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ABSTRACT  
Personalized medicine generates and exploits the patient data, such as genetic compositions, key 
biomarkers, treatment history, environmental factors, behavioral preferences, and demographics data. 
The information loss in the transformation process, the data types heterogeneity and the events time 
series in this set pose a problem in their exploration process. To solve these problems, we propose a data 
representation model. It considers the structured, temporal and/or non-temporal data and their types 
"Numeric, Nominal, Date, Boolean". After the data types "Date and Boolean" transformation, we treat 
the nominal data by dispersion and we apply several clustering techniques with different clusters 
numbers to control the numeric data distribution. Our work results in three homogeneous 
representations, these representations have only two dimensions and are easy to explore. Compared to 
the Symbolic Aggregate Approximation (SAX) technique, our model preserves time-series information, 
keeps data as much as possible and offers multiple simple representations to explore.  

Keywords: Electronic health records; Personalized medicine; Data representation; Time-series data; 
Medical event; Clustering. 

 

1.  INTRODUCTION 

Personalized medicine (PM) refers to the individualization of medical treatments based on the unique 
dataset of each patient. It generates and exploits stored patient data, which are often captured digitally in 
an "Electronic Health Record (EHR)" comprising profiles of many different patients. Essentially, an EHR 
refers to a longstanding, comprehensive health database resource that stores and manages all patient data 
files digitally under the custody of a licensed health entity. More specifically, it provides a digitalized 
view of the patient’s demographics, data associated with the patient’s clinical and medication history, 
diagnostic trajectory, social and economic environmental conditioning, geographical relocation, if any, as 
well as the patient’s genetic data, if these exist (Jensen et al., 2012).  
 



 Together, this massive data resource available via the EHR often includes not only homogeneous, 
heterogeneous, structured, unstructured and/or semi-structured data, but also the temporal and non-
temporal data. Mixed in this huge bag of patient data are many captured medical events of different 
individual patients such as their body temperature measurements, blood pressure recordings and other 
time-series information, with different sorts and forms of data. As Ghazi (2015) noted, we consider time-
series data to include all the observational sequences of a patient being captured vis-à-vis a medical event. 
Moreover, the EHR data resource contains a lot of hidden information and knowledge waiting to be 
mined and/or discovered. The process of reporting, evaluation, and medical decision-making based on the 
EHR data involves the extraction of relevant information and knowledge via specialized methods known 
as data mining techniques. The quality of information processing and knowledge discovery are thus 
directly linked to the availability, accessibility, type and form of the data to be extracted and aggregated 
for analysis. The objective of our work is to produce a high fidelity model for the representation of PM 
structured data. This is a challenging problem and our proposed model addresses several important 
scientific gaps: data heterogeneity, loss of data during data transformation, and interpretability of the 
representation over the course of a data mining process. To accomplish this non-trivial task, we represent 
the data by two parts. The first is dedicated to the representation of numeric data with clustering 
techniques, whereas the second part considers the representation of nominal data with respect to its 
dispersion. These two bodies of information are then joined into a single global representation table. 
Thanks to the simplicity of the obtained representation, healthcare specialists will be able to identify in 
the dataset both the key patient events, as well as the variations in the information conveyed by the data 
series. However, it is intended for the obtained representation to be used within automated medical 
decision-making processes such as disease prevention and/or adverse drug events prediction. Importantly, 
this paper emphasizes the need to explore the EHR data mining process that informs and challenges PM, 
which will ultimately enhance the ability of physicians and other care professionals to personalize high 
quality care to the inflicted individuals.  
 
 The rest of the paper is organized as follows. Section 2 explains the time-series representation 
process limitations. A novel data representation model proposed for PM is then detailed in Section 3 with 
Section 4 continuing on the discussion about the experimentation and the evaluation of the proposed 
model and the results analysis. The final section, Section 5, will provide concluding remarks and offer 
insights into practical implications and potential future works.  
 

