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Abstract

Recently a link between Gaussian analytic functions (GAFs) and time-frequency

transforms has been established by Bardenet et al. This work was motivated

by the earlier work performed by Flandrin on the zeros of the Spectrogram

(squared modulus of the short-time Fourier transform) and their regular dis-

tribution which form a point process in the time-frequency plane. The aim of

this paper is to extend these earlier studies to the Stockwell transform (ST)

which is an hybrid transform between the Short Time Fourier Transform

(STFT) and the Continuous Wavelet Transform (CWT). First, the factor-

ization of a generalized form of the ST in term of Bargmann transform is

given. Then the ST of white Gaussian noise is developed formally in order

to give the link between ST and planar GAFs. Because of the close relation

between the ST and the Morlet Wavelet transform the zeros of this specific

CWT are also discussed in this study. Finally, examples of zeros detected

from the ST domain is illustrated on synthetic and real signals.

1. Introduction

Time-Frequency (TF) analysis provides powerful methods and transforms

to analyse non-stationary signals when their statistical properties depend on
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time. Indeed, the Fourier transform maps signals into the frequency do-

main but without any information on time which can be a limitation for

non-stationary signals. Jointly representing the temporal and frequency con-

tent of a signal allows to better understand the physical phenomenon that

generates it. There are different methods to generate this qualitative repre-

sentation, which can be essentially summarized by two different approaches:

linear and quadratic time-frequency methods. The first family tries to decom-

pose the time-frequency plane into elementary parts called atoms describing

locally the time and frequency content and assuming that the signal in ques-

tion is stationary inside the applied window. The second family, called non-

linear or more precisely quadratic transforms, tries to describe the energy

distribution of the signal in the time-frequency plane. While the first family

suffers from poor time-frequency concentration which will require optimiza-

tion schemes related to the form and the length of the applied window [1],

the second family suffers from cross-terms in multi-component signals and

may also suffer from inner interference for mono-component signals. There

is no time-frequency method which can be considered as optimal for all ap-

plications.

Detect relevant information (e.g signal components, special occurred events,

. . . ) in signal usually was performed based on the regions in the time-frequency

plane containing the most energy or the local maxima [2], which is intuitive

since information will be mostly concentrated in the high energy regions in

the time-frequency plane. However, the study of Flandrin [3] paved the way

to consider the zeros distribution in the time-frequency plane instead to fo-

cus on the high energy regions. Flandrin focused on the Spectrogram and
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its zeros which completely characterize the transform in question. The in-

tuition behind this new observation is based on the fact that the zeros of

the Spectrogram applied on white noise tend to have a uniform distribu-

tion and repelled each other. This naturally suggests the link with certain

analytical functions that are completely characterized by their zeros as the

Gaussian Analytic Functions [4]. Bardenet et al. [5, 6] extended this work

on other time-frequency methods as the analytic wavelets and formalized the

link between these methods and some GAFs. In parallel, Koliander et al.

[7] found a link between hyperbolic wavelet transform and hyperbolic GAFs

and authors give a filtering application based on the zeros of corresponding

time-scale representation.

The aim of this paper is to extend the works cited above to study the zeros

the Stockwell transform [8]. The Stockwell Transform (ST) can be consid-

ered as a hybrid between the Short Time Frequency Transform (STFT) and

the Continuous Wavelet Transform (CWT) [8]. It can be viewed as a fre-

quency dependent STFT or a phase corrected CWT. The ST has shown high

performance for classification and feature extraction problems applied on

non-stationary signals, such as heart sounds [9], power quality signals [10],

EEG signals [11] etc. Classically the ST uses a Gaussian window, whose

standard deviation varies over frequency. Whatever the analyzed signal, the

width of the Gaussian window decreases as the frequency increases. This pro-

duces a higher frequency resolution at lower frequencies and a higher time

resolution at higher frequencies. The main advantage of the ST compared

to other linear time-frequency methods is that it generates multi-resolution

analysis as the continuous wavelet transform while keeping the phase infor-
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mation exploitable. The main contributions of this paper can be summarized

as:

• Establishing the link between the Stockwell transform and Bargmann

transform (Theorem 1)

• Characterizing formally the zeros distribution of the Stockwell trans-

form of white Gaussian noise in order to link th ST to GAFs (Theorem

2)

• Extend the results provided by first two points to the zeros of the

Morlet wavelet transform which has a direct relation with the ST.

