1 event ARE_V (event) = 6.2% 1 event ARE_V (event) = 3.9%
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Table 10. Application and performance evaluation of some semi-distributed modeling approaches of
rainfall-runoff transformation in urban catchments.

Reference Model A Cimp (%)
Calibration Validation

Data Performance Data Performance

[94] ILLUDAS 0.16–24.68 34–100 2–28 events ARE_V (event) = 1.9–30.2% - -

[11]

Conceptual model
(Same parameters were taken for all catchments,
optimal values were found to be the same for the

four simulated events)

12.8 68 4 events

Graphical evaluations
shows good

correspondence between
hydrographs

- -

[12] Aquacycle
445 26 8 years NSE_Q (daily) = 0.92

ARE_V (all) = 0% 9 years NSE_Q (daily) = 0.94
ARE_V (all) = 8%

2690 22 8 years NSE_Q (daily) = 0.96
ARE_V (all) = 0% 5 years NSE_Q (daily) = 0.90

ARE_V (all) = 5%

[96] ILSAX 94 24 4 events ARE_V (event) = 11–150% 2 events ARE_V (event) = 9–40%

[105] CANOE
(IL ignored, only Cr was calibrated) 3000 40–50 31 events NSE_V (event) = 0.73 - -

[13] Detailed Model

479 100 314 events
NSE_Q (all) = 0.86
ARE_V (all) = 7%

R2 _Q (event) = 0.87
- -

311 100 335 events
NSE_Q (all) = 0.88
ARE_V (all) = 5%

R2 _Q (event) = 0.88
- -

[106]
SWMM

(Infiltration modeled using Horton equation
Kinematic wave model for network flow)

194.9 5 1 event NSE_Q (event) = 0.25 1 event NSE_Q (event) = 0.33

61.8 8 1 event NSE_Q (event) = 0.80 1 event NSE_Q (event) = 0.70

269.8 18 1 event NSE_Q (event) = 0.75 1 event NSE_Q (event) = 0.73

89.5 28 1 event NSE_Q (event) = 0.77 1 event NSE_Q (event) = 0.91

92 37 1 event NSE_Q (event) = 0.79 1 event NSE_Q (event) = 0.23

[99] SWMM 230 - 32 events NSE_Q (scenario) =
0.79–0.84 22 events NSE_Q (scenario) =

0.6–0.76

[20]

SWMM
(Highest resolution)

5.87 86 6 events NSE_Q (all) = 0.88
ARE_V (all) = 7% 2 events NSE_Q (all) = 0.85

ARE_V (all) = 6.5%

6.63 54 6 events NSE_Q (all) = 0.97
ARE_V (all) = 9.3% 1 event NSE_Q (all) = 0.94

ARE_V (all) = 17.8%

SWMM
(Lowest resolution)

5.87 86 6 events NSE_Q (all) = 0.81
ARE_V (all) = 6.6% 2 events NSE_Q (all) = 0.83

ARE_V (all) = 2.4%

6.63 54 6 events NSE_Q (all) = 0.83
ARE_V (all) = 4.6% 1 event NSE_Q (all) = 0.86

ARE_V (all) = 8.6%

[107] SWMM 12.3 39 6 events
NSE_Q (event) = 0.82–0.95
R2 _Q (event) = 0.92–0.96

6 events NSE_Q (event) = 0.90–0.96
R2 _Q (event) = 0.84–0.97

12 events NSE_Q (event) = 0.41–0.93
R2 _Q (event) = 0.78–0.95

[108]

SWMM
(Infiltration and evaporation on impervious areas

were neglected.
Infiltration on pervious areas was modeled using

Horton method)

11 1 event NSE_Q (event) = 0.89 2 events NSE_Q (event) = 0.8–0.9

[109]
SWMM

(Green-Ampt infiltration
Dynamic wave for network flow)

11.4 53 3 events NSE_Q (event) = 0.83–0.93
R2 _Q (event) = 0.86–0.93 3 events NSE_Q (event) = 0.73–0.74