2.  EHR INFORMATION & DATA LOSS   
Most EHR data exploration models require a lot of the stored data, including temporal data, to be 
represented and transformed into an appropriate, meaningful and interoperable form. Research along 
these lines constitutes a common point among several past efforts. Bagattini et al. (2019) proposed an 
approach that belongs to one of the medical branches advocating PM: the prediction of adverse drug 
events. The authors have used three phases: symbolic data representation, subsequences generation and 
classification. Their approach exploits sparse time series features, that is, it processes only the numeric 
data and ignores the other types of data that may appear in the EHR data. In the representation phase, they 
applied SAX technique in order to produce symbolic representation sequences for all the time-series. 
Regardless of the limits of the SAX technique and of the processed data qualities (different types), this 
approach provides a timely example on the use of PM data and puts forward the need for new techniques 
for EHR data representation. Among the emerging data mining methodologies, for example, the Deep 
Integrated Prediction (DIP) project (Milad et al., 2018) uses deep learning to represent numeric type 
attributes and the GloVe algorithm for discriminating nominal attributes in EHRs of patient records to 
showcase the cardiac disease. Graph-based Attention Model (GRAM) is an approach based on marking 
each medical visit events on a directed acyclic graph (Edward et al., 2017). The work of Mallick et al. 
(2018) presents an approach to study the genes interdependence in cancer cases. These researchers apply 



fuzzy logic to compute the information gain to represent the genes data vis-à-vis a graph. In Anima et al. 
(2015), windows fixed with marking according to the time factor during diagnosis ('time-Windows') have 
been proposed. The time period was initially fixed to six months, thereby causing possible information 
loss concerning changes in the event’s behavior. Years later, Jing et al. (2017) argue for a different 
approach to capture data temporality treatment as applied to the clinical events and representation 
extraction. For the transformation process, they used the Symbolic Aggregate Approximation (SAX) 
method on all observations to generate a representation as character chains, a process that may also cause 
the loss of information.  
 
 Treatment unification on the numerical data of patient records sometimes implies the need for data 
normalization. From a data transformation perspective, normalization assists in unifying the treatment 
scales so as to make the results comparable. Yet, this process can also generate information loss as 
encapsulated in the data series. Representation techniques applied on the results of these transformations 
can therefore lead to loss in the series as constraints such as the minimum length of the series to be 
processed may not be accommodated. In best practices, especially with time-series data, only one or two 
data types may generally be treated at the same time with the information and data loss problem omitted. 
To overcome challenges faced with the representation problems of time-series, data types homogeneity, 
and the information loss, an alternative data representation model is proposed. The proposed data model 
can represent the structured, temporal and/or non-temporal data and their differing types, including 
numeric, nominal, date, and Boolean. The temporal observations exist in a three-dimensional form (3-D: 
Patients, Events, Time). As an endeavor to unify the treatment process for the non-temporal data that are 
actually found in two-dimensions (2D: Patient, Data), we consider them in a three-axis form (Patient, 
Data, Time-1) such that "Time-1" takes only one value, i.e., "1". Such a model conserves as much data as 
is possible even for short time-series. Applying several techniques with a different number of clusters 
reallocate the data distribution. Accordingly, this work will result in a simplified representation with only 
two dimensions, making it easy to explore. With such results, it is clear that attention has now been given 
to the annotated challenges, including data type heterogeneity, the maximum coverage of data resource 
during treatment, the minimization of loss information and data during the transformation process.  
 
 For large-scale data transformation, imagine having a growing number of multiple data types to be 
extracted simultaneously. This would surely weigh down on the data exploration process, which is needed 
for the investigator(s) to obtain useful insights from the entire data set; more precisely, with satisfying the 
objective of having the emergence of irrelevant data to be minimized. Sometimes, novel data exploration 
approaches are used to represent data and extract dataset features, and may be enhanced with a 
combination of classification techniques and optimization tools such as the artificial bee colony (ABC) 
algorithm (Razmjooy & Khalilpour, 2015; Khalilpour et al., 2013), an optimization technique based on 
variance reduction of the Gaussian distribution (Namadchian et al., 2016), an invasive weed optimization 
approach (Razmjooy & Ramezani, 2014), an imperialist competitive algorithm (Razmjooy et al., 2013), a 
particle swarm optimization (PSO) methodology (Kolekar & Pawar, 2014) and/or a genetic algorithm 
(GA) (Nguyen et al., 2014) so as to train a classification and decision-making model.  
 Yeh et al. (2009) and Nguyen et al. (2014), for example, are two medical data classification 
methodologies useful for EHR data exploration. The first separates patients with data foreshowing a high 
risk of breast cancer(Yeh et al., 2009). These researchers apply the PSO technique on features selection 
via statistical methods. The second uses the breast cancer and heart disease datasets for its 
exploration(Nguyen et al., 2014). The proposed model incorporates a feature extraction and 
transformation phase via the "Wavelet transformation" technique, followed by a training phase via the 
fuzzy standard additive model and the GA technique. The EHR data exploration can also involve the 
image-processing task stored in the data source. Kavya et al. (2020) and Guo & Razmjooy (2019) are 
examples of medical image processing and breast cancer detection approaches.  
 



