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Abstract

A switching signal for a switched system is said to be shuffled if all modes of the system are activated infinitely often. In this
paper, we develop tools to analyze stability properties of discrete-time switched linear systems driven by shuffled switching
signals. We introduce the new notion of shuffled joint spectral radius (SJSR), which intuitively measures how much the state
of the system contracts each time the signal shuffles (i.e. each time all modes have been activated). We show how this notion
relates to stability properties of the associated switched systems. In particular, we show that some switched systems that are
unstable for arbitrary switching signals can be stabilized by using switching signals that shuffle sufficiently fast and that the
SJSR allows us to derive an expression of the minimal shuffling rate required to stabilize the system. We then present several
approaches to compute lower and upper bounds of the SJSR using tools such as the classical joint spectral radius, Lyapunov
functions and finite state automata. Several tightness results of the bounds are established. Finally, numerical experiments
are presented to illustrate the main results of the paper.

Key words: Switched systems, Shuffled stability, Joint spectral radius, Lyapunov methods, Automata theoretic techniques.

1 Introduction

Switched systems are dynamical systems with several
modes of operation, each mode being described by a dif-
ferential (continuous-time) or difference (discrete-time)
equation. At each instant, the active mode is determined
by a so-called switching signal. Switched systems are
very useful in applications to describe in a faithful man-
ner the execution of control algorithms on distributed
computing infrastructures and thus for taking into ac-
count the constraints related to the sharing of comput-
ing and communication resources [2,12,26].

The question of the stability of switched systems has
been extensively studied for almost three decades. Early
works have mostly focused on stability for switching
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signals that are arbitrary or that satisfy some minimum
or average dwell-time condition (see e.g. [22,21,27,23]
and the references therein). For the class of discrete-
time switched linear systems with arbitrary switching
signals, a powerful notion for analyzing stability is that
of joint spectral radius (JSR) [16], which allows to char-
acterize the worst-case asymptotic growth of infinite
products of matrices. However, computing the JSR is,
in general, a difficult task [29], and several methods
have been proposed to compute tight lower and up-
per bounds [14,8,30]. In the past decade, a significant
amount of research has been carried out to analyze the
stability of switched systems subject to constrained
switching. Constraints on the switching signal are usu-
ally described by finite-state automata and methods for
handling such constraints through Lyapunov functions
have been presented in several works [20,18,25]. An
alternative approach to analyze stability with such con-
strained switching signals is by computing the so-called
constrained joint spectral radius [11,18,33].

There are however classes of constrained switching sig-
nals that cannot be described using classical finite-state
automata. An example of such a class is that of shuffled
switching signals. A switching signal is said to be shuffled
if each mode of the switched system is activated infinitely
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often. It is known from formal language theory [4] that a
non-trivial set of sequences cannot satisfy both liveness
and safety properties. Then, the set of shuffled switch-
ing signals, which satisfies the liveness property, can-
not be characterized using classical finite state automata
that can only describe safety properties. To the best of
our knowledge, shuffled stability has first been studied
in [17] where it is proved that the set of stable shuffled
switched linear systems is not semi-algebraic. However,
no further characterization of shuffled stability is pro-
vided in that paper. A necessary and sufficient condition
can be found in [15] in terms of the maximal spectral
radius of an infinite set of matrices. However, its com-
putation is non-trivial and not discussed in that paper,
which therefore does not provide any practical way to
check shuffled stability. In [31], it is shown that a notion
of robust shuffled stability is equivalent to stability for
arbitrary switching signals. In [13], a Lyapunov charac-
terization of shuffled stability and a converse Lyapunov
result have been established. While the latter paper pro-
vides a method to check shuffled stability of switched
linear systems, it does not provide tight estimates of the
convergence rate in particular with respect to the char-
acteristics of the shuffling phenomena. Providing such
estimates is the main contribution of this paper.

Stability analysis of shuffled switched systems is also in-
teresting from the point of view of applications. An ex-
ample of such applications is multi-agent consensus with
switching communication topologies. Consider a sym-
metric and connected communication graph where only
one edge is active at each time instant and is selected by
a switching signal. If one uses a shuffled switching sig-
nal, then each edge is activated infinitely often so that
the union of future communication graphs is connected
at all time, and it is well-known (see e.g. [24,7]) that the
consensus is asymptotically reached. On the contrary, if
some edges are never activated the union of future com-
munication graphs may be disconnected and the con-
sensus is not attainable. Another potential application
is the design of observers for switched systems where
the dynamics in each mode is unobservable. Clearly,
the dynamics of the estimation error cannot be stable
for arbitrary switching signals, since keeping the same
mode activated all the time makes the system unobserv-
able (see e.g. [27]). However, considering shuffled switch-
ing signals, it may be possible to design asymptotically
convergent observers [28]. This type of observer design
problems is natural when considering a system with dis-
tributed sensors communication over a shared network.
More generally, shuffled switching signals are of inter-
est to describe applications where multiple components
rely on a shared resource and where the access to this
resource must be granted to each of the component in-
finitely often. An example of such application is shown
in an illustrative case study at the end of this paper. An
additional motivation for considering shuffled switching
signals is that they constitute a simple example of more
general ω-regular languages [4] that can be described us-

ing either non-deterministic Büchi automata, determin-
istic Rabin automata, deterministic Muller automata
(which are finite state automata with various acceptance
conditions), or using Linear Temporal Logic formulas.
Moreover, it has been shown in [31] that the stability of
a switched linear system whose switching signal belongs
to an arbitrary ω-regular language is actually equivalent
to the shuffled stability of a lifted switched linear sys-
tem. Being able to analyze the stability of such systems
gives the possibility to deal with complex applications
involving control and scheduling co-design [32,3].

In this paper, we provide a new tool to analyze shuffled
stability of discrete-time switched linear systems. The
main contributions of this paper are as follows. We in-
troduce a notion of shuffled joint spectral radius (SJSR),
which intuitively measures how much the state of the
system contracts each time the signal shuffles (i.e. each
time all modes have been activated). We establish sev-
eral properties of the SJSR and show how it relates to
stability properties of switched systems driven by shuf-
fled switching signals. In particular, we show that some
switched systems that are unstable for arbitrary switch-
ing signals can be stabilized by using switching signals
that shuffle sufficiently fast, the minimal shuffling rate
being related to both the JSR and the SJSR. We also
present two approaches to compute approximation of the
SJSR. The first approach is based on the JSR of a finite
set of matrices and allows us to compute asymptotically
tight lower and upper bounds. The second approach is
based on Lyapunov functions and automata theoretic
techniques and allows us to compute upper bounds. The
Lyapunov approach draws inspiration from [13] but we
consider a different underlying automata which allow us
to prove the tightness of our upper bound. Our Lya-
punov conditions also resemble those of [19], however,
in that work, the relation of such Lyapunov functions to
shuffled switching signals was not established.

The organization of the paper is as follows. Section 2
presents the necessary background on switched systems
and shuffled switching signals. In Section 3, the SJSR is
introduced and several of its properties are established.
Section 4 shows the relationship between the SJSR and
stability properties of a switched system driven by shuf-
fled switching signals. In Section 5, we present two ap-
proaches to compute approximations of the SJSR. Fi-
nally, two numerical examples are used in Section 6 to
illustrate the main results of the paper.

Notations: R+
0 denotes the set of non-negative real

numbers. In ∈ Rn×n denotes the identity matrix. We
use ‖ · ‖ to denote an arbitrary norm on Rn and the
associated induced matrix norm defined for M ∈ Rn×n
by ‖M‖ = sup

x 6=0

‖Mx‖
‖x‖ . The spectral radius of a matrix

M is denoted ρ(M), note that ρ(M) = lim
k→+∞

‖Mk‖1/k.
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Given a sequence of matrices (Mk)k∈N, withMk ∈ Rn×n,
we define for K1,K2 ∈ N, with K1 ≤ K2

K2∏
k=K1

Mk =

{
MK2 · · ·MK1 , if K2 > K1,

MK1
, if K2 = K1.

