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Abstract. In the last few years, the concept of data lake has become
trendy for data storage and analysis. Thus, several approaches have been
proposed to build data lake systems. However, these proposals are diffi-
cult to evaluate as there are no commonly shared criteria for comparing
data lake systems. Thus, we introduce DLBench, a benchmark to evalu-
ate and compare data lake implementations that support textual and/or
tabular contents. More concretely, we propose a data model made of
both textual and CSV documents, a workload model composed of a set
of various tasks, as well as a set of performance-based metrics, all rele-
vant to the context of data lakes. As a proof of concept, we use DLBench
to evaluate an open source data lake system we previously developed.

Keywords: Data lakes · Benchmarking · Textual Documents · Tabular
data

1 Introduction

Over the last decade, the concept of data lake has emerged as a reference for
data storage and exploitation. A data lake is a large repository for storing and
analyzing data of any type and size, kept in their raw format [3]. Data access
and analyses from data lakes largely rely on metadata [12], making data lakes
flexible enough to support a broader range of analyses than traditional data
warehouses. Data lakes are thus handy for both data retrieval and data content
analysis.

However, the concept of data lake still lacks standards [15]. Thus, there is
no commonly shared approach to build, nor to evaluate a data lake. Moreover,
existing data lake architectures are often evaluated in diverse and specific ways,
and are hardly comparable with each other. Therefore, there is a need of bench-
marks to allow objective and comparative evaluation of data lake implementa-
tions. There are several benchmarks for big data systems in the literature, but
none of them considers the wide range of possible analyses in data lakes.

Hence, we propose in this paper the Data Lake Benchmark (DLBench) to
evaluate data management performance in data lake systems. We particularly fo-
cus in this first instance on textual and tabular contents, which are often included
in data lakes. DLBench is data-centric, i.e., it focuses on a data management
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objective, regardless of the underlying technologies [2]. We also designed it with
Gray’s criteria for a “good” benchmark in mind, namely relevance, portability,
simplicity and scalability [8].

More concretely, DLBench features a data model that generates textual
and tabular documents. By tabular documents, we mean spreadsheet or Comma
Separated Value (CSV) files whose integration and querying is a common issue
in data lakes. A scale factor parameter SF allows to vary data size in prede-
termined proportions. DLBench also features a workload model, i.e., a set of
analytical operations relevant to the context of data lakes with textual and/or
tabular content. Finally, we propose a set of performance-based metrics to eval-
uate such data lake implementations, as well as an execution protocol to execute
the workload model on the data model and compute the metrics.

The remainder of this paper is organized as follows. In Section 2, we show
how DLBench differs from existing benchmarks. In Section 3, we provide DL-
Bench’s full specifications. In Section 4, we exemplify how DLBench works
and the insights it provides. Finally, in Section 5, we conclude this paper and
present research perspectives.

2 Related Works

Benchmarking data lakes mainly relates to two benchmark categories, namely
big data and text benchmarks. In this section, we present recent works in these
categories and discuss their limitations with respect to our benchmarking objec-
tives.

2.1 Big Data Benchmarks

Big data systems are so diverse that each of big data benchmarks in the lit-
erature only target a part of big data requirements [1]. The de facto standard
TPC-H [18] and TPC-DS [20] issued by the Transaction Processing Performance
Council are still widely used to benchmark traditional business intelligence sys-
tems. They provide data models that reflect a typical data warehouse, as well
as a set of typical business queries, mostly in SQL. BigBench [7] is another
reference benchmark that addresses SQL querying on data warehouses. In ad-
dition, BigBench adaptations [6, 10] include more complex big data analysis
tasks, namely sentiment analysis over short texts.

TPCx-HS [19] is a quite different benchmark that aims to evaluate systems
running on Apache Hadoop1 or Spark2. For this purpose, only a sorting work-
load helps measuring performances. HiBench [9] also evaluates Hadoop/Spark
systems, but with a broader range of workloads, i.e., ten workloads including
SQL aggregations and joins, classification, clustering and sorts [11]. In the same
line, TPCx-AI [21], which is still in development, includes more analysis tasks
relevant to big data systems, such as advanced machine learning tasks for fraud
detection and product rating.