 Symbolic Aggregate Approximation (SAX) is a representation and dimension reduction technique 
for time-series(e.g., Lin et al., 2007; Park & Jung, 2020). It has the capacity to transform the numeric data 
series into sequences of consecutive symbols. Its first phase divides the time-series of length N into W 
equal segments where (W < N), and for each segment, the average of its values is computed. The second 
phase defines a corresponding strategy between a proposed alphabet with Z symbols and the new 
computed averages series.  
 
 Jing et al. (2017) use the SAX technique to normalize time-series values. The normalization step 
generates two problems. To better understand these problems, we use two (2) time-series that represent 
the real temperature measures of two patients: X1={34.6, 34.6, 34.6, 34.6, 34.6, 34.0, 34.6, 34.6, 34.6, 
34.6} and X2={36.6, 35.7, 35.5, 35.9, 36.1, 36.1, 35, 8, 36.8, 36.7, 36.0}. They will be considered to 
generate a string of nine characters at the base of three representation symbols. The first problem appears 
when applying the SAX method on X1 and X2 separately. Indeed, the generated representation is the 
same for both normalized v. non-normalized data. However the same symbol is used in the two 
representations that may correspond to two different intervals, for example, without normalization the 
technique SAX generates a symbol 'a'∈]-∞;34,462] for X1 and 'a'∈]-∞;35,939] for X2as shown in Figure 
1.a. With normalization, it generates 'a'∈]-∞;0,771] for X1 and 'a'∈] -∞; 0,338] for X2as shown in Figure 
1.b. The other symbols have the same behavior as the first symbol 'a'.  

Figure 1. SAX representation of: (a) non-normalized X1 and X2, (b) normalized X1 and X2.  

 
 
 The second problem is observed after applying the multi-series SAX method, that is, processing over 
all time-series, based on the mean, variance and standard deviation or SD (Razmjooy et al., 2016). The 
generated representations are not identical for normalized v. non-normalized series, but the behavioral 
observation of these series shows that there is a loss of meaning after the normalization process. Without 
normalization (Figure 2.a), the curve that presents the series X1 appeared totally under the curve of X2, in 
which all data values of X1 are inferior to X2 values. This apparently shows a meaningful behavior with 
the non-normalized dataset. Comparatively, with normalization (Figure 2.b), most, but not all, of the 
parties of the X2 curve are presented below the portions of X1, which implies the loss of data meaning 
and the behavioral direction of the two series.  

Figure 2. Multi-series SAX representation of: (a) non-normalized X1 and X2, (b) normalized X1 and X2.  

 



 
 In addition to the information loss during normalization, the SAX technique requires an input 
parameter to specify the resulting symbol series length, which constitutes a third problem. This parameter 
must be less than or equal to the length of series to be represented; otherwise, all series that have a 
minimum length will be wasted. The impact of this criterion can lead to the loss of all data should and if 
the data contain only short series.  
 
 To eliminate these limitations, including the information and data loss, we propose a novel model 
representation that would be more protective on both information and data.  
 

3.  OUR PROPOSED MODEL 

 

3.1 Problem Formulation 

To formalize our proposed model, we use D to notify the EHR dataset that includes a patient set P={P1, 
P2, ..., Pn} and an event set E={E1, E2 , ..., Em} captured on time T as represented by the observational 
chronologies {T1, T2, ..., Tq} for each event.  
 
