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Abstract. Boolean Networks (BNs) are a simple formalism used to
study complex biological systems when the prediction of exact reaction
times is not of interest. They play a key role to understand the dynamics
of the studied systems and to predict their disruption in case of complex
human diseases. BNs are generally built from experimental data and
knowledge from the literature, either manually or with the aid of programs.
The automatic synthesis of BNs is still a challenge for which several
approaches have been proposed. In this paper, we propose ASKEeD-BN,
a new approach based on Answer-Set Programming to synthesise BNs
constrained in their structure and dynamics. By applying our method on
several well-known biological systems, we provide empirical evidence that
our approach can construct BNs in line with the provided constraints. We
compare our approach with three existing methods (REVEAL, Best-Fit
and caspo-TS) and show that our approach synthesises a small number of
BNs which are covering a good proportion of the dynamical constraints,
and that the variance of this coverage is low.

Keywords: Boolean Network Synthesis · Answer-Set Programming.

1 Introduction

Models of biological systems are important to understand the underlying pro-
cesses in living organisms [10]. Once built, the model is an artefact that can be
used to study a system through simulation. Several formalisms have been pro-
posed to model biological systems [11], and they all have their own strengths and
weaknesses. The choice of a formalism is guided by the question at hand: the best
formalism is the most abstract formalism which can answer the question [3]. For
example, differential equations are a formalism suited to run detailed dynamic
simulations because they contain information on kinetic parameters. However,
they do not scale to large systems.

Boolean Networks (BNs) are a formalism used to study complex biological
systems where prediction of exact reaction times is not of interest [1]. They
play a key role to understand the dynamics of biological systems and predict
their disruption in case of complex human diseases [2]. The key notions of BNs
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are presented in Section 2.2. BNs are built from available knowledge about
the structure of the system and data about the behaviour of its components
(Section 2.3). The knowledge and data are used as constraints for the BN
synthesis. The automatic synthesis of BNs from biological data and knowledge
is still a challenge for which several methods have been developed. In Section 3,
we review three state-of-the-art approaches: REVEAL, Best-Fit and caspo-TS.

In Section 4, we present ASKEeD-BN, a new automatic approach for the synthe-
sis of BNs constrained in their structure and dynamics. We rely on the Answer-Set
Programming framework to generate non-redundant BNs fulfilling the given con-
straints. We compare the performances of our approach with REVEAL, Best-Fit
and caspo-TS on several biological systems with experimental and synthetic data
(Section 5). Finally, we discuss the results and conclude.

2 Boolean Networks and their Synthesis

2.1 Prior Knowledge Network (PKN)

Part of the knowledge one has about a biological system is the list of components
(genes, proteins. . . ) constituting the system and how these components influence
each other. Influences have a polarity: activation (polarity “+”) or inhibition
(polarity “−”). The parents of a component X are the components which
influence X. A Prior Knowledge Network (PKN) encodes this knowledge.
The nodes of the network are the components of the system. The edges are
directed from parent components to child components and labelled “+” or “−”
according to the polarity of the influences. Fig. 1 shows an example PKN for a
system of three components. In this PKN, C and A are the parents of C.

– “A activates C”
– “B interacts with itself”
– “C activates A”
– “C interacts with B”
– “C inhibits itself”

A

B

C

+

±

±
+

-

Fig. 1. PKN example of a three-components system.

2.2 Boolean Networks (BNs)

BNs were introduced by Kauffman [7] to model genetic regulatory networks.
Concepts used in BNs are described in a recent review [17]. Two examples of
BNs are given in Fig. 2.

The components of a BN are the components of the considered biological
system. For example, a BN modelling a system of three proteins called A, B
and C has three components named A, B and C. A configuration of a BN
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B1 =


fA := C

fB := B ∧ ¬C

fC := ¬C

(a) Transition functions of B1

B2 =


fA := 0

fB := (B ∧ ¬C) ∨ (¬B ∧ C)

fC := A

(b) Transition functions of B2

A

B

C

+

+

-

-

(c) Interaction graph of B1

A

B

C

±

±
+

(d) Interaction graph of B2

(e) Synchronous (left) and asynchronous
(right) state transition graphs of B1

(f) Synchronous (left) and asynchronous
(right) state transition graphs of B2

Fig. 2. The transition functions, derived interaction graph, and state transition graphs
according to synchronous and asynchronous update schemes of two BNs.

is a vector which associates a Boolean value (1/active or 0/inactive) to each
component of the BN. A BN with n components has 2n possible configurations.
For example, the 23 = 8 possible configurations of a BN with 3 components are:
000, 001, 010, 011, 100, 101, 110 and 111.