Given a set of matrices M ⊆ Rn×n and α ∈ R, we
define αM = {αM | M ∈ M}. Given a set I, we use
2I to denote its powerset, that is the set of subsets of I,
including the empty set ∅ and I itself.

2 Preliminaries

Let us consider a discrete-time switched system of the
following form:

x(t+ 1) = Aθ(t)x(t), t ∈ N (1)

where x : N → Rn is the trajectory and θ : N → I
is the switching signal belonging to the class S(I) of
arbitrary switching signals. I = {1, . . . ,m}, withm ≥ 2,
is the finite set of modes and A = {Ai ∈ Rn×n|i ∈ I}
is a collection of matrices indexed by the modes. For a
switching signal θ, let Aθ,0 = In, and

Aθ,T =

T−1∏
t=0

Aθ(t), ∀T ≥ 1.

Given an initial state x0 ∈ Rn, the trajectory defined
by (1) with x(0) = x0 is unique and is denoted x(., x0, θ),
it satisfies for all t ∈ N, x(t, x0, θ) = Aθ,tx0.

In this paper, we focus on a particular class of con-
strained switching signals called shuffled, i.e. signals for
which each mode in I is activated infinitely often. A for-
mal definition is given in [13] as:

Definition 1. A switching signal θ : N→ I is shuffled if

∀i ∈ I,∀T ∈ N,∃t ≥ T : θ(t) = i.

The sequence of shuffling instants (τθk )k∈N is defined by
τθ0 = 0 and for all k ∈ N,

τθk+1 = min

{
t > τθk

∣∣∣∣∣ ∀i ∈ I,∃s ∈ N :

τθk ≤ s < t and θ(s) = i

}
.

The shuffling index κθ : N→ N is given by

κθ(t) = max{k ∈ N| τθk ≤ t}.

The shuffling rate γθ is defined as

γθ = lim inf
t→+∞

κθ(t)

t
.

t

θ(t)

t

κθ(t)

τθ0 τθ1 τθ2 τθ3

Fig. 1. A switching signal (with m = 2) and the associated
shuffling instants and shuffling index [13].

The set of shuffled switching signals is denoted Ss(I).

Intuitively, the period between two successive shuffling
instants τθk and τθk+1 is a period of minimal duration over
which all modes are activated at least once. The shuffling
index κθ(t) counts the number of times the signal has
shuffled (i.e. the number of shuffling instants) up to time
t. The shuffling rate γθ characterizes the frequency of
shuffling instants over all time. Note that for all k ∈ N,
τθk ≥ km and therefore, for all t ∈ N, we have 0 ≤ κθ(t) ≤
t
m , from which it follows that γθ ∈ [0, 1

m ]. An example
of shuffled switching signal is shown in Figure 1.

It is well known (see e.g. [16, Corollary 1.1]) that the
system (1) is asymptotically stable for arbitrary switch-
ing signals if and only if ρ(A) < 1, where ρ(A) is the
joint spectral radius (JSR) of A, formally defined for a
bounded set of matricesM⊆ Rn×n by:

ρ(M) = lim
k→+∞

sup

∥∥∥
k∏
j=1

Mj

∥∥∥1/k

∣∣∣∣∣∣ Mj ∈M,

j = 1, . . . , k


 .

However, the stability condition based on the JSR turns
out to be conservative in the case of constrained switch-
ing sequences. Some works have adapted the notion of
joint spectral radius to switching signals generated by
deterministic [11,18,33] or stochastic [15,10] finite state
automata. However, none of these constraints allow to
deal with shuffled switching signals. Therefore, we intro-
duce, in the next section, a new notion of joint spectral
radius adapted for shuffled switching signals.

3 Shuffled Joint Spectral Radius

In this section, we introduce the shuffled joint spectral
radius and establish several of its properties.

Definition 2. Let ρ > ρ(A), the Shuffled Joint Spectral
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Radius relative to (A, ρ) (ρ-SJSR for short) is defined as

λ(A, ρ) = lim sup
k→+∞

 sup
θ∈Ss(I)

(∥∥Aθ,τθ
k

∥∥
ρτ

θ
k

)1/k
 . (2)

To better understand the characteristics of the ρ-SJSR,
we are going to analyze some properties of the function
λ(A, ·). We first show that the ρ-SJSR of A can be seen
as the JSR of an infinite but bounded set of matrices. For
ρ > ρ(A), let us consider the following set of matrices:

Mρ =


1

ρN

N∏
k=1

Ajk ,

∣∣∣∣∣∣∣∣
j1, . . . , jN ∈ I, N ∈ N,
∀i ∈ I,∃k, jk = i,

and ∀k 6= N, jk 6= jN

 .

Since N is unbounded, it is clear thatMρ generally has
an infinite number of elements. The following Lemma
shows that this infinite set is bounded for ρ > ρ(A).

Lemma 1. For all ρ > ρ(A), Mρ is a bounded set of
matrices.

Proof. Let ρ > ρ(A), then ρ( 1
ρA) = ρ(A)

ρ < 1. There-

fore, from [6, Theorem 1 (b)], we get that 1
ρA is left

convergent products (following the terminology in [6]).
Since the elements of Mρ are products of matrices be-
longing to the set 1

ρA, it follows from [6, Theorem 1 (a)]

thatMρ is a bounded set of matrices.

Since Mρ is a bounded set of matrices, its JSR is well
defined. Moreover, in any matrix ofMρ, all modes in I
appear at least once with the last mode jN appearing
only once. Hence, the set Mρ coincides with the set of
all possible matrices 1

ρ
τθ
1

Aθ,τθ1 for θ ∈ Ss(I).

Lemma 2. For all ρ > ρ(A), λ(A, ρ) = ρ(Mρ).

Proof. Let ρ > ρ(A) and k ∈ N with k ≥ 1, observe that
for every θ ∈ Ss(I) the sequence (θj)j∈N of switching
signals in Ss(I) defined by θj(t) = θ(t+ τθj ) for t, j ∈ N
is such that

Aθ,τθ
k

=

k−1∏
j=0

A
θj ,τ

θj
1

and τθk =

k−1∑
j=0

τ
θj
1 . (3)

On the other hand, given a sequence (θj)j∈N in Ss(I)
one can construct a switching signal θ ∈ Ss(I) such

that τθi =
∑i−1
j=0 τ

θj
1 for i ≥ 1 and θ(t) = θi(t − τθi ) for

τθi ≤ t < τθi+1, so that (3) holds true. Then, it follows
that

sup
θ∈Ss(I)

(∥∥Aθ,τθ
k

∥∥
ρτ

θ
k

)1/k

= sup
θ0,...,θk−1∈Ss(I)


∥∥∥∏k−1

j=0 A
θj ,τ

θj
1

∥∥∥
ρτ

θ0
1 +···+τ

θk−1
1


1/k

= sup
M1,...,Mk∈Mρ

∥∥∥ k∏
j=1

Mj

∥∥∥1/k

.

Then, taking the limit superior on both sides when k
goes to infinity yields the expected result.

Due to Lemma 2, the ρ-JSR inherits several properties
of the JSR.

Proposition 1. For all ρ > ρ(A),

λ(A, ρ) = lim
k→+∞

 sup
θ∈Ss(I)

(∥∥Aθ,τθ
k

∥∥
ρτ

θ
k

)1/k
 . (4)

Moreover, the value λ(A, ρ) does not change if we replace
the induced matrix norm in (2) or in (4) by any other
matrix norm.

Proof. The result is a direct consequence of Lemma 2
and of the properties of the JSR stated in [16,
Lemma 1.2] and [16, Page 10].

We provide further useful properties of λ(A, ·) in the
proposition below.

Proposition 2. One of the following properties holds:

(i) The function ρ 7→ λ(A, ρ) is decreasing, takes values
in (0, 1) and, for all ρ(A) < ρ1 ≤ ρ2,

λ(A, ρ2) ≤
(
ρ1

ρ2

)m
λ(A, ρ1). (5)

(ii) For all ρ > ρ(A), λ(A, ρ) = 0 and for all θ ∈ Ss(I)
Aθ,t = 0, for all t ≥ τθn.