The paper is organized as follows: Section 2 gives a brief description of the

Stockwell transform and present a generalized form of the ST before intro-

ducing the Stockwell-Bargmann factorization and the link between ST and

planar GAFs. Then Section 3 presents the ralation between ST and Morlet

wavelet transform and deduce the Morlet-Bargmann factorization and the

link between the Morlet wavelet and planar GAFs. Section 4 gives numeri-

cal examples based on synthetic and real signals for different time-frequency

methods and their zero’s distributions. Finally, Section 5 gives the conclusion

and the future work.

2. On the zeros of the Stockwell transform

In this section we will follow the template theorem proposed by Bardenet

et al. [6] to search the orthonormal basis (hk) and the analytic functions (Λk)

allowing the continuous linear mapping: L : H → A(Λ) with L is this paper
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will play the role of the Stockwell transform operator. The idea is to find

the adequate orthonormal basis which will allow us to link the ST to GAFs.

Before we develop the details of this analogy, we will present a brief survey on

the ST, then we will give the proof of the Stockwell-Bargmann proposition

in order to proceed with the link between the ST of Hermite functions and

the planar GAFs.

2.1. The Stockwell Transform

Let f ∈ L2(R) be a signal. Stockwell et al. initially introduced the ST

in [8], using a Gaussian window g(t) = e−t
2/2, t ∈ R. The ST with respect to

the window g, denoted Sgf can be given as:

(Sgf)(τ, ξ) =
|ξ|√
2π

∫
R
f(t)e−(t−τ)2ξ2/2e−2πitξdt, τ, ξ ∈ R (1)

An alternative formulation with respect to Fourier transform of f deduced

by rewriting (1) as a convolution product, can be given as:

(Sgf)(τ, ξ) =

∫
R
f̂(υ + ξ)e−2π2υ2/ξ2e2πiτυdυ, τ ∈ R, ξ ∈ R∗ (2)

Where e−2π2υ2/ξ2 is the Fourier transform of the window g(t) and f̂ is the

Fourier transform of the signal f which is given as:

f̂(ξ) =
1√
2π

∫
R
f(t)e−2πitξdt, ξ ∈ R

Note that the width of the window in Eq. 1 is inversely proportional to the

frequency which will induce a better frequency resolution for low frequencies

and a better temporal resolution for high frequencies. This is the main

difference between the ST and the Short Time Fourier Transform (STFT)

which uses a fixed window width throughout the analysis.
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2.2. The generalized Stockwell transform

Several generalized Gaussian windows have been proposed in the litera-

ture for ST [1]. The main idea is to give more degrees of freedom for the

variation of the window by introducing several parameters to control the

width as a function of the frequency to make the analysis as adapted as pos-

sible to the signal.

Let σ(ξ) ∈ L1(R∗)∩L2(R∗) be an arbitrary function that aims to control the

width of the Gaussian window. Then the generalized Stockwell transform

of f , denoted in this paper (Sσg f), with respect to the window g(t) and the

width function σ(ξ) can be rewritten as:

(Sσg f)(τ, ξ) = (
√

2πσ(ξ))−1

∫
R
f(t)g

(
t− τ
σ(ξ)

)
e−2πitξdt (3)

By setting σ(ξ) = 1
|ξ| we find the classical version of the ST defined in Eq.

1. By denoting 〈·, ·〉 the inner product in L2(R), Eq. 3 can be rewritten as :

(Sσg f)(τ, ξ) =< f,MξTτDσ(ξ)g > (4)

Where (Mξf)(t) = e2iπξf(t), (Tτf)(t) = f(t − τ), and (Dσ(ξ)f)(t) =

(
√

2πσ(ξ))−1f(t/σ(ξ)) are the modulation, translation and dilatation opera-

tors, respectively.

2.3. The Stockwell-Bargmann factorization

Let’s now consider the generalized definition of the ST presented in Eq.

3.