Each component has an associated transition function (Bn → B) which
maps the configurations of the BN to the next value of the component. The
transition functions are usually written as Boolean expressions. In this paper,
these expressions are in Disjunctive Normal Form (DNF), i.e., disjunctions of
conjunctions. The conjunctions are satisfiable, which means they do not contain
a literal and its contrary. The operators ¬, ∧, ∨ represent respectively negation,
conjunction and disjunction. Figs. 2a and 2b show examples of transition func-
tions. The transition function associated to B in B2 states that the value of B
will be 1 if either the value of B or of C was 1 in the previous configuration.

Like for the PKN, the structure of a BN is defined in terms of parent-child
relationships between the components. A component P which appears in the
transition function of a component X is called a parent of X. If the parent
is negated in the DNF, we say that the polarity of the influence of P on X is
negative. Conversely, if the parent is not negated, the polarity is positive. The
Interaction Graph (IG) summarises these relationships as a directed graph.
The directed edge P→ X is labelled with “+” or “−” depending on the polarity
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of the influence P has on X. For example, the IG of B1 contains B
+−→ B and

C
−−→ B because B appears positively and C appears negatively in the transition

function associated to B. As we will see in Section 2.3, the PKN will act as a
hard constraint on the IG of the BNs we want to synthesise.

The BN dynamics is obtained by applying iteratively the transition func-
tions starting from each possible configuration. The order of application of
the transition functions is defined by the update scheme. The synchronous,
asynchronous and mixed update schemes are the most commonly used. In
the synchronous update scheme, the transition functions are applied all at once,
while in the asynchronous scheme, they are applied one by one. In the mixed
update scheme, any number of components can be updated at each step. Thus,
the update possibilities from both the synchronous and asynchronous update
schemes are included in this third update scheme.

The State Transition Graph (STG) is a directed graph whose nodes are
the 2n possible configurations of the BN. In this graph, there is a directed
edge from c to c′ if c′ is the result of applying to c the transition function(s)
according to the chosen update scheme. Fig. 2 shows examples of synchronous and
asynchronous STGs. As we will see later, the synthesis of BNs constrained in their
dynamics implies to enforce their STG to contain specific edges, corresponding
to specific transitions of configuration. We will also see how we use the mixed
STG to quantify how the synthesised BNs match the dynamical constraints.

2.3 Synthesis of BNs from PKN and multivariate TS

In general, BNs that model biological systems have to satisfy two categories of
constraints. On one hand, the BNs have to comply with a PKN. The PKN
constrains the structure of the synthesised BNs by defining which components
can appear as variables in each transition function and the polarity of those
variables. Hence, a component P is allowed to appear in the transition function
of a component X with a polarity s if the PKN contains an edge P

s−→ X. Formally,
a BN is compatible with a PKN if its IG is a spanning subgraph of the PKN.
In other words, the IG of a BN compatible with a given PKN is formed from
the vertices and a subset of the edges of the PKN. For example, the two BNs
presented in Figs. 2a and 2b are compatible with the PKN given in Fig. 1. On
the contrary, a BN containing the transition function fA := B is not, since the

IG of this BN contains the edge B
+−→ A, which is not in the PKN. A BN

having fA := ¬C is also incompatible: despite C being a possible parent of A,
the negative polarity is not allowed, since the PKN does not contain the edge

C
−−→ A.
On the other hand, the synthesised BNs are expected to reproduce as well

as possible the sequence of configurations extracted from an observed continu-
ous multivariate Time Series (TS) of the concentration of the components over
time. An example of multivariate TS is given in Table 1. Various strategies for
extracting the sequence of configurations and fitting the transition functions to
the observations were proposed in the literature.
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We focus here on the automatic synthesis of BNs that respect the structure of a
given PKN and are designed to reproduce as well as possible the observations from
one given multivariate TS. For each synthesised BN, this ability of reproducing
the observations is measured in terms of coverage proportion, i.e., the proportion
of transitions observed in the multivariate TS that are retrieved by the BN
when computing its STG according to the mixed update scheme. Ideally, an
identification method would only return BNs with a perfect coverage proportion
(i.e., 1).