Proof. Let ρ > ρ(A), similar to the proof of Lemma 1, it
follows from [6, Theorem 1] applied to the set of matrices
1
ρA that there exists C1 ≥ 1 such that

0 ≤
∥∥Aθ,T∥∥
ρT

≤ C1, ∀θ ∈ S(I),∀T ∈ N. (6)
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By considering T = τθk , raising to the power 1/k and
taking the supremum over shuffled switching signals, we
find

0 ≤ sup
θ∈Ss(I)

(∥∥Aθ,τθ
k

∥∥
ρτ

θ
k

)1/k

≤ C1/k
1 .

Taking the limit of all terms yields λ(A, ρ) ∈ [0, 1].

Let us assume that there exists ρ′ > ρ(A) such that
λ(A, ρ′) = 0 and let us consider an arbitrary shuffled
switching signal θ ∈ Ss(I). Let us consider the sequence
(θj)j∈N of switching signals in Ss(I), defined as in the
proof of Lemma 2. From Lemma 2, ρ(Mρ′) = 0 and
therefore the joint spectral radius of any finite subfamily
ofMρ′ is also zero. In particular, we get for the following
subfamily of n elements:

ρ

({
1

ρ′τ
θ0
1

A
θ,τ

θ0
1

, . . . ,
1

ρ′τ
θn−1
1

A
θ,τ

θn−1
1

})
= 0 .

By applying [16, Proposition 2.1] and using (3) we get
Aθ,τθn = 0. It follows that Aθ,t = 0, for all t ≥ τθn, for

all θ ∈ Ss(I). Then, we get that λ(A, ρ) = 0 for all
ρ > ρ(A).

Now let us assume that for all ρ > ρ(A), λ(A, ρ) > 0.
Let ρ(A) < ρ1 ≤ ρ2. By recalling that τθk ≥ km, we have
for all k ∈ N and for all θ ∈ Ss(I)∥∥Aθ,τθ

k

∥∥
ρ
τθ
k

2

=

∥∥Aθ,τθ
k

∥∥
ρ
τθ
k

1

(
ρ1

ρ2

)τθk
≤

∥∥Aθ,τθ
k

∥∥
ρ
τθ
k

1

(
ρ1

ρ2

)km
.

Raising to the power 1/k and taking the supremum over
shuffled switching signals yields

sup
θ∈Ss(I)

(∥∥Aθ,τθ
k

∥∥
ρ
τθ
k

2

)1/k

≤ sup
θ∈Ss(I)

(∥∥Aθ,τθ
k

∥∥
ρ
τθ
k

1

)1/k (
ρ1

ρ2

)m
.

Now we take the limit of both terms and we get
(5), which implies that ρ 7→ λ(A, ρ) is decreasing.
Then, let us assume that there exists ρ2 > ρ(A) such
that λ(A, ρ2) = 1. It follows from (5) that for all
ρ1 ∈ (ρ(A), ρ2), λ(A, ρ2) < λ(A, ρ1), which contradicts
the fact that λ(A, ρ1) ∈ [0, 1]. Hence, λ(A, ρ) ∈ (0, 1)
for all ρ > ρ(A).

In order to get rid of the dependence of ρ in the ρ-SJSR,
it is natural to introduce the following definition.

Definition 3. The Shuffled Joint Spectral Radius
(SJSR) of A is defined as

λ(A) = lim
ρ→ρ(A)+

λ(A, ρ). (7)

Since by Proposition 2, λ(A, ·) is bounded and non-
increasing in ρ, the right limit at ρ(A) in (7) exists and
the SJSR is well-defined. We can now show some prop-
erties of the SJSR.

Proposition 3. The SJSR enjoys the following proper-
ties:

(i) λ(A) belongs to [0, 1] and is independent of the
choice of the norm;

(ii) For all K ∈ R, K 6= 0, we have λ(KA) = λ(A).

Proof. The first statement follows from (7) and by the
properties of λ(A, ·) proved in Propositions 1 and 2.

Concerning the second item, let K ∈ R, K 6= 0, we have
by (7)

λ(KA) = lim
ρ→ρ(KA)+

λ(KA, ρ) = lim
ρ→ρ(A)+

λ(KA, |K|ρ)

where the second equality comes from the property of
the JSR, ρ(KA) = |K|ρ(A), see e.g. [16, Proposition
1.2]. Furthermore, from (2), one can deduce that for all
ρ > ρ(A), λ(KA, |K|ρ) = λ(A, ρ), therefore λ(KA) =
λ(A).

Let us remark that while the JSR ρ(A) belongs to R+
0 ,

the SJSR λ(A) is always a value in [0, 1]. Intuitively,
while the JSR provides an estimate of the contraction
rate (when ρ(A) < 1) or of the expansion rate (when
ρ(A) > 1) of the system state at each time step for ar-
bitrary switching signals, the SJSR measures how much
additional contraction of the state is obtained each time
the signal shuffles. Theorem 1 in the next section pro-
vides theoretical ground to this interpretation.

4 Shuffled switched systems and ρ-SJSR

In this section, we show how the SJSR relates to stabil-
ity properties of switched linear systems with shuffled
switching signals. From Proposition 2, we already know
that if λ(A, ρ) = 0 for some ρ > ρ(A) then all trajecto-
ries of (1) will stay at 0 after n shuffling instants. So, we
focus in this section on the case when λ(A, ρ) > 0 for all
ρ > ρ(A). In particular, we show how the ρ-SJSR allows
us to compute bounds on the shuffling rate ensuring sta-
bility. The next result clarifies the relationship between
the ρ-SJSR and the behavior of the trajectories of (1).

Theorem 1. For all ρ > ρ(A), for all λ ∈ (λ(A, ρ), 1],
there exists C ≥ 1 such that

‖x(t, x0, θ)‖ ≤Cρtλκ
θ(t)‖x0‖,

∀θ ∈ Ss(I), ∀x0 ∈ Rn, ∀t ∈ N. (8)

Conversely, if there exists C ≥ 1, ρ ≥ 0 and λ ∈ [0, 1]
such that (8) holds, then either ρ > ρ(A) and λ ≥
λ(A, ρ), or ρ = ρ(A) and λ ≥ λ(A).
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Proof. We start by proving the direct result. Let ρ >
ρ(A) and λ ∈ (λ(A, ρ), 1]. By definition of λ(A, ρ), there
exists k0 ≥ 1 such that

sup
θ∈Ss(I)

(∥∥Aθ,τθ
k

∥∥
ρτ

θ
k

)1/k

≤ λ, ∀k ≥ k0.

It follows that∥∥Aθ,τθ
k

∥∥ ≤ ρτθkλk, ∀θ ∈ Ss(I),∀k ≥ k0. (9)

Then, let C1 ≥ 1 be such that (6) holds. In particular,
for T = τθk and for shuffling switching signals, we obtain
from (6) that∥∥Aθ,τθ

k

∥∥ ≤ C1ρ
τθk , ∀θ ∈ Ss(I),∀k ∈ N. (10)

Then, let C2 = C1λ
−k0 , it follows from (9) and (10) that∥∥Aθ,τθ

k

∥∥ ≤ C2ρ
τθkλk, ∀θ ∈ Ss(I),∀k ∈ N. (11)

Let θ ∈ Ss(I), t ∈ N, and k = κθ(t), we have Aθ,t =
Aθ′,t−τθ

k
Aθ,τθ

k
where θ′ ∈ Ss(I) is given by θ′(s) = θ(τθk+

s), for all s ∈ N. By (6), we get that∥∥Aθ′,t−τθ
k

∥∥ ≤ C1ρ
t−τθk . (12)

Then, let C = C1C2, by (11) and (12), we get∥∥Aθ,t∥∥ ≤ ∥∥Aθ′,t−τθ
k

∥∥∥∥Aθ,τθ
k

∥∥ ≤ Cλκθ(t)ρt.

