
HAL Id: hal-03256708
https://hal.science/hal-03256708

Preprint submitted on 10 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GraphiT: Encoding Graph Structure in Transformers
Grégoire Mialon, Dexiong Chen, Margot Selosse, Julien Mairal

To cite this version:
Grégoire Mialon, Dexiong Chen, Margot Selosse, Julien Mairal. GraphiT: Encoding Graph Structure
in Transformers. 2021. �hal-03256708�

https://hal.science/hal-03256708
https://hal.archives-ouvertes.fr


GraphiT: Encoding Graph Structure in Transformers

Grégoire Mialon∗

Inria†‡

gregoire.mialon@inria.fr

Dexiong Chen∗

Inria†

dexiong.chen@inria.fr

Margot Selosse∗

Inria†

margot.selosse@inria.fr

Julien Mairal
Inria†

julien.mairal@inria.fr

June 10, 2021

Abstract

We show that viewing graphs as sets of node features and incorporating structural and positional
information into a transformer architecture is able to outperform representations learned with classical
graph neural networks (GNNs). Our model, GraphiT, encodes such information by (i) leveraging relative
positional encoding strategies in self-attention scores based on positive definite kernels on graphs, and (ii)
enumerating and encoding local sub-structures such as paths of short length. We thoroughly evaluate
these two ideas on many classification and regression tasks, demonstrating the effectiveness of each of
them independently, as well as their combination. In addition to performing well on standard benchmarks,
our model also admits natural visualization mechanisms for interpreting graph motifs explaining the
predictions, making it a potentially strong candidate for scientific applications where interpretation is
important.1

1 Introduction
Graph-structured data are present in numerous scientific applications and are the subject of growing interest.
Examples of such data are as varied as proteins in computational biology [29], which may be seen as a sequence
of amino acids, but also as a graph representing their tertiary structure, molecules in chemoinformatics [11],
shapes in computer vision and computer graphics [38], electronic health records, or communities in social
networks. Designing graph representations for machine learning is a particularly active area of research, even
though not new [4], with a strong effort currently focused on graph neural networks [6, 7, 18, 28, 37, 40]. A
major difficulty is to find graph representations that are computationally tractable, adaptable to a given task,
and capable of distinguishing graphs with different topological structures and local characteristics.

In this paper, we are interested in the transformer, which has become the standard architecture for natural
language processing [36], and is gaining ground in computer vision [9] and computational biology [27]. The
ability of a transformer to aggregate information across long contexts for sequence data makes it an interesting
challenger for GNNs that successively aggregate local information from neighbors in a multilayer fashion.
In contrast, a single self-attention layer of the transformer can potentially allow all the nodes of an input
graph to communicate. The price to pay is that this core component is invariant to permutations of the input
nodes, hence does not take the topological structure of the graph into account and looses crucial information.

∗Equal contribution.
†Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France.
‡D.I., UMR 8548, École Normale Supérieure, Paris, France.
1Code available at https://github.com/inria-thoth/GraphiT.

1

https://github.com/inria-thoth/GraphiT


For sequence data, this issue is addressed by encoding positional information of each token and giving it
to the transformer architecture. For graphs, the problem is more challenging as there is no single way to
encode node positions. For this reason, there have been few attempts to use vanilla transformers for graph
representation. To the best of our knowledge, the closest work to ours seems to be the graph transformer
architecture of Dwivedi and Bresson [12], who propose an elegant positional encoding strategy based on the
eigenvectors of the graph Laplacian [1]. However, they focus on applying attention to neighboring nodes only,
as in GNNs, and their results suggest that letting all nodes communicate is not a competitive approach.

Our paper provides another perspective and reaches a slightly different conclusion; we show that even
though local communication is indeed often more effective, the transformer with global communication can
also achieve good results. For that, we introduce a set of techniques to encode the local graph structure
within our model, GraphiT (encoding graph structure in transformers). More precisely, GraphiT relies
on two ingredients that may be combined, or used independently. First, we propose relative positional
encoding strategies for weighting attention scores by using positive definite kernels, a viewpoint introduced
for sequences in [35]. This concept is particularly appealing for graphs since it allows to leverage the rich
literature on kernels on graphs [21, 33], which are powerful tools for encoding the similarity between nodes.
The second idea consists in computing features encoding the local structure in the graph. To achieve this, we
leverage the principle of graph convolutional kernel networks (GCKN) of [7], which consists in enumerating
and encoding small sub-structure (for instance, paths or subtree patterns), which may then be used as an
input to the transformer model.

We demonstrate the effectiveness of our approach on several classification and regression benchmarks,
showing that GraphiT with global or local attention layer can outperform GNNs in various tasks, and also
show that basic visualization mechanisms allow us to automatically discover discriminative graph motifs,
which is potentially useful for scientific applications where interpretation is important.

2 Related work
Graph kernels. A classical way to represent graphs for machine learning tasks consists in defining a
high-dimensional embedding for graphs, which may then be used to perform prediction with a linear models
(e.g., support vector machines). Graph kernels typically provide such embeddings by counting the number of
occurrences of local substructures that are present within a graph [4]. The goal is to choose substructures
leading to expressive representations sufficiently discriminative, while allowing fast algorithms to compute
the inner-products between these embeddings. For instance, walks have been used for such a purpose [14],
as well as shortest paths [5], subtrees [15, 24, 31], or graphlets [32]. Our work uses short paths, but other
substructures could be used in principle. Note that graph kernels used in the context of comparing graphs,
is a line of work different from the kernels on graphs that we will introduce in Section 3 for computing
embeddings of nodes.

Graph neural networks. Originally introduced in [28], GNNs have been derived as an extension of
convolutions for graph-structured data: they use a message passing paradigm in which vectors (messages) are
exchanged (passed) between neighboring nodes whose representations are updated using neural networks.
Many strategies have been proposed to aggregate features of neighboring nodes (see, e.g, [6, 11]). The
graph attention network (GAT) [37] is the first model to use an attention mechanism for aggregating local
information. Recently, hybrid approaches between graph neural networks and graph kernels were proposed
in [7, 10]. Diffusion processes on graphs that are related to the diffusion kernel we consider in our model were
also used within GNNs in [20].

Transformers for graph-structured data. Prior to [12], there were some attempts to use transformers
in the context of graph-structured data. The authors of [22] propose to apply attention to all nodes, yet
without position encoding. In [42], a transformer architecture called Graph-BERT is fed with sampled
subgraphs of a single graph in the context of node classification and graph clustering. They also propose
to encode positions by aggregating different encoding schemes. However, these encoding schemes are either

2



impossible to use in our settings as they require having sampled subgraphs of regular structures as input, or
less competitive than Laplacian eigenvectors as observed in [12]. The transformer model introduced in [41]
needs to first transform an heteregoneous graph into a new graph structure via meta-paths, which does not
directly operate on node features. To the best of our knowledge, our work is the first to demonstrate that
vanilla transformers with appropriate node position encoding can compete with GNNs in graph prediction
tasks.