R2 _Q (event) = 0.75–0.94

[110]
SWMM

(Infiltration modeled using Horton equation
Dynamic wave model for network flow)

24.2 69 2 events NSE_Q (event) = 0.87
R2 _Q (event) = 0.86–0.88 1 event NSE_Q (event) = 0.9

R2_Q (event) = 0.95

[111]

SWMM
(Green-Ampt for infiltration and dynamic wave

for sewer flow.
No calibration was realized, parameters were
transferred from a similar urban catchment)

33.5 47 - - 5 events NSE_Q (event) = 0.76–0.89
ARE_V (event) = 0–31.6 %

[78]
SWMM

(lumped + calibration of sub-catchment width
and depression storage testing very few values)

0.29 - 39 events R2 _Cr (event) = 0.001 - -

12 52 13 events R2 _Cr (event) = 0 - -
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Table 11. Application and performance evaluation of some lumped modeling approaches of rainfall-
runoff transformation in urban catchments.

Reference Model Surface (ha) Cimp (%)
Calibration Validation

Data Performance Data Performance

[84]
- 4.8 37 361 events R2 _Cr (event) = 0.34 405 events R2 _Cr (event) = 0.29

- 4.8 37 361 events R2 _Cr (event) = 0.40 405 events R2 _Cr (event) = 0.38

[97]

-

177 39 6 events NSE_Q (event) = 0.55–0.89
ARE_V (event) = 3–11% - -

10.6 40 6 events NSE_Q (event) = 0.1–0.8
ARE_V (event) = 0–19% - -

155 49 6 events NSE_Q (event) = 0.4–0.89
ARE_V (event) = 1–28% - -

8.3 98 6 events NSE_Q (event) = −0.46–0.92
ARE_V (event) = 1–25% - -

25.5 38 6 events NSE_Q (event) = −10.5–0.97
ARE_V (event) = 6–143% - -

23.6 18 6 events NSE_Q (event) = 0.26–0.91
ARE_V (event) = 7–34% - -

70 31 6 events NSE_Q (event) = 0.63–0.91
ARE_V (event) = 1–30% - -

[98] - 0.09 × 10−4 100 49 events
h = 0.1–27

Good visual agreement
between simulated and

observed cumulative
runoff volume

- -

[19] - 0.821 75

130 events
h = 0.4-3.7–27

Imax = 0.09–17–360
min-mean-max

ARE_V (event) = 0–257%
(>50% for h < 4 mm) - -

[90]

MUSIC

28.2 80

2 years

NSE_Q (all) = 0.54

2 years

NSE_Q (all) = 0.31

89.1 74 NSE_Q (all) = 0.81 NSE_Q (all) = 0.7

105.6 51 NSE_Q (all) = 0.62 NSE_Q (all) = 0.32

38 45 NSE_Q (all) = 0.57 -

10.5 20 NSE_Q (all) = 0.49 NSE_Q (all) = −0.05

KAREN

28.2 80

2 years

NSE_Q (all) = 0.53

2 years

NSE_Q (all) = 0.41

89.1 74 NSE_Q (all) = 0.75 NSE_Q (all) = 0.71

105.6 51 NSE_Q (all) = 0.63 NSE_Q (all) = 0.39

38 45 NSE_Q (all) = 0.61 -

10.5 20 NSE_Q (all) = 0.60 NSE_Q (all) = −1.01

4. Model Parameterization

Rainfall-runoff models involve a certain number of parameters that depend on the structure
complexity. A proper application of these models comes to a proper determination of their parameters.
In the literature, several methods exist that allow parameterizing these models.

4.1. Reduction of Model Parameters

A common practice when parameterizing a rainfall-runoff model is to reduce the number of
model parameters. For that reason, modelers usually conduct a sensitivity analysis to identify the
most influential parameters in their model structure, thereby allowing these parameters to be used for
calibration. Sensitivity analysis can be broadly divided into local and global approach [112].