Hence, (8) holds.

We now prove the converse result. By definition of in-
duced matrix norm, (8) is equivalent to the following:

‖Aθ,t‖ ≤ Cρtλκ
θ(t), ∀θ ∈ Ss(I), ∀t ∈ N. (13)

Since λ ∈ [0, 1] and κθ(t) ∈ N we also have

‖Aθ,t‖ ≤ Cρt, ∀θ ∈ Ss(I), ∀t ∈ N.

Raising the previous terms to the power 1/t and taking
the supremum over shuffling switching signals yields

sup
θ∈Ss(I)

‖Aθ,t‖1/t ≤ C1/tρ, ∀t ∈ N.

Using the fact that for every θ ∈ S(I) and all t ∈ N
there exists θt ∈ Ss(I) that coincides with θ up to time
t, the equation above can be re-written as

sup
θ∈S(I)

‖Aθ,t‖1/t ≤ C1/tρ, ∀t ∈ N.

Taking the limit as t goes to infinity, one obtains that
ρ(A) ≤ ρ. Recalling (13) and fixing t = τθk , we have

‖Aθ,τθ
k
‖ ≤ Cρτ

θ
kλk, ∀θ ∈ Ss(I), ∀k ∈ N

which is equivalent to

(
‖Aθ,τθ

k
‖

ρτ
θ
k

)1/k

≤ C1/kλ, ∀θ ∈ Ss(I), ∀k ∈ N. (14)

If ρ > ρ(A), taking the supremum over all shuffled
switching signals and the limit as k goes to infinity yields
λ(A, ρ) ≤ λ. If ρ = ρ(A), then for all ρ′ > ρ(A),
(14) gives

(
‖Aθ,τθ

k
‖

ρ′τ
θ
k

)1/k

≤ C1/kλ, ∀θ ∈ Ss(I), ∀k ∈ N.

Then, it follows that for all ρ′ > ρ(A), λ(A, ρ′) ≤ λ and
therefore λ(A) ≤ λ.

The previous theorem provides a bound on the growth
of the state and can be used to derive conditions for sta-
bilization of system (1) using shuffled switching signals
with a minimal shuffling rate.

Corollary 1. Assume λ(A, ρ) > 0 for every ρ > ρ(A).
Let θ ∈ Ss(I), if there exists ρ > ρ(A) such that γθ >

− ln(ρ)
ln(λ(A,ρ)) , then

lim
t→+∞

‖x(t, x0, θ)‖ = 0, ∀x0 ∈ Rn. (15)

Proof. If λ(A, ρ) > 0 and γθ > − ln(ρ)
ln(λ(A,ρ)) , then there

exists λ ∈ (λ(A, ρ), 1) such that γθ > − ln(ρ)
ln(λ) and ε > 0

such that ε < γθ + ln(ρ)
ln(λ) . Then, from the definition of

shuffling rate, there exists t0 ∈ N such that

κθ(t)

t
> γθ − ε

2
, ∀t ≥ t0.

From Theorem 1, there exists C ≥ 1 such that for all
x0 ∈ Rn, for all t ≥ t0.

‖x(t, x0, θ)‖ ≤ Cρtλκ
θ(t)‖x0‖

≤ Cρtλ(γθ− ε2 )t‖x0‖

≤ Cρtλ(− ln(ρ)
ln(λ)

+ ε
2 )t‖x0‖

= Cλ
ε
2 t‖x0‖,

from which (15) follows.
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A practical consequence of the previous corollary is that
even if the switched system is unstable for arbitrary
switching (i.e. if ρ(A) > 1), it can be stabilized by shuf-
fling sufficiently fast. Note that since for all θ ∈ Ss(I),
the shuffling rate γθ ≤ 1

m , it follows that stabilization
by shuffling can only be done if there exists ρ > ρ(A)

such that − ln(λ(A,ρ))
ln(ρ) > m.

Remark 1. As a consequence of Corollary 1, we have

that if λ(A) ∈ (0, 1), γθ > − ln(ρ(A))
ln(λ(A)) implies (15). How-

ever, we are unable to show that, in general, the func-

tion ρ 7→ − ln(ρ)
ln(λ(A,ρ)) is non-decreasing, hence replacing

the assumption of Corollary 1 by γθ > − ln(ρ(A))
ln(λ(A)) may

increase the conservativeness of the result.

5 Approximation of the ρ-SJSR

Similar to the JSR, the exact computation of the ρ-SJSR
appears in general out of reach, and an interesting prob-
lem is to look for theoretical and numerical methods al-
lowing to estimate the ρ-SJSR. Such estimates would
have an impact on the applicability of the stability re-
sults, Theorem 1 and Corollary 1. From Lemma 2, it fol-
lows that λ(A, ρ) could be approximated by computing
bounds on ρ(Mρ). However, off-the-shelf algorithms for
computing approximations of the JSR only apply to fi-
nite set of matrices [30]. A lower bound of λ(A, ρ) can
still be computed by computing a lower bound of the JSR
of a finite subfamily ofMρ. However, a similar approach
does not allow to compute upper bounds. In the next
subsection, we provide lower and upper bounds based
on the computation of the joint spectral radius of a fi-
nite set of matrices. Methods to compute upper bounds
for the ρ-SJSR based on Lyapunov techniques are then
developed in Section 5.2.

5.1 Asymptotic estimate

In this section, we provide asymptotically tight bounds
of λ(A, ρ) for a large enough ρ. We first recall the fol-
lowing classical result, which roughly speaking ensures,
for any bounded set of matrices M, the existence of a
matrix norm such that ρ(M) is approximated by the
maximum norm of the matrices inM.

Proposition 4 ([6, Lemma 2]). LetM be a bounded set
of matrices. The following equality holds

ρ(M) = inf
‖·‖

max
M∈M

‖M‖,

where the infimum is taken among all matrix norms in-
duced from norms in Rn.

When it exists, an induced norm ‖ · ‖ that satisfies
ρ(M) = max

M∈M
‖M‖ is called extremal for M. We re-

fer to [16, Theorem 2.2], and also to [5] and [17], for

sufficient conditions and for necessary and sufficient
conditions for the existence of extremal norms.

Let us consider the setNI of products of matrices where
all modes in I appear exactly once:

NI =

{
m∏
k=1

Ajk

∣∣∣∣∣ j1, . . . , jm ∈ I,
∀i ∈ I,∃k ∈ {1, . . . ,m}, jk = i

}
.

The following proposition provides a lower bound for the
ρ-SJSR.

Proposition 5. For all ρ > ρ(A)

λ(A, ρ) ≥ ρ(NI)

ρm
.

Proof. Let us remark that we have 1
ρmNI ⊆Mρ. Then,

from the definition of the JSR, we get

ρ(Mρ) ≥ ρ
( 1

ρm
NI
)

=
ρ(NI)

ρm
.

Lemma 2 then allows us to conclude.

It is natural to ask whether the lower bound provided
in Proposition 5 can prove asymptotically tight. The
following theorem provides an upper bound for the ρ-
SJSR and answers to this question.

Theorem 2. The following results hold true.

(i) For allK > ρ(NI), there existsR ≥ ρ(A) such that
for all ρ ≥ R,

λ(A, ρ) ≤ K

ρm
. (16)

(ii) We have the asymptotic estimate

lim
ρ→+∞

ρmλ(A, ρ) = ρ(NI). (17)

(iii) If there exists a norm ‖ · ‖∗ that is extremal for NI ,
then there exists R ≥ ρ(A) such that for all ρ ≥ R,

λ(A, ρ) =
ρ(NI)

ρm
. (18)

Proof. Let us fixK > ρ(NI). By Proposition 4 there ex-
ists an induced matrix norm ‖ · ‖∗ such that ‖M‖∗ ≤ K
for every M ∈ NI . Considering now the set M̂ρ =

ρmMρ, we have NI ⊆ M̂ρ. We want to show that

‖M‖∗ ≤ K for every M ∈ M̂ρ \ NI , provided that
ρ is large enough. For this purpose, we first take any
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R̃ > ρ(A). Then, again by Proposition 4, there exists

an induced matrix norm ‖ · ‖∗∗ such that ‖A‖∗∗ ≤ R̃ for

every A ∈ A. Taking K̃ ≥ 1 such that ‖A‖∗ ≤ K̃‖A‖∗∗
for every matrix A ∈ Rn×n we obtain

‖Aθ,i‖∗ ≤ K̃‖Aθ,i‖∗∗ ≤ K̃R̃i, ∀θ ∈ S(I), ∀i ∈ N.