Table 1. Multivariate TS of the three-components system given as example. The
continuous concentrations of the components have been sampled for 20 time steps. Here,
all the observations range from 0 to 100. The value resulting from the binarisation
with a threshold of 50 is indicated by the colour of the cells: green if the result of the
binarisation is 1 and red if 0. The resulting binary vectors are the configurations. Here
there are four configurations (010, 011, 100 and 001) lasting respectively 4, 3, 3 and 10
time steps. Vertical bars indicate a change of configuration.

configurations sequence:
010 → 011 → 100 → 001

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 0 3 7 13 20 30 49 61 100 63 36 25 2 3 1 1 3 0 0 0
B 100 86 64 57 54 53 51 49 45 37 33 28 22 19 14 12 9 5 2 0
C 0 27 36 42 60 75 54 44 38 48 60 72 88 90 100 100 100 100 100 100

3 State-of-the-Art Methods of BN synthesis from PKN
and TS

Several studies have been dedicated to the automatic synthesis of BNs from
PKNs and observed multivariate TS. Here, we review three main state-of-the-art
approaches: REVEAL [12], Best-Fit [9] and caspo-TS [16].

For each component of the system, REVEAL tests all the possible combinations
of its parent nodes, and attempts to find the functions that explain all the obser-
vations of the binarised TS. For example with the multivariate TS from Table 1:
REVEAL tries to explain 010→ 010→ 010→ 010→ 011→ 011→ 011→ 100→
. . . Hence, it cannot handle inconsistencies — such as a configuration being
associated to distinct successor configurations. Such inconsistencies are frequent
when sampling concentration along time because the processes implicated do not
all have the same speed. In the example (Table 1), observing both 010→ 010 and
010→ 011 is an inconsistency which causes the failure of REVEAL. Furthermore,
REVEAL cannot use the influence signs from the PKN, and since it uses an already
binarised TS, it is possibly biased by the chosen binarisation.

Like REVEAL, Best-Fit tests every possible combination of the parent nodes
of each component. It cannot use the influence signs and works on the binarised
TS as well. Unlike REVEAL it can manage inconsistencies from the TS since it
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returns the functions that explain the maximal number of time steps. In Table 1,
since 010→ 010 is observed three times and 010→ 011 only once, Best-Fit will
focus on explaining the former instead of the latter.

caspo-TS was designed to manage several multivariate TS, corresponding to
several experiments where the system is perturbed (forced activation or inhibition
of some components), and where some measurements are potentially missing.
Unlike REVEAL and Best-Fit, caspo-TS takes the influence signs into account.
But it can only generate locally monotonous BNs, i.e., BNs for which a parent
of a component cannot be both its activator and its inhibitor. B2 is an example
of BN caspo-TS cannot generate due to non local monotony. Indeed, in fB, the
components B and C act both as activator and inhibitor of B. caspo-TS works
as the following: first, it derives the set of BNs that are compatible with the
given PKN and an over-approximation of the dynamics of the TS, using the
so-called most-permissive semantics [4]. Because of this over-approximation, the
result can contain many false positive BNs, i.e.,BNs optimising the cost function
used under the hood of caspo-TS, while their asynchronous dynamics is not
able to reproduce the configurations sequence of the multivariate TS. These
false positive BNs are subsequently ruled out using exact model checking. This
filtering is PSPACE-hard, but thanks to the first step, a large set of BNs has
already been excluded.