3 Preliminaries about Kernels on Graphs
Spectral graph analysis. The Laplacian of a graph with n nodes is defined as L = D −A, where D is a
n× n diagonal matrix that carries the degrees of each node on the diagonal and A is the adjacency matrix.
Interestingly, L is a positive semi-definite matrix such that for all vector u in Rn, u>Lu =

∑
i∼j(u[i]− u[j])2,

which can be interpreted as the amount of “oscillation” of the vector u, hence its “smoothness’, when seen as
a function on the nodes of the graph.

The Laplacian is often used via its eigenvalue decomposition L =
∑
i λiuiu

>
i , where the eigenvalue

λi = u>i Lui characterizes the amount of oscillation of the corresponding eigenvector ui. For this reason, this
decomposition is traditionally viewed as the discrete equivalent to the sine/cosine Fourier basis in Rn and
associated frequencies. Note that very often the normalized Laplacian I −D− 1

2AD−
1
2 is used instead of L,

which does not change the above interpretation.
Interestingly, it is then possible to define a whole family of positive definite kernels on the graph [33] by

applying a regularization function r to the spectrum of L. We therefore get a rich class of kernels

Kr =

m∑
i=1

r(λi)uiu
>
i , (1)

associated with the following norm ‖f‖2r =
∑m
i=1 (f

>
i ui)

2/r(λi) from a reproducing kernel Hilbert space
(RKHS), where r : R 7→ R+

∗ is a non-increasing function such that smoother functions on the graph would
have smaller norms in the RKHS. We now introduce two examples.

Diffusion Kernel [21]. It corresponds to the case r(λi) = e−βλi , which gives:

KD =

m∑
i=1

e−βλiuiu
>
i = e−βL = lim

p→+∞

(
I − β

p
L

)p
. (2)

The diffusion kernel can be seen as a discrete equivalent of the Gaussian kernel, a solution of the heat
equation in the continuous setting, hence its name. Intuitively, the diffusion kernel between two nodes can be
interpreted as the quantity of some substance that would accumulate at the first node after a given amount
of time (controlled by β) if we injected the substance at the other node and let it diffuse through the graph.
It is related to the random walk kernel that will be presented below.

p-step random walk kernel. By taking r(λi) = (1− γλi)p , we obtain a kernel that admits an interpre-
tation in terms of p steps of a particular random walk on the graph:

KpRW = (I − γL)p. (3)

It is related to the diffusion kernel by choosing γ = β/p and taking the limit with p→ +∞, according to (2).
Unlike the diffusion kernel which yields a dense matrix, the random walk kernel is sparse and has limited
connectivity, meaning that two nodes are connected in KpRW only if there exists a path of length p between
them. As these kernels on graphs reflect the structural similarity of the nodes independently of their features,
it is natural to use the resulting Gram matrix to encode such a structure within the transformer model, as
detailed next.

3



4 Encoding Graph Structure in Transformers
In this section, we detail the architecture and structure encoding strategies behind GraphiT. In particular, we
build upon the findings of [35] for our architectural choices and propose new strategies for encoding structural
information in the transformer architecture.

4.1 Transformer Architectures for Graphs
We process graphs with a vanilla transformer encoder architecture [36] for solving classification and regression
tasks, by seeing graphs as sets of node features. We first present the transformer without encoding the graph
structure, before introducing mechanisms for encoding nodes positions in Section 4.2, and then topological
structures in Section 4.3. Specifically, a transformer is composed of a sequence of layers, which process an
input set of din features represented by a matrix X in Rn×din , and compute another set in Rn×dout . A critical
component is the attention mechanism:

Attention(Q,V ) = softmax
(
QQ>√
dout

)
V ∈ Rn×dout , (4)

with Q> =WQX
> is called the query matrix, V > =WVX

> the value matrix, and WQ,WV in Rdout×din are
projection matrices that are learned. Note that following the recommendation of [35], we use the same matrix
for keys and queries. This allows us to define a symmetric and positive definite kernel on pairs of nodes and
thus to combine with other kernels on graph. This also reduces the number of parameters in our models
without hurting the performance in practice. During the forward pass, the feature map X is updated in a
residual fashion (with either din = dout or with an additional projection matrix when the dimensions do not
match, omitted here for simplicity) as follows:

X = X +Attention(Q,V ).

Note that transformers without position encoding and GNNs are tightly connected: a GNN can be seen
as a transformer where aggregation is performed on neighboring nodes only, and a transformer as a GNN
processing a fully-connected graph. However, even in this case, differences would remain between common
GNNs and Transformers, as the latter use for example LayerNorm and skip-connections. In our paper, we will
either adopt the local aggregation strategy, or let all nodes communicate in order to test this inductive bias in
the context of graphs, where capturing long range interactions between nodes may be useful for some tasks.

4.2 Encoding Node Positions
The output of the transformer is invariant to permutations in the input data. It is therefore crucial to provide
the transformer with information about the data structure. In this section, we revisit previously proposed
strategies for sequences and graphs and devise new methods for positional encoding. Note that a natural
baseline is simply to adopt a local aggregation strategy similar to GAT [37] or [12].

4.2.1 Existing Strategies for Sequences and Graphs

Absolute and relative positional encoding in transformers for sequences. In NLP, positional
information was initially encoded by adding a vector based on sinusoidal functions to each of the input token
features [36]. This approach was coined as absolute position encoding and proved to be also useful for other
data modalities [9, 12]. In relative position encoding, which was proposed later [26, 30], positional information
is added to the attention logits and in the values. This information only depends on the relative distance
between the two considered elements in the input sequence.

4



Absolute positional encoding for graphs. Whereas positional encodings can be hand-crafted or learned
relatively easily for sequences and images, which respectively admit a chain or grid structure, this task
becomes non-trivial for graphs, whose structure may vary a lot inside a data set, besides the fact that the
concept of node position is ill-defined. To address these issues, an absolute position encoding scheme was
recently proposed in [12], by leveraging the graph Laplacian (LapPE). More precisely, each node of each graph
is assigned a vector containing the first k coordinates of the node in the eigenbasis of the graph normalized
Laplacian sorted in ascending order of the eigenvalues. Since the first eigenvector associated to the eigenvalue
0 is constant, the first coordinate is omitted.