A sensitivity analysis was performed in [83] for the 12 parameters of the SURF model to be
left finally with seven parameters: the maximum surface storage and concentration time of the
three considered surface types: roads, buildings and natural zones, and the saturated permeability
that defines the portion of water joining the groundwater. The sensitivity analysis on the CANOE
model [105] demonstrated the weak impact of the lag-time parameter used to model overland flow of
the discharge hydrograph. This was explained by the small size of sub-catchments used. The reduction
of the drainage network, and hence, the sub-catchments discretization increased the model sensitivity
to this parameter.
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The sensitivity of flow simulations to SWMM parameters has been analyzed and reported in
several studies [20,110,113,114]. Barco et al. [113] that both simulated volume and peak flow were most
affected by the imperviousness and the surface depression storage. The SWMM model developed
by Beling et al. [114] on four peri-urban catchments was highly sensitive to the physical catchment
characteristics. The sensitivity analysis conducted by Li et al. [110] on SWMM parameters showed that
the depression storage of impervious areas is the most influential parameter when determining the
total flow volume, and the roughness coefficient of network system highly affects the total flow and
the peak flow. Catchment width was found to be important to accurately simulate peak flow but not
the total flow. Results in [20] confirmed those obtained by previous studies regarding the key role of
depression storage and imperviousness in predicting the runoff volume using SWMM. Green-Ampt
parameters were found to affect the volume of modeled runoff with reasonable limits in highly to
moderately urbanized catchments and significantly in weakly urbanized catchment.

For MUSIC and KAREN models, the Effective Impervious Fraction (EIF) seemed to be the most
important parameter for runoff prediction [90]. Calibrated values of EIF for both models were found
to be significantly lower than the total impervious areas. Ignoring the pervious areas in KAREN model
is compensated by higher estimation of effective impervious areas and led to high uncertainties on
the EIF calibrated values. MUSIC was considered to be over-parameterized for accounting for the
pervious surface contribution to storm-water runoff.

4.2. Using Field Data to Determine Parameter Values

Since all hydrological models involve a certain degree of conceptualism, real physical parameters
do not always match those in the model structure, even if both hold the same significance.
Model parameters are more “effective” parameters than “real” ones in terms of their representation of
the hydrological behavior of the watershed. The more the system representation approaches to reality,
the nearer the model parameters get to their real physical values. Therefore, the applicability of the
field measurements on the model parameters highly depends on the conceptual degree of the model
and its spatial representation of the watershed.

In [99], the benefit of increasing the complexity of the model structure and its spatial distribution
was studied in order to include more geographical data in defining the model parameters. Based on
the SWMM semi-distributed approach, they tested different levels of GIS data integration in the
model structure specifically (1) to determine the impervious cover of each sub-catchment, (2) to
define the different land uses on each to be used in decomposing it into further homogeneous
sub-catchments, and (3) finally to determine the characteristics of each sub-catchment (hydraulic
length and slope). Model performance was found to be insensitive to different scenarios in the
calibration phase, but depends on the model structure in validation. Integrating more GIS data in
the model structure seemed to improve the model performance in validation but not indefinitely.
Results indicated that a certain threshold exists for the benefits obtained from incrementing the use
of geographical data. When calibration is possible (i.e., when rainfall and runoff data are available),
integrating more geographical data in the model does not necessarily improve its performance. Thus,
simpler models would be preferable in this case regarding the reduced efforts it takes to implement
them. When calibration is not possible (i.e., when rainfall and runoff data are not available), integrating
geographical information in describing the modeled basin provides a good solution to improve the
model performance, as it allows to obtain un-calibrated models almost as good as calibrated ones.
The geographical information that provides the highest benefit is the land-use classification. However,
the optimal level of details to be used in the geographical representation of the modeled system is still
not clear.