4 Our Approach: ASKEeD-BN

4.1 Details of the Approach

We propose an approach for the Automatic Synthesis of Boolean Networks from
Knowledge and Data (ASKEeD-BN). It computes a non-redundant set of BNs
complying with a given PKN and one observed multivariate TS. Unlike REVEAL

and Best-Fit, ASKEeD-BN is capable of using the influence signs provided in
the given Prior Knowledge Network (PKN) and the raw values of the input
multivariate Time-Series (TS). Unlike caspo-TS, ASKEeD-BN directly fits the
behaviour of each component with the TS. Also, it is not limited to the synthesis
of locally-monotonous BNs.

For each component of the studied system, our approach searches among all
possible transition functions. All the transition functions that do not respect the
given PKN are ruled out. Then, every remaining candidate is evaluated on the
basis of both their simplicity and their ability to reproduce the given observations.
The candidate transition functions for the component X might not be able to
explain all the binary state transitions happening at time t → t′. The set of
unexplained t′ is denoted U . Every time step t′ in U is associated with a measure
stating “how far” the continuous value X′t is from the binarisation threshold θ:
|θ −X′t|. These spotted errors are then averaged on the T time steps of the TS
through the Mean Absolute Error (MAE):

MAEX =

∑
t′∈U |θ −Xt′ |

T
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Among the candidates having the smallest MAE, we select the ones that has
the smallest number of influences. Finally, we create all the possible BNs by
generating all the combinations of the selected functions.

We implemented our approach using Python and the Answer-Set Program-
ming framework (ASP) with the system clingo [6]. ASP is a declarative pro-
gramming language oriented towards difficult (NP-hard) search problems. The
possible solutions of a problem are described with the constraints they must ful-
fill. These constraints are written as a logic program. The ASP solver is tasked
with finding the solutions of the program. To do so, it uses a Conflict-Driven
Clause Learning (CDCL) algorithm inspired by SAT solvers. In our case, the
CDCL algorithm avoids the evaluation of all the possible transition functions
by learning from conflicts: whenever it finds that a candidate is in conflict with
the constraints, it creates a new constraint that explains the conflict. These
learned constraints subsequently eliminate other conflicting candidates, pruning
the search space. Thanks to these pruning heuristics, our approach is efficient.
ASP and in particular clingo, have already been used in similar contexts including
caspo-TS.

4.2 Illustration on the Toy Example

Let us illustrate our approach on the toy example consisting of the PKN in Fig. 1
and the multivariate TS in Table 1.

When no PKN is available, the default PKN is a complete graph assuming
that each component can inhibit / activate all the others (including itself). In
this setup, a component with n parents have 22

n

possible transition functions.
In the toy example, each component can be explained by 22

3

= 256 distinct func-
tions, which correspond to 16 777 216 potential BNs (formed by all the possible
combinations of all the candidates of each component). Thanks to the available
PKN, the number of candidate functions for each components A, B and C falls
respectively to 3, 16 and 6. Besides the CDCL pruning, ASKEeD-BN virtually
evaluates all the candidates, but for illustration purpose we will focus on the two
that are present in B1 and B2 (Figs. 2a and 2b).

For the component A, the candidate fA := 0 does not contain any literal and
it cannot explain the transition of configuration for A at t7 → t8. Hence, the set
U of unexplained time steps is {t8}. The concentration of A at time t8 is 61, and
the candidate’s MAE is thus |50−61|/20 = 0.55. The candidate fA := C involves
one literal (which is C). This candidate can explain all transitions. Hence, U = ∅
and the MAE associated with this candidate is 0. Despite requiring more literals,
fA := C is a better candidate than fA := 0 because its MAE is smaller. The
comparisons of the candidates proposed for the components B and C in B1 and
B2 are summarised in Table 2.

For the toy example, our approach returns B1 as the only solution. It retrieves
the 3 configuration transitions extracted from the binarised TS, thus its coverage
proportion is 1. REVEAL does not find any BN, and the BN returned by Best-Fit

does not comply with the PKN. caspo-TS finds 5 BNs with coverage proportions
ranging from 0.33 to 1 (standard deviation of 0.25).
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Table 2. Number of influences and MAE for the candidate functions in B1 (Fig. 2a)
and B2 (Fig. 2b). A checkmark indicates the candidate selected by our approach, and
the best for each criterion: (1) minimal MAE and (2) minimal number of influences.