1 https://hadoop.apache.org/
2 http://spark.apache.org/
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2.2 Textual Benchmarks

In this category, we consider big data benchmarks with a consequent part of
text on one hand, and purely textual benchmarks on the other hand. Big-
DataBench [23] is a good representative of the first category. It indeed includes
a textual dataset made of Wikipedia3 pages, as well as classical information re-
trieval workloads such as Sort, Grep and Wordcount operations.

One of the latest purely textual benchmarks is TextBenDS [22], which
aims to evaluate performances of text analysis and processing systems. For this
purpose, TextBenDS proposes a tweet-based data model and two types of
workloads, namely Top-K keywords and Top-K documents operations. Other
purely textual benchmarks focus on language analysis tasks, e.g., Chinese [25]
and Portuguese [5] text recognition, respectively.

2.3 Discussion

None of the aforementioned benchmarks proposes a workload sufficiently exten-
sive to reflect all relevant operations in data lakes. In the case of structured data,
most benchmark workloads only consider SQL operations (TPC-H, TPC-DS, Hi-
Bench). More sophisticated machine learning operations remain marginal, while
they are common analyses in data lakes. Moreover, the task of finding related
data (e.g., joinable tables) is purely missing, while it is a key feature of data
lakes.

Existing textual workloads are also insufficient. Admittedly, BigDataBench’s
Grep and TextBenDS’s Top-K documents operation are relevant for data
search. Similarly, Top-K keywords and WordCount are relevant to assess docu-
ments aggregation [9, 22]. However, other operations such as finding most similar
documents or clustering documents should also be considered.

Thus, our DLBench benchmark stands out, with a broader workload that
features both data retrieval and data content analysis operations. DLBench’s
data model also differs from most big data benchmarks as it provides raw tabular
files, inducing an additional data integration challenge. Moreover, DLBench
includes a set of long textual documents that induces a different challenge than
short texts such as tweets [22] and Wikipedia articles [23]. Finally, DLBench is
data-centric, unlike big data benchmarks that focus on a particular technology,
e.g., TPCx-HS and HiBench.

3 Specification of DLBench

In this section, we first provide a thorough description of DLBench’s data and
workload model. Then, we propose a set of metrics and introduce an assessment
protocol to evaluate and/or compare systems using DLBench.

3 https://en.wikipedia.org/
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3.1 Data Model

Data Description DLBench includes two types of data to simulate a data
lake: textual documents and tabular data. Textual documents are scientific arti-
cles that span from few to tens of pages. They are written in French and English
and their number amounts to 50,000. Their overall volume is about 62 GB.

Tabular data are synthetically derived from a few CSV files containing Cana-
dian government open data. Although such data are often considered as struc-
tured, they still need integration to be queried and analyzed effectively. DL-
Bench features up to 5,000 tabular files amounting to about 1,4 GB of data.

The amount of data in the benchmark can be customised through scale factor
parameter SF , which is particularly useful to measure a system’s performance
when data volume increases. SF ranges from 1 to 5. Table 1 describes the actual
amount of data obtained with values of SF .

Table 1: Amount of data per SF value
Scale factors SF = 1 SF = 2 SF = 3 SF = 4 SF = 5

Nb. of textual documents 10,000 20,000 30,000 40,000 50,000

Nb. of tabular files 1,000 2,000 3,000 4,000 5,000

Textual documents’ size (GB) 8.0 24.9 37.2 49.6 62.7

Tabular files’ size (GB) 0.3 0.6 0.8 1.1 1.4

DLBench’s data come with metadata catalogues that can serve in data
integration. More concretely, we generate from textual documents catalogue in-
formation on year, language and domain (discipline) to which each document
belongs. Similarly, we associate in the tabular file catalogue a year with each file.
This way, we can separately query each type of data through its specific meta-
data. We can also jointly query textual documents and tabular files through the
year field.