 Let eijr represents the observation value on the event Ei for the patient Pj and the chronology Tr. We 
then use Ei.T to present the longest series chronology in an event Ei. Let NuE represents the numeric 
events set and NoE represents the nominal events set: 
 
where, 
 
 ∀𝐸! ⊂ 𝑁𝑢𝐸˄∀𝑒!"# ∈ 𝐸! ⇒ 𝑒!"# ∈ ℝ      (1) 
 
 ∀𝐸! ⊂ 𝑁𝑜𝐸˄∀𝑒!"# ∈ 𝐸! ⇒ 𝑒!"# 	is	a	String	Type	     (2) 
  
 Equation 1 means that all observations of numerical events are real type values whereas Equation 2 
means that all observations of nominal events are string type values.   
 
 We use IWki for intra-class inertia and IBki for inter-class inertia in relation to the event Ei and the 
clusters number ki, with the ITki to be their total inertia(Choukri et al., 2019).  
 
 

3.2 Description of the Model 

Our approach treats structured, temporal and non-temporal data vis-à-vis their differing data types. As 
depicted in Figure 3,with data types to be inclusive of numeric, date, binary, and nominal, our Data 
Representation model per Region and Dispersion (DRRD) may be divided vertically into two main parts. 
The first part treats the numeric and date type data while the second part treats the nominal and Boolean 
type. Each part comprises several steps, including data representation and/or transformation, event 
marking, and result linearization.  
 

Figure 3. Proposed personalized medicine data representation model.  



 
3.2.1 Numeric & Date Data Representation 
This step selects the numerical type of data and transforms all date data types into a numeric (Part A1).  
 
 For all values ebj1 a transformation of the birth date event Eb is performed into the patient age. The 
other dates eijr are transformed by computing the observation appearance year according to the following 
formula: 
 
 𝐷𝑎𝑡𝑒𝑇𝑜𝑁𝑢𝑚𝑒𝑟𝑖𝑐@𝑒!"# 𝑒$"%⁄ B = 	𝑁𝑏𝑌𝑒𝑎𝑟𝑠(𝑒!"# − 𝑒$"%)    (3) 
 
 The function NbYears(eijr - ebj1) computes the difference between the date of eijr observation and the 
birth date ebj1 in terms of the years number, that is, it calculates the eijr observation age.  



 
 All simple or temporal data are presented as numeric temporal events, with this task to be presented 
as a time-series representation task. We consider event chronologies, and the result is a three-dimensional 
data reorganization (3D: P,NuE,T).  
 

3.2.2 Partitioning Numeric Events 
Clustering (or, Partitioning) is the task of grouping objects into subsets known as clusters based on a 
given similarity criteria between the object’s properties to be examined (Hancer, 2020). Each clustering 
technique has a specific strategy for defining the clusters while associating an object to each cluster with 
respect to the cluster centers.  
 
 The clustering intends forming similar groups (clusters or classes) based on the ordered data of the 
same event. These clusters will be the belonging regions and the data comparison units of each patient on 
this event.  
 
 In this step (Part B1), for each event Ei in the reorganized data cube with time factor being neglected, 
we apply a clustering technique to produce ki clusters and their ordered centers list (C1, C2,...,Cp,..., 
Cu,...,Cki) as given in Equation 4. Figure 4details this step.  
 
 ∀𝑝 < 𝑢˄∀𝑢 ≤ 𝑘! ⇒ 𝐶& < 𝐶'       (4) 

 
 The centers of clusters are ordered for their appropriate use with the symbols of an alphabet S to be 
defined later. Treatments sequentially include data selection, data sorting, data clustering, and finally the 
sorting of the resulting cluster centers as applied to each event Ei. The association of relevant data to the 
region of the nearest center will inform the data distribution in the regions on the ordered centers.  
 
 By distribution, we mean the manner of data dissemination, organization and display in the data 
presentation space. Four (4) clustering techniques have been evaluated: PAA or Piecewise Aggregate 
Approximation (e.g., Seunghye, 2017; Vineetha & Heggere, 2014), K-MEANS (e.g., Hartigan & Wong, 
1979), EM or Expectation-Maximization (e.g., Dempster et al., 1977), MDBC or Make Density Based 
Clusterer, based on hierarchical clustering techniques (e.g., Witten & Frank, 2005).  
 