candidate fB := B ∧ ¬C X fB := (B ∧ ¬C) ∨ (¬B ∧ C) fC := ¬C X fC := A

MAE (U) 0 (∅) X 0 (∅) X 0 (∅) X 0.5 ({t5})
number of influences 2 X 4 1 X 1 X

5 Datasets and Procedure for the Comparative
Evaluation

5.1 Datasets

In order to compare our approach with REVEAL, Best-Fit and caspo-TS, we
used eight biological systems. For two of these systems (yeast ’s cell cycle and
A. thaliana’s circadian clock), their PKN and experimental multivariate TS are
taken from [13] and [18] respectively. These two systems are summarised in Table
3. They respectively involve 4 and 5 components.

Table 3. Summary of two biological systems and their corresponding datasets

System Genes PKN TS Source

yeast
(cell cycle)

Fkh2, Swi5,
Sic1 & Clb1

Sic1 does not influence
itself nor Fkh2

14 time steps
6 transitions

[18]

A. thaliana
(circadian clock)

LHY, PRR7,
TOC1, X & Y

LHYX

TOC1 Y

PRR7
+

+
-+

--
+- 50 time steps

11 transitions
[13]

For the six other systems3, we conducted our experiments on multivariate
TS that we simulated from existing BNs taken from the repository of example
BNs of the package PyBoolNet [8]. For these systems, the number of components
ranges from 3 to 10. For each system, the used PKN is the IG of the associated
BN. As for the generation of the multivariate TS, three parameters are taken
into consideration: the update scheme (in {synchronous, asynchronous}), the
maximum number of introduced repetitions of each configuration (in {1, 4}) and
the standard deviation of the added noise (in {0, 0.1}). For each setting of
these parameters, we follow a procedure similar to what is implemented in the
generateTimeSeries function of the R package BoolNet [15]:

1. choose randomly a configuration of the considered BN,

3 raf, randomnet n7k3, xiao wnt5a, arellano rootstem, davidich yeast and
faure cellcycle



ASKEeD-BN 9

2. on this configuration, apply the update function(s) 20 times w.r.t the chosen
update scheme,

3. duplicate randomly each configuration in the obtained sequence
(added in contrast to generateTimeSeries),

4. add a Gaussian noise with a standard deviation of N.

For a given setting of the 3 parameters and a given system, we run the
procedure 7 times (with different random seed). In the following, we denote
ARN the setting with the Asynchronous update scheme, Repetitions (of 4) and
Noise (of 0.1). We believe that this setting allows us to obtain multivariate TS
which are quite close to real TS.

We illustrate here how to generate a synthetic multivariate TS in the ARN
setting for B1 (Fig. 2a). We would start from a random configuration. Let
it be 010. Then we apply 20 times the transition functions of B1 with the
asynchronous update scheme. This process is not deterministic as any path
from Fig. 2e (right) starting from 010 and of length 20 is valid. Let’s say we
obtain a path starting with 010→ 011→ 010→ 011→ 111→ 101→ . . . Then
we add a random number of duplications (in bold). The beginning of the sequence
could for example look like 010 → 011 → 011→ 010 → 011 → 011→ 011→
111→ 101 → 101→ 101→ 101→ . . . Finally, we add a random Gaussian noise
with a standard deviation of 0.1. The synthetic multivariate TS could now start
with (0.02; 0.92;−0.16)→ (0.04; 0.8; 0.7)→ (−0.05; 1.06; 0.7)→ . . .

5.2 Details on the Evaluation Procedure

For REVEAL and Best-Fit we use the implementation from the R package
BoolNet [15]. caspo-TS is ran with the option mincard, that asks for BNs
with functions minimising the number of influences. Note that this is also what
our method optimises.

In the following, we define an experiment as a BN identification method
applied on a system with one multivariate TS. The unicity of the multivariate
TS makes the problem under-specified and allows us to evaluate the performances
of the different approaches in this context.