Eventually, textual documents are generated independently from tabular
files. Therefore, each type of data can be used apart from the other. In other
words, DLBench can be used to assess a system that contains either textual
documents only, tabular files only, or both. When not using both types of data,
the workload model must be limited to its relevant part.

Data Extraction We extract textual data from HAL4, a French open data
repository dedicated to scientific document diffusion. We opted for scientific
documents as most are long enough to provide complexity and reflect most
actual use cases in textual data integration systems, in contrast with shorter
documents such as reviews and tweets.

Although HAL’s access is open, we are not allowed to redistribute data ex-
tracted from HAL. Thus, we provide instead a script that extracts a user-defined

4 https://hal.archives-ouvertes.fr/
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amount of documents. This script and a usage guide are available online for
reuse5. Amongst all available documents in HAL, we restrict to scientific articles
whose length is homogeneous, which amounts to 50,000 documents. While ex-
tracting documents, the script also generates the metadata catalogue described
above.

Tabular data are reused from an existing benchmark [13]. These are actually
a set of 5,000 synthetic tabular data files generated from an open dataset stored
inside a SQLite6 database. Many of the columns in the tables contain similar data
and can therefore be linked, making this dataset suitable to assess structured
data integration as performed in data lakes.

We apply on this original dataset7 a script to extract all (or a part) of the
tables in the form of raw CSV files. As for textual documents, this second script
also generates a metadata catalogue. The script as well as guidelines are available
online7.

3.2 Workload Model

To assess and compare data lakes across different implementations and systems,
some relevant tasks are needed. Thus we specify in this section instances of
probable tasks in textual and tabular data integration systems. Furthermore, we
translate each task into concrete, executable queries (Table 2).

Data Retrieval Tasks are operations that find data bearing given character-
istics. Three main ways are usually exploited to retrieve data in a lake. They are
relevant for both tabular data and textual documents. However, we mainly focus
on data retrieval from textual documents, as they represent the largest amount
of data.

1. Category filters consist in filtering data using tags or data properties from
the metadata catalogue. In other words, it can be viewed as a navigation
task.

2. Term-based search pertains to find data, with the help of an index, from
all data files that contain a set of keywords. Keyword search is especially
relevant for textual documents, but may also serve to retrieve tabular data.

3. Related data search aims to, from a specified data file, retrieve similar data.
It can be based on, e.g., column similarities in tabular data, or semantic
similarity between textual documents.

Textual Document Analysis/Aggregation tasks work on data contents.
Although textual documents and tabular data can be explored with the same
methods, they require more specific techniques to be jointly analyzed or aggre-
gated in data lakes.

5 https://github.com/Pegdwende44/DLBench
6 https://www.sqlite.org/
7 https://storage.googleapis.com/table-union-benchmark/large/benchmark.sqlite
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4. Document scoring is a classical information retrieval task that consists in
providing a score for each document with respect to how it matches a set of
terms. Such scores can be calculated by diverse ways, e.g., with the Elastic-
Search [4] scoring algorithm. In all cases, scores depend on the appearance
frequency of query terms in the document to score and in the corpus, and also
the document’s length. This operation is actually very similar to computing
top-k documents.

5. Document highlights extract a concordance from a corpus. A concordance is
a list of snippets where a set of terms appear. It is also a classical information
retrieval task that provides a sort of summary of documents.

6. Document top keywords are another classical way to summarize and aggre-
gate documents [14]. Computing top keywords is thus a suitable task to
assess systems handling textual documents.

7. Document text mining. In most data lake systems, data are organized in
collections, using tags for example. Here, we propose a data mining task that
consists either in representing each collection of documents with respect to
the others, or in grouping together similar collections with respect to their
intrinsic vocabularies. In the first case, we propose a Principal Component
Analysis (PCA) [24] where statistical individuals are document collections.
PCA could, for example, out put an average bag of words for each collection.
In the second case, we propose a KMeans [17] clustering to detect groups of
similar collections.

Tabular Data Analysis/Queries Finally, we propose specific tasks suitable
for integrated tabular files.