As detailed in Section 3, these eigenvectors oscillate more and more and the corresponding coordinates
are often interpreted as Fourier coefficients representing frequency components in increasing order. Note
that eigenvectors of the Laplacian computed on different graphs could not be compared to each other in
principle, and are also only defined up to a ±1 factor. While this raises a conceptual issue for using them in
an absolute positional encoding scheme, it is shown in [12]—and confirmed in our experiments—that the issue
is mitigated by the Fourier interpretation, and that the coordinates used in LapPE are effective in practice
for discriminating between nodes in the same way as the position encoding proposed in [36] for sequences.
Yet, because the eigenvectors are defined up to a ±1 factor, the sign of the encodings needs to be randomly
flipped during the training of the network. In the next section, we introduce a novel strategy in the spirit of
relative positional encoding that does not suffer from the previous conceptual issue, and can also be combined
with LapPE if needed.

4.2.2 Relative Position Encoding Strategies by Using Kernels on Graphs

Modulating the transformer attention. To avoid the issue of transferability of the absolute positional
encoding between graphs, we use information on the nodes structural similarity to bias the attention scores.
More precisely, and in the fashion of [25, 35] for sequences, we modulate the attention kernel using the Gram
matrix of some kernel on graphs described in Section 3 as follows:

PosAttention(Q,V,Kr) = normalize
(
exp

(
QQ>√
dout

)
�Kr

)
V ∈ Rn×dout , (5)

with the same Q and V matrices, and Kr a kernel on the graph. “exp” denotes the elementwise exponential of
the matrix entries and normalize means `1-normalization on rows such that normalization(exp(u))=softmax(u).
The reason for multiplying the exponential of the attention logits before `1-normalizing the rows is that it
corresponds to a classical kernel smoothing. Indeed, if we consider the PosAttention output for a node i:

PosAttention(Q,V,Kr)i =

n∑
j=1

exp
(
QiQ

>
j /
√
dout

)
×Kr(i, j)∑n

j′=1 exp
(
QiQ

>
j′/
√
dout

)
×Kr(i, j′)

Vj ∈ Rdout ,

we obtain a typical smoothing, i.e, a linear combination of features with weights determined by a non-negative
kernel, here k(i, j) := exp(QiQ

>
j /
√
dout)×Kr(i, j), and summing to 1. In fact, k can be considered as a new

kernel between nodes i and j made by multiplying a kernel based on positions (Kr) and a kernel based on
content (via Q). As observed in [35] for sequences, modulating the attention logits with a kernel on positions
is related to relative positional encoding [30], where we bias the attention matrix with a term depending
only on the relative difference in positions between the two elements in the input set. Moreover, during the
forward pass, the feature map X is updated as follows:

X = X +D−
1
2PosAttention(Q,V,Kr), (6)

where D is the matrix of node degrees. We found such a normalization with D−1/2 to be beneficial in our
experiments since it reduces the overwhelming influence of highly connected graph components. Note that,
as opposed to absolute position encoding, we do not add positional information to the values and the model
does not rely on the transferability of eigenvectors between different Laplacians.

5



Choice of kernels and parameters. Interestingly, the choice of the kernel enables to encode a priori
knowledge directly within the model architecture, while the parameter has an influence on the attention
span. For example, in the diffusion kernel, β can be seen as the duration of the diffusion process. The
smaller it is, the more focused the attention on the close neighbors. Conversely, a large β corresponds to
an homogeneous attention span. As another example, it is clear that the choice of p in the random walk
kernel corresponds to visiting at best p-degree neighbors. In our experiments, the best kernel may vary across
datasets, suggesting that long-range global interactions are of different importance depending on the task.
For example, on the dataset PROTEINS (see Section 5), the vanilla transformer without using any structural
information performs very well.

4.3 Encoding Topological Structures
Position encoding aims at adding positional only information to the feature vector of an input node or to the
attentions scores. Substructures is a different type of information, carrying local positional information and
content, which has been heavily used within graph kernels, see Section 2. In the context of graphs neural
networks, this idea was exploited in the graph convolutional kernel network model (GCKN) of [7], which is a
hybrid approach between GNNs and graph kernels based on substructure enumeration (e.g., paths). Among
different strategies we experimented, enriching nodes features with the output of a GCKN layer turned out
to be a very effective strategy.

Graph convolutional kernel networks (GCKN). GCKNs [7] is a multi-layer model that produces a
sequence of graph feature maps akin to a GNN. The main difference is that each layer enumerates local
sub-structures at each node (here, paths of length k), encodes them using a kernel embedding, and aggregates
the resulting sub-structure representations. This results in a feature map that carries more information
about the graph structure than traditional neighborhood aggregation based GNNs, which is appealing for
transformers since the vanilla version is blind to the graph structure.

Formally, let us consider a graph G with n nodes, and let us denote by Pk(u) the set of paths shorter than
or equal to k that start with node u. With an abuse of notation, p in Pk(u) will denote the concatenation of
all node features encountered along the path. Then, a layer of GCKN defines a feature map X in Rn×d such
that

X(u) =
∑

p∈Pk(u)

ψ(p),

where X(u) is the column of X corresponding to node u and ψ is a d-dimensional embedding of the path
features p. More precisely, the path features in [7] are embedded to a RKHS by using a Gaussian kernel,
and a finite-dimensional approximation is obtained by using the Nyström method [39]. The embedding is
parametrized and can be learned without or with supervision (see [7] for details). Moreover, path features of
varying lengths up to a maximal length can be used with GCKN. In this work, we evaluate the strategy of
encoding a node as the concatenation of its original features and those produced by one GCKN layer. This
strategy has proven to be very successful in practice.

5 Experiments
In this section, we evaluate instances of GraphiT as well as popular GNNs and position encoding baselines on
various graph classification and regression tasks. We want to answer several questions:
Q1: Can vanilla transformers, when equipped with appropriate position encoding and/or structural informa-

tion, outperform GNNs in graph classification and regression tasks?
Q2: Is kernel-based relative positional encoding more effective than the absolute position encoding provided

by the eigenvectors of the Laplacian (LapPE)?
Q3: What is the most effective way to encode graph structure information within transformers?
We also discuss our results and conduct ablation studies. Finally, we demonstrate the ability of attention
scores to highlight meaningful graph features when using kernel-based positional encoding.