4.3. Transferring Parameters from Similar Watersheds

When flow measurements are not available, calibration methods cannot be used to determine
model parameters. Modelers referred to previous studies to estimate their parameter values e.g., [115].
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When a distributed model distinguishing the different types of land covers and uses of a certain
catchment area is calibrated, the obtained parameters could be considered as physical characteristics
of these surface types, providing, therefore, the option of transferring them to other catchments
with similar surface types. In their application of SWMM approach on a 33.5 ha urban catchment,
Niemi et al. [111] tested the transferability option of the model parameters from another similar urban
catchment calibrated in [20]. For a certain rainfall data source, model performance was acceptable,
but parameters were not subjected to a new calibration on the studied catchment to examine the
validity of this approach. The same values of the SWMM parameters calibrated in a high-resolution
configuration were assigned to the other tested configurations of the same catchment [20], either
directly or after calculating their weighted average for the coarser sub-catchments. Also, no verification
was made to see whether these parameters could have changed if a new calibration had been conducted.
To identify whether fine scale parameterization produces good model results when transported to
another catchment, [21] carried out same-scale and cross-scale validation of SWMM parameters
calibrated on one urban catchment on another urban catchment in Syracuse (New York). Results
showed that parameters derived from the micro-scale delineation accommodate better to the variation
in the catchment characteristics, and thus, provide higher confidence level in terms of parameter
transferability for modeling other sites than parameters derived from macro-scale delineation.

4.4. Optimization Procedure

Calibration consists of adjusting the model parameters to reduce the error between simulated
and observed results. It is one of the most crucial steps of a proper model application [116]. It can
be accomplished via manual or automatic procedure. Manual calibration is based on “trial and
error” method, whereby parameters are modified in a systematic manner until obtaining the best
correlation between the model outputs and observations, as made in [117]. This method is neither
practical nor reliable especially when dealing with models characterized by strong non-linearity. It was
thus supplanted by automatic techniques developed in a Bayesian framework, like the most used
algorithm of Markov Chain Monte Carlo MCMC [118], or in a pseudo-Bayesian framework, like the
Genetic Algorithm GA [119–121], A MultiALgorithm Genetically Adaptive Multi-objective method
AMALGAM [122], the Generalized Likelihood Uncertainty Estimation GLUE [123–127], and the
Shuffled Complex Evolution Metropolis Algorithm SCEM-UA [128]. The advantage of these methods
is not limited to their reliability and efficiency, but they also provide supplementary information on
the uncertainty of the model output and parameter values. However, comparison studies [129–131]
highlighted the limitations in the assumptions made by these techniques when assessing urban drainage
models parameters. SCEM-UA and AMALGAM were found to be quicker than other methods in terms
of required number of simulations [131]. All non-Bayesian methods have the subjectivity problem in
their acceptance criterion of the parameter sets, while MCMC has a problem with its hypothesis on the
normality of residuals.

A challenging aspect of the calibration step is the evaluation of its results. This might be done by
visual comparison between observed and simulated hydrographs. However, this method is irreproducible
as it relies on subjective judgment [132,133] and cannot be integrated into automatic optimization
methods. So, one or more numerical criteria are often used in these algorithms to make objective
assessment of the model’s goodness of fit. However, narrowing down the model evaluation to statistical
goodness-of-fit metrics makes the model assessment inaccurate and lacks some important aspects of the
model performance. A partial representation of the model performance in the optimization criterion
leads to what some authors called “equifinality” or “overparameterization” [134,135], i.e., obtaining
different sets of optimal parameters that perform equally well on the calibration data but dramatically
different when conditions change. Many research efforts are thus being geared in this vein to find the
most appropriate and relevant criterion to optimize urban hydrological models. NSE criterion [136] is
one of the most commonly used criteria in this context. However, hydrologists have recently pointed
out some major limitations and downsides in its formulation and its capacity to represent actual
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model performance [137,138]. To understand the origin of this defect, Gupta et al. [138] proposed a
decomposition of NSE into three components (correlation coefficient r, ratio of standard deviations
α, and relative bias β) and concluded that optimum NSE is obtained when α reaches r rather than
1, which is the real optimum of alpha, implying an underestimation of flow variability. So, a more
adequate criterion was proposed therein, the Kling-Gupta criterion (KGE), and is formulated by
computing the Euclidian distance of the three components of the NSE criterion from the real optimum.