 
 
 
 
 

Figure 4. An example of the clustering process of a numeric Event Ei.  



 

 Briefly, the principle of each of the referenced techniques in the sequel is as follows: 

• PAA: Partitions a series of length n into N segments of length n/N, and the average data 
belonging to each segment is the representation of the latter.  

• K-MEANS: Involves partitioning a dataset into a given number of clusters, each cluster being 
associated with a center point known as the centroid. Each point is assigned to the cluster with the 
closest centroid.  

• EM: A probabilistic extension of the K-means algorithm, this iterative technique has been 
developed for incomplete data cases based on two steps; the first evaluates the expectation (E) 
while the second maximizes (M) the conceivable expectation.  

• MDBC: A meta-clustering technique that relies on the results of a basic clustering approach to 
generate a probability distribution and a corresponding density for all observations. Specifically, 
the basic technique we use herein is the hierarchical clustering.  

 
 Each of these techniques will be applied to form ki clusters on each event Ei. Several ki values will be 
tested and the best result will be considered. Each event Ei must have different list values (Li) length with 
length(Li) greater than or equal to ki:  
 
 ∀𝑒!"# 	, 𝑒!%( ∈ 𝐿! ⇒ 𝑒!"# ≠ 𝑒!%(˄𝑙𝑒𝑛𝑔𝑡ℎ(𝐿!) ≥ 𝑘!     (5) 
 
 This is the task (Part C1) of notifying the values of each numeric reorganization cube event in a 
separate table. Each table generated for an event Ei has a number of columns, ColumnsNumber(Ei) being 
equal to:  
 
 𝐶𝑜𝑙𝑢𝑚𝑛𝑠𝑁𝑢𝑚𝑏𝑒𝑟(𝐸!) = 𝑘! ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝐸! . 𝑇)     (6) 
 
where, 



 
 The function length(Ei. T) means the longest series T size in the event Ei.  
 
 The notification for each event Ei consists in indicating on its notification table MarkingTablei one 
cell for each value of each series. This indication must be pointed in front of the cell corresponding to the 
nearest cluster center, 
 
where, 
 
 ∀𝑒!"# ∈ 𝐸! 	, ∀𝐶)* ∈ Z𝐶+, … , 𝐶,!\	/	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒@𝐶)* , 𝑒!"#B = MIN

&-+,…,,!
(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒@𝐶&, 𝑒!"#B) ⇒

𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒![𝑗]e@(𝑟) ∗ 𝑘!B + 𝑁𝐶g = X	      (7) 
 
 Distance(CNC,eijr) is the subtraction function between the CNC center and the eijr observation.  
 

3.2.3 Numeric Data Marking 
The marking process (see Algorithm 1) fills the cells indicated in the notifications table. We propose three 
(3) marking types.  
 The first type is marking via real value as illustrated in Table 1, comprising the rewriting of the data 
value in the indicated cell (X=eijr). The second type, the binary marking (as illustrated in Table 2), is a 
presence signaling form. It notifies by "1" for the corresponding cells (X =1) and for the others by "0" 
(X=0). The last type is the marking via a symbol (as illustrated in Table 3). As centers are being ordered, 
we can associate a symbol from a predefined and ordered alphabet to each one. The marking task places 
the symbol that carries the same order with the center used during the notification (X = S[NC]).  
 

Algorithm 1: Numeric Event Ei Marking.  
EventMarking(P, Ei, Centersi, MarkingType){ 
MarkingTablei=new Table[n][ki* Length(Ei. T)]; 
if(MarkingType= Symbol)// Define an ordered alphabet S.  
 Create an alphabet S of ordered symbols S0,S1,...,Sk; 
for all Pj in P do{ 
 int h=0; 
 for all Tr in Ei.T do{ 
  NC=NearestCenter(Centersi , eijr); // Nearest center index 
  if(MarkingType= Real Value)// Marking per real value.  
  MarkingTablei[j][(h* ki)+NC]=eijr; 
   if(MarkingType= Binary) // Binary marking.  
   MarkingTablei[j][(h* ki)+NC]= 1; 
  if(MarkingType= Symbol) // Marking per symbol.  
   MarkingTablei[j][(h* ki)+NC]= SNC; 
  h++; 
  } 
 }  
return MarkingTablei;  

} 

Table 1. Marking by Real value.  