6



5.1 Methodology
Benchmark and baselines. We benchmark our methods on various graph classification datasets with
discrete node labels (MUTAG, PROTEINS, PTC, NCI1) and one regression dataset with discrete node
labels (ZINC). These datasets can be obtained e.g via the Pytorch Geometric toolbox [13]. We compare
our models to the following GNN models: Molecular Fingerprint (MF) [11], Graph Convolutional Networks
(GCN) [18], Graph Attention Networks (GAT) [37], Graph Isomorphism Networks (GIN) [40] and finally
Graph Convolutional Kernel Networks (GCKN) [7]. In particular, GAT is an important baseline as it uses
attention to aggregate neighboring node information. We compare GraphiT to the transformer architecture
proposed in [12] and also use their Laplacian absolute position encoding as a baseline for evaluating our graph
kernel relative position encoding. All models are implemented in Pytorch and our code is available in the
supplementary material.

Reporting scores. For all datasets except ZINC, we samples ten times random train/val/test splits, of size
80/10/10, respectively. For each split, we evaluate all methods by (i) training several models on the train fold
with various hyperparameters; (ii) performing model selection on val, by averaging the validation accuracy of
a model on its last 50 epochs; (iii) retraining the selected model on train+val; (iv) estimate the test score by
averaging the test accuracy over the last 50 epochs. The results reported in our tables are then averaged
over the ten splits. This procedure is a compromise between a double-nested cross validation procedure that
would be too computationally expensive and reporting 10-fold cross validation scores that would overestimate
the test accuracy. For ZINC, we use the same train/val/test splits as in [12], train GraphiT with 10 layers, 8
heads and 64 hidden dimensions as in [12], and report the average test mean absolute error on 4 independent
runs.

Optimization procedure and hyperparameter search. Our models are trained with the Adam opti-
mizer by decreasing the learning rate by a factor of 2 each 50 epochs. For classification tasks, we train about
the same number (81) of models with different hyperparameters for each GNN and transformer method, thus
spending a similar engineering effort on each method. For GNN models, we select the best type of global
pooling, number of layers and hidden dimensions from three different values. Regarding transformers, we
select the best number of heads instead of global pooling type for three different values. For all considered
models, we also select the best learning rate and weight decay from three different values and the number of
epochs is fixed to 300 to guarantee the convergence. For the ZINC dataset, we found that a standard warmup
strategy suggested for transformers in [36] leads to more stable convergence for larger models. The rest of the
hyperparameters remains the same as used in [12]. More details and precise grids for hyperparameter search
can be found in Appendix A.

5.2 Results and Discussion
Comparison of GraphiT and baselines methods. We show our results in Table 1. For smaller datasets
such as MUTAG, PROTEINS or PTC, our Transformer without positional encoding performs reasonably
well compared to GNNs, whereas for NCI1 and ZINC, incorporating structural information into the model is
key to good performance. On all datasets, GraphiT is able to perform as well as or better than the baseline
GNNs. In particular on ZINC, GraphiT outperforms all previous baseline methods by a large margin. For
this, it seems that the factor D−1/2 in (6) is important, allowing to capture more information about the
graph structure. The answer to Q1 is therefore positive.

Comparison of relative position encoding schemes. Here, we compare our transformer used with
different relative positional encoding strategies, including adjacency (1-step RW kernel with γ = 1.0 corre-
sponding to a normalized adjacency matrix D−1/2AD−1/2) which is symmetric but not positive semi-definite,
2 and 3-step RW kernel with γ = 0.5 and a diffusion kernel with β = 1. Unlike the vanilla transformer
that works poorly on big datasets including NCI1 and ZINC, keeping all nodes communicate through our
diffusion kernel positional encoding can still achieve performances close to encoding methods relying on local

7



Table 1: Average mean classification accuracy/mean absolute error.

Method / Dataset MUTAG PROTEINS PTC NCI1 ZINC (no edge feat.)

Size 188 1113 344 4110 12k
Classes 2 2 2 2 Reg.
Max. number of nodes 28 620 109 111 37

MF [11] 81.5±11.0 71.9±5.2 57.3±6.9 80.6±2.5 0.387±0.019
GCN [18] 78.9±10.1 75.8±5.5 54.0±6.3 75.9±1.6 0.367±0.011
GAT [37] 80.3±8.5 74.8±4.1 55.0±6.0 76.8±2.1 0.384±0.007
GIN [40] 82.6±6.2 73.1±4.6 55.0±8.7 81.7±1.7 0.387±0.015
GCKN-subtree [7] 87.8±9.4 72.0±3.7 62.1±6.4 79.6±1.8 0.474±0.001

[12] 79.3±11.6 65.8±3.1 58.4±8.2 78.9±1.1 0.359±0.014
[12] + LapPE 83.9±6.5 70.1±3.2 57.7±3.1 80.0±1.9 0.323±0.013

Transformers (T) 82.2±6.3 75.6±4.9 58.1±10.5 70.0±4.5 0.696±0.007
T + LapPE 85.8±5.9 74.6±2.7 55.6±5.0 74.6±1.9 0.507±0.003
T + Adj PE 87.2±9.8 72.4±4.9 59.9±5.9 79.7±2.0 0.243±0.005
T + 2-step RW kernel 85.3±6.9 72.8±4.5 62.0±9.4 78.0±1.5 0.243±0.010
T + 3-step RW kernel 83.3±6.3 76.2±4.4 61.0±6.2 77.6±3.6 0.244±0.011
T + Diffusion kernel 82.7±7.6 74.6±4.2 59.1±7.4 78.9±1.6 0.255±0.010
T + GCKN 84.4±7.8 69.5±3.8 61.5±5.8 78.1±5.1 0.274±0.011
T + GCKN + 2-step RW kernel 90.4±5.8 72.5±4.6 58.4±7.6 81.0±1.8 0.213±0.016
T + GCKN + Adj PE 90.5±7.0 71.1±6.9 57.9±4.2 81.4±2.2 0.211±0.010

communications such as adjacency or p-step kernel encoding. Interestingly, our adjacency encoding, which
could be seen as a variant of the neighborhood aggregation of node features used in GAT, is shown to be very
effective on many datasets. In general, sparse local positional encoding seems to be useful for our prediction
tasks, which tempers the answer to Q1.

Comparison of structure encoding schemes in node features. In this paragraph, we compare different
ways of injecting graph structures to the vanilla transformer, including Laplacian PE [12] and unsupervised
GCKN-path features [7]. We observe that incorporating topological structures directly into the features of
input nodes is a very useful strategy for vanilla transformers. This yields significant performance improvement
on almost all datasets except PROTEINS, by either using the Laplacian PE or GCKN-path features. Among
them, GCKN features are observed to outperform Laplacian PE by a large margin, except on MUTAG and
PROTEINS (third column of Table 2). A possible reason for this exception is that PROTEINS seems to
be very specific, such that prediction models do not really benefit from encoding positional information. In
particular, GCKN brings a pronounced performance boost on ZINC, suggesting the importance of encoding
substructures like paths for prediction tasks on molecules.