Theorem 1. Let f ∈ L2(R), τ , ξ ∈ R2 and z ∈ C. Denoting (Sσg f)(τ, ξ) the

generalized Stockwell transform of the function f respecting to the Gaussian
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window g and the width function σ(ξ), can be factorized in term of Bargmann

transform (Bf)(z) as follows :

(Sσg f)(τ, ξ) = 2−1/4ae−iπτξe−
π
2
|z|2(Bf(·/a))(z) (5)

Where a = (
√

2πσ(ξ))−1 and (Sσg f) is given in Eq. 3 The Bargmann

transform of the function f can be given as [12]:

(Bf)(z) = 21/4

∫
R
f(t)e2πtz−πt2−π

2
z2dt (6)

Proof. Replacing explicitly g(t) in the Eq. of (Sgf) we obtain :

(Sσg f)(τ, ξ) = a

∫
R
f(t)e−πa

2(t−τ)2e−2iπdt

= a

∫
R
f(t)e−πa

2t2e−πa
2τ2e2a2πtτe−2iπξtdt

= ae−iπτξe−
π
2

(a2τ2+ ξ2

a2
)

=

∫
R
f(t)e−πa

2t2e2aπt(aτ−i ξ
a

)e−
π
2

(aτ−i ξ
a

)2dt

Making the change of variable s = at, and denoting z = aτ − i ξ
a

we obtain :

(Sσg f)(τ, ξ) = ae−iπτξe−
π
2
|z|2
∫
R
f
(s
a

)
e−πs

2

e2πsze−
π
2
z2ds (7)

Which is equivalent to :

(Sσg f)(τ, ξ) = 2−1/4ae−iπτξe−
π
2
|z|2(Bf(·/a))(z) (8)

Theorem 1 means that the zeros of the Stockwell transform τ, ξ 7→ (Sσg f)(τ, ξ)

of f are the zeros of the Bargmann transform of s 7→ f(s/a). It means that

the Stockwell transform can be completely characterized by the distribution

of its zeros as the Bargmann transform [3].
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2.4. The ST of Gaussian white noise

The Hermite functions have the advantage of a simple closed-form Bargmann

transform [13]. Thus, if we decompose the white noise onto the basis formed

the Hermite functions, this allow us to compute easily the ST of the closed-

form Bargmann transforms, thanks to theorem 1.

2.4.1. Definitions

Let (Hk)k∈N be the Hermite orthonormal polynomials with respect to the

Gaussian window g(t) = e−t
2/2, t ∈ R and (hk)k∈N the associated Hermite

functions [14]. Let X a random variable with white Gaussian distribution on

Hilbert spaces H associated with orthonormal basis (hk) as follows:

X :=
∑
k∈N

Xkhk (9)

2.4.2. The ST of X

We can define the ST of X as a random function:

τ, ξ →
〈
X,MξTτDσ(ξ)g

〉
Theorem 2. Let τ, ξ ∈ R2, and z = aτ − i ξ

a
∈ C. Then the ST of Gaussian

noise X can be given as :〈
X,MξTτDσ(ξ)g

〉
= 2−1/4aeiπτξe−

π
2
|z|2

∞∑
k=0

〈X, hk〉
πk/2zk√

k!
(10)

where (hk) denote the orthonormal Hermite functions.

Proof. Let us decompose MξTτDσ(ξ)g in the Hermite basis (hk) of L2(R):〈
X,MξTτDσ(ξ)g

〉
=
∞∑
k=0

〈X, hk〉
〈
MξTτDσ(ξ)g, hk

〉
(11)

=
∞∑
k=0

〈X, hk〉 (Sσg hk)(τ, ξ) (12)
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Let us now calculate (Sσg hk)(τ, ξ), by using the Eq. 5, we can find directly:

(Sσg hk)(τ, ξ) = 2−1/4ae−iπτξe−
π
2
|z|2B(hk(./a))(z) (13)

where the Bargmann transform of an Hermite function is the following mono-

mial related to the planar GAFs [4, 15, 3] :

B(hk(./a))(z) =
πk/2zk√

k!
(14)

3. On the zeros of the Morlet wavelet Transform

3.1. The Morlet wavelet transform

The continuous wavelet transform of a signal f ∈ L2(R) is defined at each

time τ and scale s for an admissible mother wavelet ψ as follows:

(WΨf)(τ, s) =
1√
|s|

∫
R
f(t)Ψ

(
(t− τ)

s

)∗
dt (15)

where Ψ and its Fourier transform Ψ̂ are satisfying the admissibility condition

of mother wavelet :

CΨ =

∫
R

ˆ|Ψ|(ω)

ω
dω <∞ (16)

By defining the scale s =
√

2π
ξ

, Eq. 15 can be expressed as time-frequency

transform as follows :

(WΨf)(τ, ξ) =

√
|ξ|
ξ0

∫
R
f(t)Ψ

(
ξ

ξ0

(t− τ)

)∗
dt (17)

The Morlet wavelet is defined as [16] :

Ψ(t) =
π−1/4

√
T
e

−t2
2T2 ei

√
2πt (18)
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where T plays the role of time-spread parameter [17]. By introducing Eq. 18

in Eq. 15 we obtain the definition of the Morlet wavelet transform of signal

f denoted MWΨ.