The calibration procedure becomes trickier when it comes to low flows, since most existing criteria
are based on least-square errors that favor the goodness of fit of the hydrograph for high flows and
are thus not well adapted to low flows. So, for low-flow simulations, some authors suggested to use
common numerical criteria with an appropriate transformation of flow rates to put more emphasis on
low values. Houghton-Carr [132] and De Vos et al. [139] used logarithmic transformed flow discharges
with mean square error (MSE) criterion to reduce the weight of peak flows. Pechlivanidis et al. [140]
and Seeger and Weiler [141] applied the logarithmic transformation to flow discharges in the KGE
criterion to fit several rainfall-runoff models on low flows. Beck et al. [142] used the untransformed and
log-transformed flows in NSE, R2, and KGE as an evaluation of global models. Montano et al. [143]
also used KGE with logarithmic transformation of flow discharges as efficiency measures of the
HBV model outputs. In order not to get lost in the jungle of potential alternatives, as called by
Pushpalatha et al. [144], some studies were conducted in the literature to compare the efficiency of
different indices to evaluate low-flow simulations. Oudin et al. [145] compared several objective
functions and concluded that the square root transformation provides an all-purpose efficiency
measure. Krause et al. [146] analyzed several calibration indices and found that high flows still
contribute in the logarithmic transformation and that a relative efficiency criterion would be the most
appropriate objective function to use in a low-flow context. Based on the comparison of nine criteria,
Pushpalatha et al. [144] recommended the inverse transformation of flow discharge in NSE criterion
to evaluate very low flows. They showed that this transformation would be more adapted than the
logarithmic one as it does not show sensitivity to high flow values. Santos et al. [147] showed that
logarithmic transformation is not adapted to KGE criterion and might lead to biased evaluation of the
model performance.

5. Discussion

In an attempt to understand and redress the weak performance of urban runoff models in
representing runoff losses on impervious areas during frequent events, which are essential for urban
water quality management, we investigated the most commonly used models and analyzed their
structure in light of the latest knowledge on the observed behavior of urban surfaces during storm
weather. Many advances were recently made in the literature in the quantification of the relative
importance of hydrological processes governing runoff losses in different atmospheric conditions.
The experimental assessment of the retention processes affirms that urbanization reduces surface
capacity of storing water, but that the order of magnitude of this reduced capacity is still comparable to
that of the rainfall depth of frequent events. So, the importance of these retentions might be marginal
during heavy events, but for small events and annual scale calculations, they become a key element in
conditioning the surface exchange with all the other compartments: with the surface through runoff,
with the air through evaporation, and with the soil through infiltration. Both depression storage and
rainfall interception are extremely challenging to account for in hydrological modeling due to the
high level of heterogeneity characterizing the topography of urban surfaces even on small pavement
scale. For that reason, they are usually merged into a single component representing the initial
losses on the urban catchments, although the heterogeneity of retention surfaces draws out these
processes, undermining the validity of such a practice. Models commonly account for this component
by a threshold level for the onset of runoff, which is sometimes separated into two components:
interception volume subjected only to evaporation, and depression storage subjected to both infiltration
and evaporation.
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Hydrologists have for a long time associated urbanization to imperviousness, considering
urban cover, especially pavements, as rapid runoff-generators preventing any kind of infiltration.
The environmental and safety concerns around urban water management (impact on underground
water recharge, pollution of water streams, and increasing flooding risks) driven by this perception
incited more research on the hydrological impact of soil sealing. The different direct and indirect
techniques used to measure infiltration on paved areas revealed non-negligible rates of infiltration
relative to the expected behavior, arguing that paved areas can no more be assumed impervious
especially during frequent rainfall events. Field investigations found that the pervious property of paved
areas is majorly attributed to infiltration in joints and cracks present on the surface. These observations
of infiltration on paved areas are still not integrated in hydrological modeling practice. Aside from the
global modeling approaches combining all runoff losses into a single parameter (runoff coefficient)
and few detailed approaches, models distinguishing the different runoff losses still do not consider
infiltration on paved areas.