Combining relative position encoding and structure encoding in node features. Table 2 reports
the ablation study of the transformer used with or without structure encoding and coupled or not with a
relative positional encoding. The results show that relative PE outperforms the topological Laplacian PE,
suggesting a positive answer to Q2. However, using both simultaneously improves the results considerably,
especially on ZINC. In fact, combining relative position encoding and a structure encoding scheme globally
improves the performances. In particular, using the GCKN-path layer features works remarkably well for all
datasets except PROTEINS. More precisely, we see that the combination of GCKN with the adjacent matrix
PE yields the best results among the other combinations for MUTAG and NCI1. In addition, the GCKN
coupled with the 3-step RW kernel achieves the second best performance for ZINC. The answer to Q3 is
therefore combining a structure encoding scheme in node features, such as GCKN, with relative positional
encoding.

8



Table 2: Ablation: comparison of different structural encoding schemes and their combinations.

Dataset Structure encoding
in node features

Relative positional encoding in attention scores
T vanilla T + Adj T + 2-step T + 3-step T + Diffusion

MUTAG
None 82.2±6.3 87.2±9.8 85.3±6.9 83.3±6.3 82.7±7.6
LapPE 85.8±5.9 86.0±4.2 84.7±4.7 83.5±5.2 84.2±7.2
GCKN 84.4±7.8 90.5±7.0 90.4±5.8 90.0±6.3 90.0±6.8

PROTEINS
None 75.6±4.9 72.4±4.9 72.8±4.5 76.2±4.4 74.6±4.2
LapPE 74.6±2.7 74.7±5.2 75.0±4.7 74.3±5.3 74.7±5.3
GCKN 69.5±3.8 71.1±6.9 72.5±4.6 70.0±5.1 72.4±4.9

PTC
None 58.1±10.5 59.9±5.9 62.0±9.4 61.0±6.2 59.1±7.4
LapPE 55.6±5.0 57.1±3.8 58.8±6.6 57.1±5.3 57.3±7.8
GCKN 61.5±5.8 57.9±4.2 58.4±7.6 55.2±8.8 55.9±8.1

NCI1
None 70.0±4.5 79.7±2.0 78.0±1.5 77.6±3.6 78.9±1.6
LapPE 74.6±1.9 78.7±1.9 78.4±1.3 78.7±1.5 77.8±1.0
GCKN 78.1±5.1 81.4±2.2 81.0±1.8 81.0±1.8 81.0±2.0

ZINC
None 0.696±0.007 0.243±0.005 0.243±0.010 0.244±0.011 0.255±0.010
LapPE 0.507±0.003 0.202±0.011 0.227±0.030 0.210±0.003 0.221±0.038
GCKN 0.274±0.011 0.211±0.010 0.213±0.016 0.203±0.011 0.218±0.006

Discussion. Combining transformer and GCKN features results in substantial improvement over the simple
sum or mean global poolings used in original GCKN models on ZINC dataset as shown in Table 1, which
suggests that transformers can be considered as a very effective method for aggregating local substructure
features on large datasets at the cost of using much more parameters. This point of view has also been
explored in [25], which introduces a different form of attention for sequence and text classification. A potential
limitation of GraphiT is its application to large graphs, as the complexity of the self-attention mechanism
scales quadratically with the size of the input sequence. However, a recent line of work coined as efficient
transformers alleviated these issues both in terms of memory and computational cost [2, 19]. We refer the
reader to the following survey [34].

5.3 Visualizing attention scores for the Mutagenicity dataset.
We now show that the attention yields visualization mechanisms for detecting important graph motifs.

Mutagenicity. In chemistry, a mutagen is a compound that causes genetic mutations. This important
property is related to the molecular substructures of the compound. The Mutagenicity dataset [17] contains
4337 molecules to be classified as mutagen or not, and aims at better understanding which substructures
cause mutagenicity. We train GraphiT with diffusion position encoding on this dataset with the aim to study
whether important substructures can be detected. To this end, we feed the model with molecules of the
dataset and collect the attention scores of each layer averaged by heads, as can be seen in Figure 2 for the
molecules of Figure 1.

Patterns captured in the attention scores. While the scores in the first layer are close to the diffusion
kernel, the following layers get sparser. Since the attention matrix is multiplied on the right by the values, the
coefficients of the node aggregation step for the n-th node is given by the n-th row of the attention matrix.
As a consequence, salient columns suggest the presence of important nodes. After verification, for many
samples of Mutagenicity fed to our model, salient atoms indeed represent important groups in chemistry,
many of them being known for causing mutagenicity. In compound 1a, the N atom of the nitro group (NO2)
is salient. 1a was correctly classified as a mutagen by our model and the nitro group is indeed known for its
mutagenetic properties [8]. Note how information flows from O atoms to N in the first two layers and then,
at the last layer, how every element of the carbon skeleton look at N, i.e the NO2 group. We can apply the

9



C O H N S

0
1

2

3
4

5
6

7

8

9

1011

12
13

14
15

16
17

18 19

20

21
22

23

24
25 26

27

(a) Nitrothiopheneamide-methylbenzene

0
12

3

4

5

6

7

89

10

11

12

13

14

15 16

1718

19

20

21

22

23

24
25

26 27

(b) Aminofluoranthene

Figure 1: Examples of molecules from Mutagenicity correctly classified as mutagenetic by our model.

0

5

10

15

20

25

0 5 10 15 20 25

0 5 10 15 20 25

0

5

10

15

20

25

Layer 1
0

5

10

15

20

25

0 5 10 15 20 25

0 5 10 15 20 25

0

5

10

15

20

25

Layer 2
0

5

10

15

20

25

0 5 10 15 20 25

N

N

Layer 3

0

5

10

15

20

25

0 5 10 15 20 25

0 5 10 15 20 25

0

5

10

15

20

25

Layer 1
0

5

10

15

20

25

0 5 10 15 20 25

0 5 10 15 20 25

0

5

10

15

20

25

Layer 2
0

5

10

15

20

25

0 5 10 15 20 25

N

N

Layer 3

Figure 2: Attention scores averaged by heads for each layer of our trained model for the compounds in
Figures 1a (Top) and 1b (Bottom). Top Left : diffusion kernel for 1a. Top Right : node 8 (N of NO2) is salient.
Bottom Left : diffusion kernel for 1b. Bottom Right : node 14 (N of NH2) is salient.

10



same reasoning for the amino group (NH2) in compound 1b [3]. We were also able to identify long-range
intramolecular hydrogen bounds such as between H and Cl in other samples. We provide more examples of
visualization in Appendix B.