REVEAL, Best-Fit and our approach need the binarised multivariate TS in
their inputs. We use a simple form of binarisation: the binarisation threshold
is defined as min+ (max−min)/2. All values from the multivariate TS greater
or equal to the threshold are binarised to 1, and to 0 otherwise. For the two
systems with real TS, the theoretic range of the values is not know in advance,
so the binarisation threshold is determined component-wise: the components
are binarised taking into account their observed minimum and maximum. For
the six systems with the synthetic multivariate TS, we know a priori that the
values of all the components are between 0 and 1 (± the noise). In case of noisy
data, the fluctuations of a constant component are interpreted as state change
when using a threshold computed component-wise. However, the identification
methods are not capable to detect these spurious transition in the binarized TS.
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Hence, we compute the binarisation threshold globally, on all the observation of
all the components.

In order to have a fair comparison of the methods, and since caspo-TS is
making the binarisation itself and is not aware that the theoretical minimum and
maximum of the components are 0 and 1 (± the noise), we correct a posteriori
the transition functions it returned. The value of the constant is set to the
binarised value that is the most present in the binarised TS of the component
concerned. Also, since caspo-TS does not return a function for the components
without parents in the PKN nor for the components that it founds constant for
all the TS (in the case where no noise is involved), we use the same technique to
set the transition functions to their correct values. We also added a step to filter
out BNs returned by REVEAL and Best-Fit which do not respect the polarities
given in the PKN.

For all the BNs returned by the four methods (and after the PKN-based
filtering for REVEAL and Best-Fit), we use PyBoolNet [8] to compute the STG
of each retrieved BN according to the mixed update scheme. Finally, we evaluate
the results of each experience according to three criteria:
– the number of BNs returned;
– the median of the coverage ratios: the proportion of configuration transitions

extracted from the input TS that are present in the mixed STG;
– the standard deviation of the coverage ratios.

All data and programs needed to reproduce the presented results are accessible
at https://gitlab.inria.fr/avaginay/OLA2021.

6 Results

6.1 Results on Systems with Real PKN and Experimental
Multivariate TS

Yeast (Fig. 3 left). For this system caspo-TS find 61 BNs while Best-Fit and
ASKEeD-BN both find 16 BNs. As for REVEAL, due to inconsistencies in the TS, it
does not return any BN. Concerning the coverage, on the 7 transitions observed
in the TS, the BNs synthesised by Best-Fit recover 4 and the BNs synthesised
by ASKEeD-BN recover five. The best coverage ratio (6 retrieved transitions
over 7) is obtained for 8 BNs synthesised by caspo-TS (among the total of 61).
Nevertheless, as the box plot shows, the BNs synthesised by caspo-TS present a
large variance in their coverage.

A. thaliana (Fig. 3 right). For this system, REVEAL returns no BN. The only BN
returned by Best-Fit has all the components set to 1 and recovers 5 transitions
over the 10 observed. ASKEeD-BN also returns a single BN with a perfect coverage
since the BN recovers all the 10 transitions. As for the 5 BNs synthesised by
caspo-TS, we can make the same observation as before: they present a variability
in their coverage. The best coverage obtained by caspo-TS are from 2 different
BNs including the one synthesised by ASKEeD-BN.
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Fig. 3. Number of transitions retrieved by the BNs synthesised using the different
methods on the systems yeast (left) and A. thaliana (right). The blue dashed line
indicates the number of transitions that were observed in the multivariate TS.

To sum up, the results on these two real examples show that:
– REVEAL constantly fails to return any BN. At the opposite, caspo-TS returns

more BNs than the other methods;
– the coverage of the BNs returned by both our approach and caspo-TS are

better than for Best-Fit;
– caspo-TS presents worse variability in the coverage ratio of its BNs compared

to our approach.

6.2 Results on Systems with generated multivariate TS

Number of Synthesised BNs: The total number of BNs returned on the synthetic
datasets and the number of times the identification methods failed returning any
BNs are reported in Table 4. The table shows that a large proportion of BNs
generated by REVEAL and Best-Fit were not complying with the influence signs
from the input PKN. The following reported results do not take into account these
non-compliant BNs. REVEAL is the method which returns the smallest number
of BNs, in particular in the ARN setting. This is due to the inconsistencies in
the TS, which are frequent in the ARN setting (as in real TS). On the opposite,
caspo-TS is the method that returned the largest number of BNs. Moreover,
when considering all experiments, there are 18 experiments for which caspo-TS

generated more than 100 BNs. In these cases, we stopped the enumeration and
analysed the 100 first BNs caspo-TS returned. Despite this limit, caspo-TS

returned between 5 and 7 times more BNs than our method.
From here on, we focus on the results of the experiments corresponding to the

ARN setting (Asynchronous update scheme, random Repetition of configurations,
and Noise addition) after having remove the BNs from REVEAL and Best-Fit

which does not respect the given PKN.