Observe now that every element of M̂ρ \ NI takes the
form 1

ρ
τθ
1
−mAθ,τθ1 for some θ ∈ Ss(I) such that τθ1 > m.

Setting R = max
{
R̃, K̃K R̃

m+1
}

we have for every ρ ≥ R

∥∥∥∥ 1

ρτ
θ
1−m

Aθ,τθ1

∥∥∥∥
∗
≤ 1

ρτ
θ
1−m

K̃R̃τ
θ
1 = K̃R̃m

(
R̃

ρ

)τθ1−m

≤ K̃R̃m
(
R̃

R

)τθ1−m
≤ K̃R̃m+1

R
≤ K.

This proves that ‖M‖∗ ≤ K for every M ∈ M̂ρ \ NI ,

hence for every M ∈ M̂ρ, if ρ ≥ R. We deduce that

λ(A, ρ) =
1

ρm
ρ(M̂ρ) ≤

1

ρm
sup

M∈M̂ρ

‖M‖∗ ≤
K

ρm
,

for ρ ≥ R, which proves (16).

Setting K = ρ(NI) + ε for an arbitrary ε > 0 we then
get the existence of R ≥ ρ(A) such that, for all ρ ≥ R,

0 ≤ ρmλ(A, ρ)− ρ(NI) ≤ ε,

where the inequality on the left follows from Proposi-
tions 5. Letting ε tend to zero, this implies (17).

Finally, by taking ‖ ·‖∗ extremal forNI in the argument
above, we obtain that (16) holds true with K = ρ(NI).
Together with Proposition 5, this implies (18).

In the case where all the matrices Ai are invertible, a
practical criterion to estimate the lower boundR in The-
orem 2 is given by the following lemma. Before stating
the lemma, we define, for each i ∈ I, the set Ni of prod-
ucts of N matrices in A with N < m, where each mode
in I appears at most once and i appears exactly once:

Ni =

{
N∏
k=1

Ajk

∣∣∣∣∣ j1, . . . , jN ∈ I, N < m,

∀k 6= k′, jk 6= jk′ , and ∃k, jk = i

}
.

Lemma 3. Assume all the matrices in A are invertible.
Let K ≥ ρ(NI) and let ‖ · ‖∗ be an induced matrix norm
such that ‖M‖∗ ≤ K for every M ∈ NI . Then, setting

R = max
i∈I,M∈Ni

‖MAiM
−1‖∗, (19)

we have that R ≥ ρ(A) and (16) (and (18), if K =
ρ(NI)) holds true for ρ ≥ R.

Proof. Following the proof of Theorem 2, it is enough

to show that ‖Aθ,τθ1 ‖∗ ≤ KRτ
θ
1−m for every θ ∈ Ss(I)

such that τθ1 > m. The product of matrices Aθ,τθ1 =

Aθ(τθ1−1) · · ·Aθ(0) is shuffling once, therefore all the

modes appear at least once (with θ(τθ1 − 1) appearing
exactly once). The total number of repetitions in the
product is given by n = τθ1 −m > 0. Suppose that the
first repeated mode is θ(j1). In order to remove Aθ(j1),
using the fact that all matrices Ai are invertible, we
multiply Aθ,τθ1 on the right by

Q1 = (Aθ(j1−1) · · ·Aθ(0))
−1A−1

θ(j1)(Aθ(j1−1) · · ·Aθ(0)).

Then, Aθ,τθ1Q1 = A
θ(1),τθ

(1)

1

where the switching signal

θ(1) is given by θ(1)(t) = θ(t) until the instant j1 − 1,
and with θ(1)(t) = θ(t + 1) afterwards. It is clear that

τθ
(1)

1 = τθ1 − 1. By repeating this process n times, we
get a switching signal θ(n) without repetitions before its

first shuffling instant (i.e. τθ
(n)

1 = τθ1 − n = m). Then,
we finally have

Aθ,τθ1
( n∏
k=1

Qn+1−k

)
= A

θ(n),τθ
(n)

1

,

with A
θ(n),τθ

(n)

1

∈ NI . It follows that

Aθ,τθ1 = A
θ(n),τθ

(n)

1

( n∏
k=1

Q−1
k

)
,

where for all k = 1, . . . , n,

Q−1
k ∈

⋃
i∈I
{MAiM

−1|M ∈ Ni},

and therefore ‖Q−1
k ‖∗ ≤ R, where R is given by (19).

Moreover, since Ai ∈ Ni, we have that R ≥ max
i∈I
‖Ai‖∗,

which implies by Proposition 4 that R ≥ ρ(A). Finally,
from submultiplicativity of the induced matrix norm, we
get that for all θ ∈ Ss(I)

‖Aθ,τθ1 ‖∗ ≤ ‖Aθ(n),τθ
(n)

1

‖∗
( n∏
k=1

‖Q−1
k ‖∗

)
≤ KRn ,

which yields the expected result since n = τθ1 −m.

We have seen with Theorem 2 and Lemma 3 that, un-
der certain conditions, we can find tight bounds on the
ρ-SJSR. In particular, if one can find a norm ‖ · ‖∗ that
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is extremal forNI , (19) provides an R ≥ ρ(A) such that
for all ρ ≥ R the exact value of ρ-SJSR is given by (18).
For all ρ ∈ [ρ(A), R) we can still use the lower bound
provided by Proposition 5, but we need an effective way
to compute an upper bound. To address this problem, in
the next section we present two Lyapunov-based meth-
ods.

Before that, we end this section by exhibiting a class
of switched systems for which the value of the ρ-
SJSR can be explicitly determined for all values of
ρ > ρ(A). Let us consider a set of commuting matri-
ces A = {A1, · · · , Am}, it is well known (see e.g. [9])
that in that case the JSR is equal to the maximal
value of the spectral radii of the matrices of A, that is
ρ(A) = max(ρ(A1), . . .ρ(Am)). Interestingly, in that
case, we are also able to determine the expression of the
ρ-JSR:

Proposition 6. For a finite set of commuting matrices
A = {A1, · · · , Am}, we have for all ρ > ρ(A),

λ(A, ρ) =
ρ(A1 · · ·Am)

ρm
.

Proof. Since the matrices commute, all matrices NI are
equal to A1 · · ·Am. Then, Proposition 5 provides a lower
bound on λ(A, ρ) with ρ(NI) = ρ(A1 · · ·Am). We need
to show that it is also an upper bound.

From Proposition 4 we know that, for all ρ > ρ(A), there
exists a (submultiplicative) matrix norm ‖ · ‖∗ such that
ρ > max

i∈I
(‖Ai‖∗). In the case of commuting matrices, the

product Aθ,τθ
k

can be rearranged as follows

Aθ,τθ
k

= (A1 · · ·Am)kAi11 · · ·Aimm

where mk + i1 + · · ·+ im = τθk . Whereby we have

‖Aθ,τθ
k
‖∗

ρτ
θ
k

≤ ‖A1 · · ·Am‖k∗‖A1‖i1∗ · · · ‖Am‖im∗
ρkmρi1 · · · ρim

.

Moreover, recalling that
‖Aj‖∗
ρ < 1 for j = 1, . . . ,m, we

get
‖Aθ,τθ

k
‖∗

ρτ
θ
k

≤ ‖A1 · · ·Am‖k∗
ρkm

.