6 Conclusion
In this work, we show that using a transformer to aggregate local substructures with appropriate position
encoding, GraphiT, is a very effective strategy for graph representation, and that attention scores allow simple
model interpretation. One of the reasons for the success of transformers lies in their scaling properties: in
language modeling for example, it has been shown that for an equal large amount of data, the transformer’s
loss follows a faster decreasing power law than Long-Short-Term-Memory networks when the size of the
model increases [16]. We believe that an interesting future direction for this work would be to evaluate if
GNNs and GraphiT also scale similarly in the context of large self-supervised pre-training, and can achieve a
similar success as in natural language processing.

Acknowledgments
GM, DC, MS, and JM were supported by the ERC grant number 714381 (SOLARIS project) and by ANR 3IA
MIAI@Grenoble Alpes, (ANR-19-P3IA-0003). This work was granted access to the HPC resources of IDRIS
under the allocation 2021-AD011012521 made by GENCI. GM thanks Robin Strudel for useful discussions on
transformers.

References
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.

Neural computation, 15(6):1373–1396, 2003.

[2] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer. arXiv:2004.05150,
2020.

[3] D. L. Berry, G. M. Schoofs, and W. A. Vance. Mutagenicity of nitrofluoranthenes, 3-aminofluoranthene
and 1-nitropyrene in Chinese hamster V79 cells. Carcinogenesis, 6(10):1403–1407, 1985.

[4] K. Borgwardt, E. Ghisu, F. Llinares-López, L. O’Bray, and B. Rieck. Graph kernels: State-of-the-art
and future challenges. arXiv preprint arXiv:2011.03854, 2020.

[5] K. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In International conference on data
mining (ICDM), 2005.

[6] M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning: Going
beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[7] D. Chen, L. Jacob, and J. Mairal. Convolutional kernel networks for graph-structured data. In
International Conference on Machine Learning (ICML), 2020.

[8] K.-T. Chung, C. A. Murdock, Y. Zhou, S. E. Stevens Jr., Y.-S. Li, C.-I. Wei, S. Y. Fernando, and M.-W.
Chou. Effects of the nitro-group on the mutagenicity and toxicity of some benzamines. Environmental
and Molecular Mutagenesis, 27(1):67–74, 1996.

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference on Learning Representations
(ICLR), 2021.

11



[10] S. S. Du, K. Hou, R. R. Salakhutdinov, B. Poczos, R. Wang, and K. Xu. Graph neural tangent kernel:
Fusing graph neural networks with graph kernels. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[11] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik,
and R. P. Adams. Convolutional networks on graphs for learning molecular fingerprints. In Advances in
Neural Information Processing Systems (NeurIPS), 2015.

[12] V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs. AAAI Workshop on
Deep Learning on Graphs: Methods and Applications, 2021.

[13] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[14] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alternatives. In
Learning theory and kernel machines, pages 129–143. Springer, 2003.

[15] Z. Harchaoui and F. Bach. Image classification with segmentation graph kernels. In 2007 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

[16] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,
and D. Amodei. Scaling laws for neural language models, 2020.

[17] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann. Benchmark data sets for graph
kernels, 2016.

[18] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

[19] N. Kitaev, Łukasz Kaiser, and A. Levskaya. Reformer: The efficient transformer. In International
Conference on Learning Representations (ICLR), 2020.

[20] J. Klicpera, S. Weißenberger, and S. Günnemann. Diffusion improves graph learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

[21] R. Kondor and J.-P. Vert. Diffusion kernels. In Kernel Methods in Computational Biology, pages 171–192.
MIT Press, 2004.

[22] Y. Li, X. Liang, Z. Hu, Y. Chen, and E. P. Xing. Graph transformer, 2019.

[23] M. Låg, J. G. Omichinski, E. Dybing, S. D. Nelson, and E. J. SÃžderlund. Mutagenic activity of
halogenated propanes and propenes: effect of bromine and chlorine positioning. Chemico-Biological
Interactions, 93(1):73–84, 1994.

[24] P. Mahé and J.-P. Vert. Graph kernels based on tree patterns for molecules. Machine learning, 75(1):3–35,
2009.

[25] G. Mialon, D. Chen, A. d’Aspremont, and J. Mairal. A trainable optimal transport embedding for feature
aggregation and its relationship to attention. In International Conference on Learning Representations
(ICLR), 2021.

[26] A. Parikh, O. Täckström, D. Das, and J. Uszkoreit. A decomposable attention model for natural language
inference. In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2016.

[27] A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo, M. Ott, C. L. Zitnick, J. Ma, and
R. Fergus. Biological structure and function emerge from scaling unsupervised learning to 250 million
protein sequences. bioRxiv, 2019.

12



[28] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[29] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, et al. Improved protein structure
prediction using potentials from deep learning. Nature, 577(7792):706–710, 2020.

[30] P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position representations. In Proceedings
of the North American Chapter of the Association for Computational Linguistics (NAACL), 2018.

[31] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-Lehman
graph kernels. Journal of Machine Learning Research (JMLR), 12:2539–2561, 2011.

[32] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Efficient graphlet kernels for
large graph comparison. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2009.

[33] A. J. Smola and R. Kondor. Kernels and regularization on graphs. In B. Schölkopf and M. K. Warmuth,
editors, Learning Theory and Kernel Machines, pages 144–158. Springer Berlin Heidelberg, 2003.

[34] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient transformers: A survey, 2020.

[35] Y.-H. H. Tsai, S. Bai, M. Yamada, L.-P. Morency, and R. Salakhutdinov. Transformer dissection: A
unified understanding of transformer’s attention via the lens of kernel. In Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2019.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[37] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks.
In International Conference on Learning Representations (ICLR), 2018.

[38] N. Verma, E. Boyer, and J. Verbeek. Feastnet: Feature-steered graph convolutions for 3d shape analysis.
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[39] C. K. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In Advances in
Neural Information Processing Systems (NeurIPS), 2001.

[40] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In International
Conference on Learning Representations (ICLR), 2019.

[41] S. Yun, M. Jeong, R. Kim, J. Kang, and H. Kim. Graph transformer networks. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[42] J. Zhang, H. Zhang, C. Xia, and L. Sun. Graph-bert: Only attention is needed for learning graph
representations, 2020.

13



Appendix

A Experimental Details
In this section, we provide implementation details and additional experimental results.

A.1 General Details.
Computing infrastructure. Computations were done on a GPU cluster equipped with Tesla V100-16G
and Tesla V100-32G. We have monitored precisely the entire computational cost of this research project
(including preliminary experiments, designing early and final models, evaluating baselines, running final
experiments), which was approximately 20k GPU hours.