Coverage ratio: To assess the coverage ratio criterion, instead of plotting the
boxplots for the 42 experiments of this setting (6 systems times 7 replicates), we
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Table 4. Number of experiments for which each method failed to return any BN,
number of BNs returned over all 336 experiments with synthetic TS and number of
BNs returned over the 42 experiments with the ARN setting. The “before / after filter”
refers to the step which rules out the BNs not respecting the signs of the given PKN
(see Section 5.2).

REVEAL Best-Fit
caspo-TS ASKEeD-BN

setting before filter after filter before filter after filter

# failing experiments all 230 240 0 64 20 0
# total returned BNs all 100 677 500 406 100 678 198 724 8481 1210
# total returned BNs ARN 3 3 51 35 720 85

summarised them in Fig. 4. In the scatter plot, each experiment is represented by
a point whose coordinates are the coverage ratio median of the synthesised BNs
and the associated standard deviation (std). The more top-right a point is, the
better the corresponding identification method is (i.e., it produces BNs with high
coverage ratio and low std). We can see that for the few experiments for which
REVEAL was able to return BNs, the median coverage is actually excellent. The
median coverage of the BNs returned by Best-Fit is almost uniform: Best-Fit
lacks regularity in finding BNs with good coverage. But the high pick around
0 on the plot of std distribution shows that for a given experiment, the BNs
returned by Best-Fit have similar coverage rates. caspo-TS and our approach
have a very similar distribution of median coverage. They are both good at
finding BNs with very good coverage. But here again, for a given experiment,
the BNs synthesised by caspo-TS present a bigger variation of their coverage
proportions than the ones synthesised by our approach.

7 Conclusion and Perspectives

We presented ASKEeD-BN, a novel method to create BNs from a PKN and a
multivariate TS. The results on 8 biological systems showed that our approach
has the best trade-off on the evaluation criteria: it returns a small set of BNs
with a high coverage median and low variance. Our results actually confirm
that although caspo-TS finds good BNs, too many sub-optimal BNs are also
retrieved. Indeed a new version of caspo-TS was recently proposed to tackle this
problem [5].

We now present two perspectives to improve our approach and the study.
First of all, real datasets may contain outlier measurements which could mislead
the computation procedure of the binarisation thresholds we used in this paper.
It would be interesting to see how such cases impact the performances of the
identification methods and to propose a better binarisation procedure with prior
outliers detection for instance. Second, contrarily to REVEAL, Best-Fit and
caspo-TS, our approach does not handle multiple multivariate TS. However,
biologists often have several multivariate TS generated with perturbations forcing
some components to stay either active or inactive. However, exploiting such
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Fig. 4. On the scatter plot, each point represents an experiment in the ARN condition
for which a given method potentially returned several BNs with different coverage
ratios. The horizontal coordinate of the point is the median of these ratios. The
vertical coordinate is their standard deviation (std). For a better visualisation, the
coordinates have been jittered with a variance of 0.1 on both axes. The curves on the
top (resp. on the left) of the scatter plot are the probability densities of the median
(resp. the std) of the points in the scatter plots. The densities have been estimated from
the non-jittered coordinates of the points with the Gaussian kernel density estimation
method. The smoothing parameter of the estimator was determined automatically
(with the Scott method). The areas under all these curves are 1, and the picks show
where the points are the most concentrated.

supplementary data gives more information about the behaviour of the studied
system in specific conditions (e.g., pathological states). This knowledge allows
to constrain even more the space of solutions.

Finally, we are currently working on an automatic pipeline for BN synthesis
from a curated mathematical model repository, namely BioModels [14]. This
requires (i) automatic extraction of the PKN from the model structure encoded
in the SBML4 file format and (ii) generation of a multivariate TS by simulation
of these models.
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