By raising the previous expression to the power 1
k , by

taking the supremum over θ ∈ Ss(I) and the limit for k
going to infinity, we get

λ(A, ρ) ≤ ρ(A1 · · ·Am)

ρm
.

5.2 Computing bounds with Lyapunov techniques

This section details two methods for computing upper
bounds on the JSR and the ρ-SJSR. Both approaches are
based on Lyapunov functions and automata theoretic
techniques. While the first approach is computationally
more tractable, the second approach is shown to be tight.

5.2.1 Lyapunov function indexed by I

Our first method is based on a Lyapunov function in-
dexed by the set of modes I. It can be seen as an exten-
sion of Theorem 1 in [13] in order to compute bounds on
the JSR and the ρ-SJSR (in [13], only a stability certifi-
cate is provided).

Theorem 3. If there exist V : I×Rn → R+
0 , α1, α2, ρ >

0 and λ ∈ [0, 1] such that the following inequalities hold
true for every x ∈ Rn

α1‖x‖2 ≤ V (i, x) ≤ α2‖x‖2, i ∈ I (20)

V (i, Ai′x) ≤ ρ2V (i, x), i, i′ ∈ I, i 6= i′ (21)

V (i+ 1, Aix) ≤ ρ2V (i, x), i ∈ I \ {m} (22)

V (1, Amx) ≤ ρ2λ2mV (m,x), (23)

then the bound (8) holds.

Proof. The proof follows the main lines of that of Theo-
rem 1 in [13]. Let us consider an initial condition x0 ∈ Rn
and a shuffled switching signal θ, let us denote x(·) =
x(·, x0, θ). Let η : N→ I be defined by η(0) = 1 and the
following rules:

if θ(t) 6= η(t), then η(t+ 1) = η(t);

if θ(t) = η(t) and η(t) 6= m, then η(t+ 1) = η(t) + 1;

if θ(t) = η(t) and η(t) = m, then η(t+ 1) = 1.
(24)

An equivalent description of the evolution of η can be
given in terms of a finite state automaton, like the one
shown in Figure 2 for m = 3. Inspecting the dynamics
of η, one can easily see that η takes transitions from m
to 1 an infinite number of times if and only if θ is a
shuffled switching signal. Moreover, there is at least one
such transition every m shuffling instants.

1 2 3
1 2

3

2, 3 1, 3 1, 2

Fig. 2. Automaton describing the dynamics of η in (24) for
m = 3. State labels correspond to the value of η, transition
labels correspond to the value of θ.
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Let us consider W : N → R+
0 , defined by W (t) =

V (η(t),x(t))
ρ2t , for all t ∈ N. It follows from (21), (22) and

(23) that W (t+1) ≤W (t), thus W (t) is non-increasing.
Proceeding as in the proof of Theorem 1 in [13], we can
show that

W (τθjm) ≤ λ2jmW (0), ∀j ∈ N.

Let t ∈ [τθjm, τ
θ
(j+1)m), then κθ(t) ≤ (j + 1)m. From the

monotonicity of W (t) we have

W (t) ≤W (τθjm) ≤ λ2κθ(t)−2mW (0).

From (20) we have W (0) ≤ α2‖x0‖2 and we get for all
t ∈ N

V (η(t), x(t)) ≤ α2ρ
2tλ2κθ(t)−2m‖x0‖2.

From (20) we also have, for all t ∈ N, ‖x(t)‖2 ≤
V (η(t),x(t))

α1
. Whence, by taking C = λ−m

√
α2

α1
, we ob-

tain the bound (8).

The previous result allows us to compute upper-bounds
on the JSR and the ρ-SJSR. However, there is some con-
servativeness that is mostly due to the fact that the Lya-
punov function is guaranteed to contract only every m
shuffling instants. In the following subsection, we show
an approach that makes it possible to compute a Lya-
punov function that contracts at each shuffling instant.
This also allows us to compute tight upper bounds on
the JSR and the ρ-SJSR.

5.2.2 Lyapunov function indexed by 2I

Our second approach is also based on the use of a Lya-
punov function and of an automaton. The main differ-
ence is that we use an automaton that visits a given state
at each shuffling instant (instead of at most eachm shuf-
fling instants as in the previous section). In order to do
that, we need to use a Lyapunov function indexed on the
powerset of I. While this significantly increases the com-
plexity of the approach, 2I having exponentially more
elements than I, this allows us to propose a method that
provides tight bounds on the JSR and the ρ-SJSR.

Theorem 4. If there exist V : (2I \ {I}) × Rn → R+
0 ,

α1, α2, ρ > 0 and λ ∈ [0, 1] such that the following in-
equalities hold true for every x ∈ Rn

α1‖x‖2 ≤ V (J, x) ≤ α2‖x‖2, ∀J ( I (25)

V (J ∪ {i}, Aix) ≤ ρ2V (J, x), if J ∪ {i} 6= I (26)

V (∅, Aix) ≤ ρ2λ2V (J, x), if J ∪ {i} = I (27)

then the bound (8) holds. Conversely, if the matrices Ai
are invertible, for all i ∈ I and the bound (8) holds for

some ρ > 0, λ ∈ [0, 1] and C ≥ 1, then there exists
a function V : (2I \ {I}) × Rn → R+

0 such that the
inequalities (25), (26) and (27) are satisfied.

Proof. We first prove the direct part. Let us consider an
initial condition x0 ∈ Rn and a shuffled switching signal
θ, let us denote x(·) = x(·, x0, θ). Let η : N → 2I \ {I}
be defined by η(0) = ∅ and the following rules:{

if η(t) ∪ {θ(t)} 6= I, then η(t+ 1) = η(t) ∪ {θ(t)};
if η(t) ∪ {θ(t)} = I, then η(t+ 1) = ∅.

(28)
An equivalent description of the evolution of η can be
given in terms of a finite state automaton, like the one
shown in Figure 3 for m = 3. It is straightforward to
see from the dynamics of η that η(t) = ∅ if and only if
t = τθk for some k ∈ N. Hence, the automaton state ∅ is
visited at each shuffling instant.

Now, let us consider W : N → R+
0 , defined by W (t) =

V (η(t),x(t))
ρ2t , for all t ∈ N. It follows from (26) and (27)

that for all t ∈ N, W (t + 1) ≤ W (t), thus W (t) is non-
increasing. Also since for all k ∈ N, we have η(τθk ) =
∅, (27) gives W (τθk ) ≤ λ2W (τθk − 1) for every k ∈ N,
k ≥ 1. The latter relation and the monotonicity of W (t)
implies that W (τθk ) ≤ λ2W (τθk−1). Hence, by induction
we conclude that

W (τθk ) ≤ λ2kW (0), ∀k ∈ N.

Let t ∈ [τθk , τ
θ
(k+1)), then κθ(t) = k, from the monotonic-

ity of W (t) we have:

W (t) ≤W (τθk ) ≤ λ2κθ(t)W (0).

From this point on the proof is similar to the final part
of that of Theorem 3. Therefore we finally obtain the
bound (8).

∅

{1}

{2}

{3}

{1, 2}

{2, 3}

{1, 3}

2

1

2, 3

1, 3

1, 2

2

1

1

2

2

1

1 3

3

3

3

3

2

Fig. 3. Automaton describing the dynamics of η in (28) for
m = 3. State labels correspond to the value of η, transition
labels correspond to the value of θ.
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We prove now the converse result. We first consider the
case ρ = 1. For J ⊆ I with J 6= ∅, letMJ consist of all
finite products of N matrices in A, with N ∈ N, where
each mode in J appears at least once, and the last mode
jN belongs to J and appears exactly once:

MJ =


N∏
k=1

Ajk ,

∣∣∣∣∣∣∣∣
j1, . . . , jN ∈ I, N ∈ N,
∀i ∈ J, ∃k, jk = i,

jN ∈ J and ∀k 6= N, jk 6= jN

 .