Position encoding and structure encoding parameters for all datasets. γ for p-step random walk
kernels is fixed to 0.5 for both 2- and 3-step random walk kernels. β for the diffusion kernel is fixed to 1.0.
Regarding the structure encoding in node features, the dimension of Laplacian positional encoding is set to 8
for ZINC as suggested by [12] and to 2 for graph classification datasets. The path size, the filter number and
the bandwidth parameter of the unsupervised GCKN path features (used for structure encoding) are set to 8,
32 and 0.6 respectively for the ZINC dataset whereas the path size is set to 5 for graph classification datasets.

Other details. For all instances of GraphiT, the hidden dimensions of the feed-forward hidden layer in
each layer of the encoder are fixed to twice of the dimensions of the attention.

A.2 Graph Classification Datasets
Here, we provide experimental details for MUTAG, PROTEINS, PTC, NCI1 and Mutagenicity datasets.

Datasets. These free datasets were collected by [17] for academic purpose. MUTAG consists in classifying
molecules into mutagenetic or not. PROTEINS consists in classifying proteins into enzymes and non-enzymes.
PTC consists in classifying molecules into carcinogenetic or not. NCI1 consists in classifying molecules into
positive or negative to cell lung cancer. Mutagenicity consists in classifying compounds into mutagenetic or
not.

Training splits. For MUTAG, PROTEINS, PTC and NCI1, our outer splits correspond to the splits used
in [40]. Our inner splits that divide their train splits into our train and validation splits are provided in
our code. The error bars are computed as the standard deviation of the test accuracies across the 10 outer
folds. On the other side, as the purpose of using Mutagenicity is model interpretation, we use simple train,
validation and test splits respectively composed of 80%, 10%, and 10% of the whole dataset.

Hyperparameter choices. For smaller datasets (MUTAG, PTC, PROTEINS), we use the search grids in
Table 3 for GNNs, the search grids in Table 4 for GCKN and the search grids in Table 5 for both GraphiT and
the transformer model of [12]. For bigger datasets (NCI1), we use the search grid in Table 3 for GNNs, the
search grids in Table 4 for GCKN and the search grids in Table 6 for both GraphiT and the transformer model
of [12]. The best models are selected based on the validation scores that are computed as the average of the
validation scores over the last 50 epochs. Then, the selected model is retrained on train plus validation sets
and the average of the test scores over the last 50 epochs is reported. For Mutagenicity, we train a GraphiT

14



Table 3: Parameter grid for GNNs trained on MUTAG, PROTEINS, PTC, NCI1.

Parameter Grid

Layers [1, 2, 3]
Hidden dimension [64, 128, 256]
Global pooling [sum, max, mean]
Learning rate [0.1, 0.01, 0.001]
Weight decay [0.1, 0.01, 0.001]

Table 4: Parameter grid for GCKN trained on MUTAG, PROTEINS, PTC, NCI1.

Parameter Grid

Path size [3, 5, 7]
Hidden dimension [16, 32, 64]
Sigma [0.5]
Global pooling [sum, max, mean]
Learning rate [0.001]
Weight decay [0.01, 0.001, 0.0001]

model with 3 layers, 4 heads, 64 hidden dimensions. Initial learning rate was set to 1e-3, weight-decay was
fixed to 1e-4 and structural information was encoded only via relative position encoding with the diffusion
kernel.

Optimization. We use the cross-entropy loss and Adam optimizer with batch size 128 for GNNs and 32 for
both GraphiT and the transformer model of [12]. For transformers, we do not observe significant improvement
using warm-up strategies on these classification tasks. Thus, we simply follow a scheduler that halves the
learning rate after every 50 epochs, as for GNNs. All models are trained for 300 epochs.

A.3 Graph Regression Dataset
Here, we present experimental details and additional experimental results for ZINC dataset.

Dataset. ZINC is a free dataset consisting of 250k compounds and the task is to predict the constrained
solubility of the compounds, formulated as a graph property regression problem. This problem is crucial
for designing generative models for molecules. Each molecular graph in ZINC has the type of heavy atoms
as node features (represented by a binary vector using one-hot encoding) and the type of bonds between
atoms as edge features. In order to focus on the exploitation of the topological structures of the graphs, we
omitted the edge features in our experiments. They could possibly be incorporated into GraphiT through the
approach of [12] or considering different kernels on graph for each edge bond type, which is left for future
work.

Table 5: Parameter grid for transformers trained on MUTAG, PROTEINS, PTC.

Parameter Grid

Layers [1, 2, 3]
Hidden dimension [32, 64, 128]
Heads [1, 4, 8]
Learning rate [0.001]
Weight decay [0.01, 0.001, 0.0001]

15



Table 6: Parameter grid for transformers trained on NCI1.

Parameter Grid

Layers [2, 3, 4]
Hidden dimension [64, 128, 256]
Heads [1, 4, 8]
Learning rate [0.001]
Weight decay [0.01, 0.001, 0.0001]

Training splits. Following [12], we use a subset of the ZINC dataset composed of respectively 10k, 1k and
1k graphs for train, validation and test split. The error bars are computed as the standard deviation of test
accuracies across 4 different runs.

Hyperparameter choice. In order to make fair comparisons with the most relevant work [12], we use the
same number of layers, number of heads and hidden dimensions, namely 10, 8 and 64. The number of model
parameters for our transformers is only 2/3 of that of [12] as we use a symmetric variant for the attention
score function in (5). Regarding the GNNs, we use the values reported in [12] for GIN, GAT and GCN. In
addition, we use the same grid to train the MF model [11], i.e., a learning rate starting at 0.001, two numbers
of layers (4 and 16) and the hidden dimension equal to 145. Regarding the GCKN-subtree model, we use the
same hidden dimension as GNNs, that is 145. We fix the bandwidth parameter to 0.5 and the path size is
fixed to 10. We select the global pooling form max, mean, sum and weight decay from 0.001, 0.0001 and 1e-5,
similar to the search grid used in [12].

Optimization. Following [12], we use the L1 loss and the Adam optimization method with batch size of
128 for training. Regarding the scheduling of the learning rate, we observe that a standard warm-up strategy
used in [36] leads to more stable convergence for larger models (hidden dimension equal to 128). We therefore
adopt this strategy throughout the experiments with a warm-up of 2000 iteration steps.