3.2. Relation with the Stockwell transform

In this paper, in the same fashion of Eq. 3, T can be replaced in Eq. 18

by the arbitrary function σ(ξ) which control the width of Gaussian window

in function of the frequency ξ as follows:

Ψ(t) =
π−1/4√
σ(ξ)

e
−t2

2σ(ξ)2 ei
√

2πt (19)

This leads us to write the Morlet wavelet transform (MWΨf) as a generalized

ST, (Sσg f), formulated in this paper using the proof given in [18] as follows:

(MWΨf)(τ, ξ) =

√
23/2πσ(ξ)

|ξ|
eiξt(Sσg f)(τ, ξ) (20)

Eq. 20 will give us the two follows corollaries corresponding to Theorem 1

and Theorem 2, respectively:

Corollary 1. Let f ∈ L2(R), τ , ξ ∈ R2 and z ∈ C. Denoting (MWΨf)(τ, ξ)

the Morlet wavelet transform of the function f , it can be factorized in term

of Bargmann transform Bf(z) as follows :

(MWΨf)(τ, ξ) =
e−iξ(πτ−t)√
ξσ(ξ)

e−
π
2
|z|2(Bf(·/a))(z) (21)

Corollary 2. Let τ, ξ ∈ R2, and z = aτ−i ξ
a
∈ C. Let X a random variable as

defined in section D.1. Then the Morlet wavelet transform of X, (MWΨX),

can be given as :

(MWΨX)(τ, ξ) =
e−iξ(πτ−t)√
ξσ(ξ)

e−
π
2
|z|2

∞∑
k=0

〈X, hk〉
πk/2zk√

k!
(22)
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4. Numerical Experiments

The proofs provided in this paper have been based on the continuous

domain. We are aware that the transition to the discrete domain must be

interpreted carefully. However, we will show an example of a synthetic sig-

nal to observe the distribution of zeros in the time-frequency plane for the

Short Time Fourier Transform and an optimized Stockwell transform [1].

We generate a multi-component synthetic signal with sampling frequency 2

KHz, composed of a linear chirp and a sinusoidally modulated component

in the time-frequency plane. A white Gaussian noise is added to the gener-

ated signal with Signal-to-Noise Ratio (SNR) equal to 5 dB. We tested also a

real cardiac signal acquired from accelerometer (BallistoCardioGram - BCG)

with 1 KHz sampling frequency [19]. The detection of zeros is done by ap-

plying a sliding 2D window on the time-frequency matrix and by calculating

the local minimum.

Fig. 1 shows the zeros detected on the representation of synthetic signal

computed by the STFT with Gaussian window. For the optimized Stockwell

transform (see Fig. 2), the energy concentration in the time-frequency plane

is improved compared to Fig. 1. Theoretically the distribution properties of

zeros should be independent from the quality of the time-frequency transform

in terms of energy concentration. But, intuitively speaking, the better the

energy concentration, the more efficient will be the filtering based on the zeros

distribution, since the signal components should be already well separated

in time-frequency domain. Fig. 3 shows the classical ST representation with

the detected zeros for the real tested signal.
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Figure 1: Detected zeros (red dots) based on the STFT.
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Figure 2: Detected zeros (red dots) based on the ST.
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Figure 3: Detected zeros (red dots) based on the ST for real signal (Ballistocardiogram).

5. Conclusion

We characterized in this paper the zeros of two time-frequency meth-

ods : the Stockwell transform and the Morlet wavelet transform. First, we

defined the generalized ST with Gaussian window g(t) with an arbitrary

function to control the window’s width in function of frequency denoted

σ(ξ) ∈ L1(R∗) ∩ L2(R∗). Then, we presented the Stockwell-Bargmann fac-

torization which allowed us to establish the relation between the ST and the

Bargmann transform (theorem 1). This allowed us to formalize the link be-

tween the generalized ST and the planar GAFs (theorem 2) by calculating

the ST of white Gaussian noise associated with orthonormal Hermite func-

tions basis. The known direct link between the ST and the Morlet wavelet

transform allowed us to extend these results to the zeros of the MW. Future

work, will focus on filtering methods based on zeros distribution of different

time-frequency methods and the possibility of extension of the zeros charac-

terization on the Discrete Orthonomal Stockwell transform (DOST) [20, 21].
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