In particular,MI is the set of all possible matrices Aθ,τ1
θ

for θ ∈ Ss(I). Since ρ = 1, it follows from (8) that for
all k ∈ N

‖Aθ,τk
θ
‖ ≤ Cλk,∀θ ∈ Ss(I) ,

which is equivalent to

∥∥∥ k∏
j=1

Mj

∥∥∥ ≤ Cλk, ∀M1, . . . ,Mk ∈MI .

From [6, Lemma 2] applied to the family of products
of matrices in { 1

λM | M ∈ MI}, it follows that there
exists a norm ‖ · ‖∗ in Rn such that the corresponding
induced matrix norm, also denoted by ‖ · ‖∗, satisfies

sup
M∈MI

‖M‖∗ ≤ λ.

Then, for all subsets J ( I and x ∈ Rn we define

V (J, x) = sup
M∈MI\J

‖Mx‖2∗.

Let us first prove (25). For J ( I, letMJ be an arbitrary
element ofMI\J , then V (J, x) ≥ ‖MJx‖2∗. All matrices

MJ are invertible, ‖·‖∗ is equivalent to ‖·‖, and 2I \{I}
is a finite set, therefore there exists α1 > 0 such that
‖MJx‖2∗ ≥ α1‖x‖2, for all J ( I, x ∈ Rn. Also, it follows
from (8) with ρ = 1 and λ ∈ [0, 1] that for all J ( I, for
all M ∈MI\J , ‖M‖ ≤ C. Then, ‖ · ‖∗ being equivalent
to ‖ · ‖, it follows that there exists α2 > 0 such that
V (J, x) ≤ α2‖x‖2, for all J ( I, x ∈ Rn.

To prove (26), we first notice that every product MAi
with M ∈MI\(J∪{i}) belongs toMI\J . Hence,

V (J ∪ {i}, Aix) = sup
M∈MI\(J∪{i})

‖MAix‖2∗

≤ sup
M ′∈MI\J

‖M ′x‖2∗ = V (J, x).

In order to prove (27), we use the fact that if J ( I
is such that J ∪ {i} = I then Ai ∈ MI\J = M{i}.

Consequently,

V (∅, Aix) = sup
M∈MI

‖MAix‖2∗

≤ λ2‖Aix‖2∗
≤ λ2 sup

M∈MI\J
‖Mx‖2∗ = V (J, x).

This concludes the proof in the case ρ = 1.

Let us consider now the general case ρ 6= 1. For the set
of matrices 1

ρA, the corresponding dynamics satisfies (8)

with ρ = 1 and we can consider the function V de-
fined above. It directly follows from the properties shown
above and the fact that V is homogeneous of degree two
that (25)-(26)-(27) hold true. The proof is complete.

As a direct consequence of the previous results and The-
orem 1 we have the following corollary.

Corollary 2. Let ρ > 0 and λ ∈ [0, 1] such that there
exists a function V satisfying the conditions of Theorem
3 or Theorem 4, then either ρ > ρ(A) and λ ≥ λ(A, ρ),
or ρ = ρ(A) and λ ≥ λ(A). Conversely, if the matrices
Ai are invertible, for all i ∈ I, then for all ρ > ρ(A), for
all λ ∈ (λ(A, ρ), 1], there exists a function V satisfying
the conditions of Theorem 4.

Corollary 2 shows that upper-bounds of the JSR and
of the ρ-SJSR can be found by computing Lyapunov
functions satisfying the conditions in Theorems 3 and 4.
Limiting the search to quadratic Lyapunov function,
the conditions (20)-(21)-(22)-(23) or (25)-(26)-(27) can
straightforwardly be translated to linear matrix inequal-
ities (LMIs) for which efficient solvers exist. However,
the tightness of the conditions in Theorem 4 is lost when
constraining the Lyapunov functions to be quadratic.

6 Numerical examples

In this section, we illustrate the main results of the paper
with two numerical examples 1 .

The first example shows an application of Proposition 5
to compute a lower bound of the ρ-SJSR, and of Theo-
rem 2, Theorems 3 and 4 to compute upper bounds of
the ρ-SJSR. The second example illustrates the result of
Corollary 1 where a switched system that is unstable for
arbitrary switching is stabilized by shuffling sufficiently
fast. The switched systems considered in both examples
are adapted from [13].

1 The Matlab scripts of the two numerical examples are
available at the following repository: https://github.com/
georgesaazan/Shuffled-systems
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6.1 Computing bounds of the ρ-SJSR

Let us consider a switched system in R3 with 2 modes,
where A = {A1, A2} with:

A1 =

(
1 0 0
0 µ1 cos(φ1) −µ1 sin(φ1)
0 µ1 sin(φ1) µ1 cos(φ1)

)
,

A2 =

(
µ2 cos(φ2) −µ2 sin(φ2) 0
µ2 sin(φ2) µ2 cos(φ2) 0

0 0 1

)
,

(29)

where the numerical values of the parameters are µ1 =
0.9, µ2 = 0.2, φ1 = π

6 , φ2 = π
3 . Let us notice that ρ(A) =

1 with the Euclidean norm ‖ · ‖ being extremal for A.

We first compute a lower bound for the ρ-SJSR using
Proposition 5. Let us remark that NI = {A1A2, A2A1}.
We use the JSR toolbox [30] to compute tight bounds
on ρ(NI) and we obtain ρ(NI) ∈ [ρ, ρ] where ρ =
0.7640321 and ρ = 0.7640322. It follows from Proposi-
tion 5, that

∀ρ > 1, λ(A, ρ) ≥
ρ

ρm
.

We now apply Theorem 2 and Lemma 3 to compute
an upper bound on the ρ-SJSR. Considering K = ρ,
we search for an induced matrix norm ‖ · ‖∗ such that
‖A1A2‖∗ ≤ ρ and ‖A2A1‖∗ ≤ ρ. Limiting the search to a

quadratic norm of the form ‖x‖∗ =
√
x>Qx,Q = Q> ≥

0 with the associated induced matrix norm ‖M‖∗ =
‖Q1/2MQ−1/2‖, the conditions above are equivalent to
the following LMIs:

(A1A2)>QA1A2 ≤ ρ2Q,

(A2A1)>QA2A1 ≤ ρ2Q.

Solving these LMIs yields

Q =
(

0.2755 0.0688 0.0257
0.0688 0.3660 0.2248
0.0257 0.2248 0.3585

)
.

Then, we compute R according to (19) and we get

R = max(‖A1‖∗, ‖A2‖∗) = 1.3279.

Then, from Lemma 3, we get that

∀ρ ≥ R, λ(A, ρ) ≤ ρ

ρm
.

Now, we use the Lyapunov techniques presented in The-
orems 3 and 4 to compute upper-bounds of the ρ-SJSR
for ρ ∈ (1, R). Searching for Lyapunov functions of the
form V (i, x) = x>Qix, i ∈ I the conditions of Theo-

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0.4

0.5

0.6

0.7

0.8

0.9

1

(A
,

)

lower bound (Proposition 5.2)

upper bound (Theorem 5.7)

upper bound (Theorem 5.8)

Fig. 4. Lower and upper bounds on the ρ-SJSR for (29).

rem 3 translate to the following LMIs:

In ≤Qi, i ∈ I
A>i′QiAi′ ≤ρ2Qi, i, i′ ∈ I, i 6= i′

A>i Qi+1Ai ≤ρ2Qi, i ∈ I \ {m}
A>mQ1Am ≤ρ2λ2mQm.

Similarly, searching for Lyapunov functions of the form
V (J, x) = x>QJx, J ( I, the conditions of Theorem 4
translate to the following LMIs:

In ≤QJ , J ( I
A>i QJ∪{i}Ai ≤ρ2QJ , if J ∪ {i} 6= I

A>i Q1Ai ≤ρ2λ2QJ , if J ∪ {i} = I.