Additional results. Besides the relatively small models presented in Table 1, we also show in Table 7
the performance of larger models with 128 hidden dimensions. Increasing the number of hidden dimensions
generally results in boosting performance, especially for transformer variants combined with Laplacian
positional encoding in node features. While sparse local positional encoding is shown to be more useful
compared to the positional encoding with a diffusion kernel, we show here that a variant of diffusion kernel
positional encoding outperforms all other sparse local positional encoding schemes. Since the skip-connection
in transformers already assigns some weight to each node itself and the diagonal of our kernels on graphs
also have important weight, we considered setting these diagonal to zero in order to remove the effect of the
attention scores on self-loop. This modification leads to considerable performance improvement on longer
range relative positional encoding schemes, especially for the transformer with diffusion kernel positional
encoding combined with GCKN in node features, which results in best performance.

B Additional visualization of Mutagenicity compounds
In this section, we use attention scores as a visualization mechanism for detecting substructures that may
possibly induce mutagenicity. We apply our model to samples from the Mutagenicity data set [17] and analyze
molecules that were correctly classified as mutagenic.

1,2-Dibromo-3-Chloropropane (DBCP). DBCP in Figure 3 was used as a soil fumigant in various
countries. It was banned from use in the United Stated in 1979 after evidences that DBCP causes diseases,
male sterility, or blindness, which can be instances of mutagenicity. In Figure 4, attention focuses on the

16



Table 7: Mean absolute error for regression problem ZINC. The results are computed from 4 different runs
following [12].

Relative PE in attention score Structural encoding in node features
None LapPE GCKN (p=8,d=32)

[12] 0.3585±0.0144 0.3233±0.0126 -

Transformers with d=64

T 0.6964±0.0067 0.5065±0.0025 0.2741±0.0112
T + Adj PE 0.2432±0.0046 0.2020±0.0112 0.2106±0.0104
T + 2-step RW kernel 0.2429±0.0096 0.2272±0.0303 0.2133±0.0161
T + 3-step RW kernel 0.2435±0.0111 0.2099±0.0027 0.2028±0.0113
T + diffusion 0.2548±0.0102 0.2209±0.0038 0.2180±0.0055
Setting diagonal to zero, d=64

T 0.7041±0.0044 0.5123±0.0232 0.2735±0.0046
T + 2-step 0.2427±0.0053 0.2108±0.0072 0.2176±0.0430
T + 3-step 0.2451±0.0043 0.2054±0.0072 0.1986±0.0091
T + diffusion 0.2468±0.0061 0.2027±0.0084 0.1967±0.0023
Larger models with d=128

T 0.7044±0.0061 0.4965±0.0338 0.2776±0.0084
T + Adj PE 0.2310±0.0072 0.1911±0.0094 0.2055±0.0062
T + 2-step RW kernel 0.2759±0.0735 0.2005±0.0064 0.2136±0.0062
T + 3-step RW kernel 0.2501±0.0328 0.2044±0.0058 0.2128±0.0069
T + diffusion 0.2371±0.0040 0.2116±0.0103 0.2238±0.0068
Setting diagonal to zero, d=128

T 0.7044±0.0061 0.4964±0.0340 0.2721±0.0099
T + 2-step 0.2348±0.0010 0.2012±0.0038 0.2031±0.0083
T + 3-step 0.2402±0.0056 0.2031±0.0076 0.2019±0.0084
T + diffusion 0.2351±0.0121 0.1985±0.0032 0.2019±0.0018

17



C O Cl H N Br S

0

1

2

3

4

56

7

8

9

10

Figure 3: 1,2-Dibromo-3-Chloropropane.

0

2

4

6

8

10

0 2 4 6 8 10

0 2 4 6 8 10

0

2

4

6

8

10

Layer 1

0

2

4

6

8

10

0 2 4 6 8 10

0 2 4 6 8 10

0

2

4

6

8

10

Layer 2

0

2

4

6

8

10

0 2 4 6 8 10

Br Br

Br

Br

Layer 3

Figure 4: Attention scores averaged by heads for each layer of our trained model for the compound in Figure 3.
Left : diffusion kernel for 3. Right : node 3 and 5 (Br) are salient.

carbon skeleton and on the two Bromine (Br) atoms, the latter being indeed known for being associated with
mutagenicity [23].

Nitrobenzene-nitroimidazothiazole. This compound is shown in Figure 5. As for compound 1a in
Section 5.3, our model puts emphasis on two nitro groups which are indeed known for inducing mutagenicity.

Triethylenemelamine. Triethylenemelamine in Figure 7 is a compound exhibiting mutagenic properties,
and is used to induce cancer in experimental animal models. Our model focuses on the three nitrogen atoms
of the aziridine groups which are themselves mutagenic compounds.

18



C O Cl H N Br S

0

1

2

3

45

6 7

8

9
10

11

12 13

14
15

16

17
18 19

20 21

22

23 24

25

Figure 5: Nitrobenzene-nitroimidazothiazole.

0

5

10

15

20

25

0 5 10 15 20 25

0 5 10 15 20 25

0

5

10

15

20

25

Layer 1
0

5

10

15

20

25

0 5 10 15 20 25

0 5 10 15 20 25

0

5

10

15

20

25

Layer 2
0

5

10

15

20

25

0 5 10 15 20 25

N N

N

N

Layer 3

Figure 6: Attention scores averaged by heads for each layer of our trained model for the compound in Figure 5.
Left : diffusion kernel for 5. Right : node 5 and 17 (N) are salient.

19



C O Cl H N Br S

0

1

2
3

45

6
7

8
9

10

11
12

13

14

15
16

17
18

19

20

21 22

23
24

25

26

Figure 7: Triethylenemelamine.

0

5

10

15

20

25

0 5 10 15 20 25

0 5 10 15 20 25

0

5

10

15

20

25

Layer 1
0

5

10

15

20

25

0 5 10 15 20 25

0 5 10 15 20 25

0

5

10

15

20

25

Layer 2
0

5

10

15

20

25

0 5 10 15 20 25

N N N

N

N
N

Layer 3

Figure 8: Attention scores averaged by heads for each layer of our trained model for the compound in Figure 7.
Left : diffusion kernel for 7. Right : node 1, 8, and 10 (N) are salient.

20


	Introduction
	Related work
	Preliminaries about Kernels on Graphs
	Encoding Graph Structure in Transformers
	Transformer Architectures for Graphs
	Encoding Node Positions
	Existing Strategies for Sequences and Graphs
	Relative Position Encoding Strategies by Using Kernels on Graphs

	Encoding Topological Structures

	Experiments
	Methodology
	Results and Discussion
	Visualizing attention scores for the Mutagenicity dataset.

	Conclusion
	Experimental Details
	General Details.
	Graph Classification Datasets
	Graph Regression Dataset

	Additional visualization of Mutagenicity compounds