Evaporation was also found to be a key process in the hydrological balance of paved areas,
accounting for approximately 15% on average of the runoff losses. Its contribution was estimated
in different studies on seasonal and annual scale rather than event scale, as it extends on a longer
period of time than the event duration. Since this process takes place more in dry weather than wet
weather, some modeling approaches supposed it negligible on the event scale. Others used simplified
methods to simulate it, either by considering it part of the continuous losses represented by the runoff

coefficient or by explicitly taking the minimum between potential evaporation rate and the rainfall
depth available on the catchment surface.

A wide panel of urban hydrological models was reviewed in this paper, varying from global to
detailed models according to their degree of complexity in representing the hydrological processes and
the catchment surface. Global approaches represent the whole catchment as one entity while lumping
all hydrological losses taking place. Detailed models, however, involve an explicit way in representing
either the hydrological processes or the different surface types. In terms of runoff production on
impervious areas, comparison between the two approaches reveals equal degree of simplification in
the structure of their production modules. Both approaches have one parameter to represent initial
losses (denoted initial loss by global approaches and depression storage by detailed approaches) and
another parameter to represent continuous losses (denoted runoff coefficient by global approaches and
evaporation and/or infiltration by detailed approaches). A more physical mechanism of infiltration
than a constant flux was almost never applied on impervious areas. So, the only difference between
the two approaches is the multiplication of these two parameters for the different land uses defined on
the studied catchment.

Detailed models were tested in the literature for different levels of spatialization of the catchment
surface (lumped, semi-distributed, and totally distributed). When calibrated, both global and detailed
approach generate satisfactory results. The choice in this case could not be made in terms of the desired
level of precision but in terms of the type of application and sought results. Global approaches are more
practical and easy to implement but do not give access to intermediate variables of the repartition of
runoff loss neither between different processes nor between different surface types or sub-catchments
as in detailed models. Detailed approaches might be preferred when field data for calibration are not
available or when the model is to be applied in other temporal and/or spatial conditions. The definition
of the most appropriate degree of distribution is, however, more delicate. Detailed modeling seems to
be dependent on the spatial distribution, but without showing a strict improvement with the increasing
level of discretization, leaving the necessary degree of spatialization vague.

Any hydrological model, whether global or detailed, has some parameters to be determined,
a step that constitutes a major concern especially for heterogeneous catchment modeling. Whether
field data or calibration procedures are being used, the sensitivity analysis constitutes a primary step to
reduce the number of model parameters to be determined. The sensitivity analyses carried out in the
literature on detailed hydrological models make a consensus on the determinant property of surface
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storage on impervious areas or the effective impervious surface in terms of runoff volume, especially
when simulating frequent rain events. Using geographical data and physical characteristics to define
model parameters depends on the correspondence level between real and modeled representation
of the watershed. The geographical data most useful in the model parameterization procedure
were found to be the land use classification. Since current hydrological models are still unable to
represent watersheds in a perfect faithful manner, many parameters cannot be estimated out of physical
characteristics. Calibration techniques become, in this case, inevitable, especially those built in a
Bayesian or pseudo-Bayesian framework. Despite their efficient and optimized exploration of the
parameters’ space, these methods present certain structural limitations that sometimes question their
reliability in optimizing hydrological models.

This review highlights incoherence between our current understanding of the hydrological
behavior of urban areas during frequent events and our conception of the production functions in
the urban drainage models. Field studies provided more insight into the determinant processes
occurring on the different surface types during frequent events, with depression storage being a
fundamental element varying between surface types, and for the same surface type and infiltration
process, being important on paved areas, especially in their cracks, presenting preferential pathways
for rainwater. Integrating this knowledge in hydrological models and finding a way to precisely
present the heterogeneity of surface storage should be a priority to improve model performance.
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