Then, for each ρ ∈ Ω = {1, 1.05, · · · , 1.35}, we can find
an upper bound λ(ρ) on λ(A, ρ) by searching (using a
line search) for the smallest value of λ for which the LMIs
above have a solution. Then, we can obtain an upper
bound for the ρ-SJSR for all ρ ∈ (1, R) using (5):

∀ρ ∈ (1, R), λ(A, ρ) ≤ min
ρ′∈Ω,ρ′≤ρ

(
ρ′

ρ

)m
λ(ρ′).

The resulting upper-bounds as well as the lower bound
are shown in Figure 4. One can check that the upper-
bound computed using Theorem 4 is always tighter than
that provided by Theorem 3. However, let us remark that
the former approach involves solving a set of m(m+ 1)
LMIs while the latter requires solving a set of (2m −
1)(m+1) LMIs. For large values ofm the latter approach
is likely to be intractable.

6.2 Case study: synchronization over a network

We provide a short case-study regarding an application
of our tools to the design of networked controllers for syn-
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chronization of distributed oscillators. Let us consider
m + 1 identical components consisting of discrete-time
oscillators whose dynamics is given by:

zi(t+ 1) = Rzi(t) + ui(t), i = 1, . . . ,m+ 1 (30)

where zi(t) ∈ R2, ui(t) ∈ R2 andR =
(
µ cos(φ) −µ sin(φ)
µ sin(φ) µ cos(φ)

)
with µ = 1.02 and φ = π

6 . The input ui(t) is used for
synchronization purpose and is based on the available
information at time t. The information is exchanged
over a single hop communication network, which con-
sists of m communication channels between components
i and i + 1, i = 1, . . . ,m. We assume that the net-
work capacity is limited, in such a way that only one
channel can be activated at a given time instant. For-
mally, the active channel is given by a switching signal
θ : N → I = {1, . . . ,m}. Then, the input value imple-
menting the synchronization protocol is given as follows:

u1(t) =

{
k(z2(t)− z1(t)), if θ(t) = 1

0, otherwise

ui(t) =


k(zi−1(t)− zi(t)), if θ(t) = i− 1

k(zi+1(t)− zi(t)), if θ(t) = i

0 otherwise

for i = 2, . . . ,m,

um+1(t) =

{
k(zm(t)− zm+1(t)), if θ(t) = m

0 otherwise

(31)

where k ∈ (0, 1) is a control gain. Denoting the vector of
synchronization errors as x(t) = (x1(t)>, . . . , xm(t)>)>

with xi(t) = zi+1(t) − zi(t), the error dynamics is de-
scribed by a 2m-dimensional switched linear system of
the form (1) with m modes. The expression of the ma-
trices Ai ∈ R2m×2m, i = 1, . . . ,m can be easily derived
from (30)-(31).

For m ≥ 2, it is clear that the synchronization cannot
be achieved using arbitrary switching signals. Indeed,
considering for instance the constant switching signal
θ(t) = 1, for all t ∈ N, components 1 and 2 will synchro-
nize but other agents that do not get the opportunity
to exchange information cannot synchronize. Hence, we
use shuffled switching signals. In our case study, we aim
at providing answers to the following questions:

(1) Co-design a control gain k and a minimal shuffling
rate γ∗ so that all oscillators synchronize;

(2) Determine the maximal number of oscillators that
can be synchronized given the proposed network
architecture and capacity.

We compute ρ(A) using the JSR toolbox. We then use
Theorem 4 to compute an upper bound λ(ρ) on the ρ-
SJSR by solving the associated LMIs presented in the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k

0

0.1

0.2

0.3

0.4

0.5

0.6

*

3 oscillators

4 oscillators

5 oscillators

Fig. 5. Minimal shuffling rate γ∗ as a function of the control
gain k and of the number of oscillators m+ 1.

previous subsection. Note that

γ∗ := inf
ρ>ρ(A)

− ln(ρ)

ln(λ(ρ))
≥ inf
ρ>ρ(A)

− ln(ρ)

ln(λ(A, ρ))
.

In this example, we observe numerically that the infi-
mum is reached for ρ = ρ(A).

We computed γ∗ for several values of k ∈ (0, 1) and
m + 1 ∈ {3, 4, 5} and we show the result in Figure 5.
In this figure, the dashed lines correspond to the max-
imal achievable shuffling rate 1

m . From Corollary 1, we
know that the switched system can be stabilized if we use
shuffled switching signals θ ∈ Ss(I) whose shuffling rate
γθ ∈ (γ∗, 1

m ]. Hence, in order to stabilize the system, we
should carefully select the control gain k such that the
corresponding value of γ∗ < 1

m . This answers the first
point of our case study. For instance, we can see that for
a system composed of m + 1 = 3 oscillators, for a con-
trol gain k = 0.6 we get γ∗ = 0.08 and we can stabilize
the system by imposing a shuffling rate γθ ∈ (0.08, 0.5].
If we choose k = 0.88, then γ∗ > 1

m and we are not able
to stabilize the system by shuffling.

We also verified that for m + 1 = 6 oscillators, γ∗ > 1
m

for all control gain k ∈ (0, 1). Therefore, for 6 oscillators,
there is no suitable choice of control gain k such that the
system can be stabilized by shuffling. This answers the
second point of our case study.

We now proceed with some illustrative numerical simu-
lations. Let us consider a system composed of m+ 1 = 3
oscillators with control gain k = 0.4, then from Figure
5, the corresponding lower bound on the shuffling rate
is γ∗ = 0.06. Let us consider the initial synchronization

error x(0) = (−1.5 −0.5 2 −1)>. We consider random
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Fig. 6. Time evolution of the synchronization error x(t)
and the switching signal θ(t) for a shuffling rate higher than
γ∗ = 0.06.
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Fig. 7. Time evolution of the synchronization error x(t)
and the switching signal θ(t) for a shuffling rate lower than
γ∗ = 0.06.

switching signals generated by a discrete-time Markov
chain with 2 states and the following transition matrix:( 1−p p

p 1−p
)

where p ∈ (0, 1) is the probability to switch at
a given time instant. It is easy to see that such switching
signals are shuffled almost surely. Moreover, the larger
p the higher the shuffling rate of the switching signals.
We first consider p = 1/10, Figure 6 shows the evolu-

tion of κθ(t)
t , the switching signal θ(t) and the synchro-

nization errors x1(t), x2(t). It is interesting to note that
κθ(t)
t > 0.06 and that the system stabilizes as expected.

Next, we consider p = 1/70, the corresponding simula-
tion results are shown in Figure 7. We can check on the

figure that in this case κθ(t)
t < 0.06 and that the system

does not stabilize, the shuffling being too slow.

7 Conclusion

In this paper, we introduced the ρ-SJSR and the SJSR,
a new notion of joint spectral radius for discrete-time
switched linear systems driven by shuffled switching
signals. We have established some of their properties
and highlighted their relation to stability properties of
switched systems. We presented a method based on the
JSR of a finite set of matrices to compute asymptoti-
cally tight lower and upper bounds of the ρ-SJSR. We
also developed two approaches based on Lyapunov func-
tions and automata theoretic techniques to compute
upper-bounds of the ρ-SJSR. While the first approach
is computationally more tractable, the second approach
was shown to be tight. Numerical examples show the
effectiveness of the proposed numerical approximation
methods. We also showed an application of the SJSR to
the synchronization of unstable oscillators.

The current work opens several research directions for
the future. Firstly, even though the proposed Lyapunov
conditions make it possible to compute tight upper
bounds of the ρ-SJSR, their translation to linear ma-
trix inequalities may introduce some conservatism. It is
then interesting to investigate how techniques similar to
the path-complete graph Lyapunov functions [1] can be
used in order to derive linear matrix inequalities whose
solution provide a tight upper bound of the ρ-SJSR.
Secondly, it has been shown in [31] that stability of a
switched system with switching signals belonging to an
ω-regular language is equivalent to the shuffled stability
of a lifted switched system, so our current approach can
readily be used to analyze stability properties of such
systems. However, since our approach is based on au-
tomata theoretic techniques, it is natural to think that
one can derive stability conditions by working directly
on the Büchi, Rabin or Muller automaton specifying
the ω-regular language.
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