8. Simple table queries. We first propose to evaluate a data lake system’s capac-
ity to answer simple table queries through a query language such as SQL. As
we are in a context of raw tabular data, language-based querying is indeed
an important challenge to address.

9. Complex table queries. In line with the previous task, we propose to measure
how the system supports advanced queries, namely join and grouping queries.

10. Tuple mining. An interesting way to analyze tabular data is either to rep-
resent each row with respect to the others or to group together very similar
rows. We essentially propose here the same operation as Task #7 above, ex-
cept that statistical individuals are table rows instead of textual documents.
To achieve such an analysis, we only consider numeric values.

3.3 Performance Metrics

In this section, we propose a set of three metrics to compare and assess data
lake implementations.

1. Query execution time aims to measure the time necessary to run each
of the 20 query instances from Table 2 on the tested data lake architecture.
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Table 2: Query instances

Task Query

Data retrieval

#1
Q1a Retrieve documents written in French
Q1b Retrieve documents written in English and edited in December
Q1c Retrieve documents whose domains are math or info, written in English

and edited in 2010, 2012 or 2014

#2
Q2a Retrieve data files (documents or tables) containing the term university
Q2b Retrieve data files containing the terms university, science or research

#3
Q3a Retrieve the top 5 documents similar to any given document
Q3b Retrieve 5 tables joinable to table t dc9442ed0b52d69c c11 1 1

Textual Document Analysis/Aggregation

#4
Q4a Calculate documents scores w.r.t. the terms university and science
Q4b Calculate documents scores w.r.t. the terms university, research,

new and solution

#5
Q5a Retrieve documents concordance w.r.t. the terms university and science
Q5b Retrieve documents concordance w.r.t. the terms university, science

new and solution

#6 Q6a Find top 10 keywords from all documents (stopwords excluded)

#7
Q7a Run a PCA with documents merged by domains
Q7b Run a 3-cluster KMeans clustering with documents merged by domains

Tabular Data Analysis/Queries

#8
Q8a Retrieve all tuples from table t e9efd5cda78af711 c11 1 1
Q8b Retrieve tuples from table t e9efd5cda78af711 c11 1 1

whose column PROVINCE bears the value BC

#9
Q9a Calculate the average of columns Unnamed: 12, 13, and 20

from table t 356fc1eaad97f93b c15 1 1 grouped by Unnamed: 2
Q9b Run a left join query between tables PED SK DTL SNF c7 0 1

and t 285b3bcd52ec0c86 c13 1 1 w.r.t. columns named SOILTYPE

#10
Q10a Run a PCA on the result of query Q9a
Q10b Run a 3-cluster KMeans clustering on the result of query Q9a

This metric actually reports how efficient the lake’s metadata system is, as it
serves to integrate raw data, and thus make analyses easier and faster. In the
case where certain queries are not supported, measures are only computed
on the supported tasks.

2. Metadata size measures the amount of metadata generated by the system.
It allows to balance the execution time with the resulting storage cost.

3. Metadata generation time encompasses the generation of all the lake’s
metadata. This also serves to balance query execution time.

We did not include other possible metrics such as actually used RAM and
CPU because they are hard to measure. However, we recommend interpreting
benchmark results while taking into account available RAM and CPU.
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3.4 Assessment Protocol

The three metrics from Section 3.3 are measured through an iterative process
for each scale factor SF ∈ {1, 2, 3, 4, 5}. Each iteration consists in four steps
(Algorithm 1).

1. Data generation is achieved with the scripts specified in Section 3.17.
2. Data integration. Raw data now need to be integrated in the data lake

system through the generation and organization of metadata. This step is
specific to each system, as there are plethora of ways to integrate data in a
lake.

3. Metadata size and generation time computing consists in measuring
metrics the total size of generated metadata and the time taken to generate
all metadata, with respect to the current SF .

4. Query execution time computation involves computing the running
time of each individual query. To mitigate any perturbation, we average
the time of 10 runs for each query instance. Let us notice that all timed
executions must be warm runs, i.e., each of the 20 query instances must first
be executed once (a cold run not taken into account in the results).

Algorithm 1: Assessment protocol

Result: metric 1, metric 2, metric 3
metric 1 ← [ ][ ]; metric 2 ← [ ]; metric 3 ← [ ];
for SF ← 1 to 5 do

generate benchmark data(SF);
generate and organize metadata(SF);
metric 2[SF] ← retrieve metadata generation time(SF);
metric 3[SF] ← retrieve metadata size(SF);
for i ← 1 to 20 do

run query(i, SF);
response times ← [ ];
for j ← 1 to 10 do

response times[j] ← run query(i, SF);
end
metric 1[SF][i] ← average(response times);

end

end

4 Proof of Concept

4.1 Overview of AUDAL

To demonstrate the use of DLBench, we evaluate AUDAL [16], a data lake
system designed as part of a management science project, to allow automatic
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and advanced analyses on various textual documents (annual reports, press re-
leases, websites, social media posts...) and spreadsheet files (information about
companies, stock market quotations...). The AUDAL system uses an extensive
metadata system stored inside MongoDB8, Neo4J9, SQLite8 and ElasticSearch10

to support numerous analyses.
AUDAL provides ready-to-use analyses via a representational state transfer

application programming interface (REST API) dedicated to data scientists, and
also through a Web-based analysis platform designed for business users.

4.2 Setup and Results

AUDAL is implemented on a cluster of three VMware virtual machines (VMs).
The first VM has a 7-core Intel-Xeon 2.20 GHz processor and 24 GB of RAM.
It runs the API and also supports metadata extraction. Both other VMs have
a mono-core Intel-Xeon 2.20 GHz processor and 24 GB of RAM. Each of the
three VMs hosts a Neo4J instance, an ElasticSearch instance and a MongoDB
instance to store AUDAL’s metadata.

The results achieved with DLBench show that AUDAL scales quite well
(Figures 1-6). Almost all task response times are indeed either constant (Tasks
#3, #7, #8, #9 and #10) or grow linearly with SF (Tasks #1, #2, and #4
to #6). In addition, we observe that except Task #6 (that takes up to 92 sec-
onds), all execution times are reasonable considering the modest capabilities
of our hardware setup. Eventually, metadata generation time and size scale lin-
early and almost-linearly, respectively (Figure 7). We can also see that metadata
amount to about half the volume of raw data, which illustrates how extensive
AUDAL’s metadata are. We observe some fluctuations in the results, with some-
times negative slopes while SF increases. Such variations are due to external,
random factors such as network load or the Java garbage collector starting run-
ning. However, the influence on the runtime is negligible (of the order of a tenth
of a second) and is only visible on simple queries that run in half a second.

5 Conclusion

In this paper, we introduce DLBench, a benchmark for data lakes with textual
and/or tabular contents. To the best of our knowledge, DLBench is the first
data lake benchmark. DLBench features: 1) a data model made of a corpus
of long, textual documents on one hand, and a set of raw tabular data on the
other hand; 2) a query model of twenty query instances across ten different
tasks; 3) three relevant metrics to assess and compare data lake implementations;
and 4) an execution protocol. Finally, we demonstrate the use of DLBench by
assessing the AUDAL data lake [16], highlighting that the AUDAL system scales
quite well, especially for data retrieval and tabular data querying.

8 https://www.mongodb.com
9 https://neo4j.com

10 https://www.elastic.co
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Fig. 1: Task #1
response times

Fig. 2: Tasks #2 & #3
response times

Fig. 3: Tasks #4 & #5
response times

Fig. 4: Tasks #6 & #7
response times

Fig. 5: Tasks #8 & #9
response times

Fig. 6: Task #10
response times

Future works include an extension of the structured part of DLBench’s data
model with an alternative, larger dataset. Another enhancement of DLBench
could consists in providing an overview of value distributions in generated data.
Finally, we plan to perform a comparative study of existing data lake systems
using DLBench.
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