 
 
 
 

 

Table 2. Binary marking.  

 
 
 
 
 
 

Table 3. Marking by Symbol.  

 
 
 
 
 
 
 
 

3.2.4 The Numeric Data Linearization Task 

Part D1 entails arranging the marking tables into a single table. Two (2) such arrangements are proposed:  
 

• The first is the numeric event linearization (as illustrated in Table 4). In a table that collects all 
the events, we arrange(denoted by ∏) the marking tables one after the other, 

where, 
 

 𝐸𝑣𝑒𝑛𝑡𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛	 = 	∏ (𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒!)!-+,..,1     (8) 

Table 4. Event linearization.  

E1 E2 ...  Em 

T1 T2 ...  T1 T2 ...  … T1 T2 …        
       

        
       

       
        

 
• The second is the chronological linearization (as illustrated in Table 5). It joins (denoted by ∑ ) 

all columns of T1, the first times in a marking table with T2, the columns of the second times; then 
with T3 and so on until the last time is reached: 

 𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = ∑ (𝑀𝑎𝑟𝑘𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒!2")	
!-+,..,1
"-+,…,3!4567(9#.2)   (9) 

Ei 
T1 T2 … 

C1 ...  Cki C1 ...  Cki ...       
5. 4 ...  

3 
      

… 
     

… 

Ei 
T1 T2 … 

C1 ...  Cki C1 ...  Cki ...  
0 

 
0 0 

 
1 ...  

1 
 

0 0 
 

0 
 

… 
     

… 

Ei 
T1 T2 … 

C1 ...  Cki C1 ...  Cki ...       
c ...  

a 
      

… 
 
  

     
… 



Table 5. Chronological linearization.  

 
 
 
 
 
 

3.2.5 The Nominal & Boolean Data Representation 
Part A2 considers the data of nominal and Boolean type.  
 
 The Boolean data transformation task converts temporal and non-temporal Boolean data into 
symbolic data. It entails replacing all values containing "0" by "F" and the value containing "1" by "Y": 
 

 m
𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑇𝑜𝑁𝑜𝑚𝑖𝑛𝑎𝑙@𝑒!"#B = 	"F"	if	(𝑒!"# = 0)

𝑎𝑛𝑑
𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑇𝑜𝑁𝑜𝑚𝑖𝑛𝑎𝑙(𝑒!"#) = 	"Y" if	(𝑒!"# = 1)

     (10) 

 
 The result will be a dataset that contains temporal as well as non-temporal nominal data. In this new 
nominal reorganization of events and following their chronologies, the data are represented according to 
three axes (P, NoE , T).  
 

3.2.6 Dispersion “Scattering” of Nominal Events 
Nominal event dispersion process (Part B2) selects the different values set Li of each event Ei and creates 
a new corresponding empty table DispersionTablei.  
 
 We associate Li. length cells for each value in the longest series Ei.T of this event Ei. The columns 
number in each table must be equal: 
 
 ∀𝑃" ∈ 𝑃,𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑇𝑎𝑏𝑙𝑒!e𝑃"g. 𝑙𝑒𝑛𝑔𝑡ℎ = 	𝐿! . 𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝐸! . 𝑇)  (11) 
 
where, 
 
DispersionTablei[Pj]. length is the columns number in the table DispersionTablei with all patients Pj.  
 
 Algorithm 2 describes this step: 

Algorithm 2: Nominal Event Ei Dispersion.  
EventDispersion(Ei){ 
Set Li = DistinctDataSelection(Ei); //Distinct data values selection.  
DispersionTablei=new Table[n][Li. length * length(Ei. T)]; 
Y=0; 
For all z in (0,..., length(Ei. T)-1) do { 
 For each value v in Li do { //Labeling columns.  
 DispersionTablei. Column[(z* Li. indexOf(v))+Y]. Name = Ei. ID+"_"+z+"_"+v; 
  Y++; 
  } 

E1 E2 … Em E1 E2 ... 
… 

Em … 

T1 T1 … T1 T2 T2 … T2 …    
   

       
   

    
 

                     



 } 
return DispersionTablei and Li; 
} 

 
3.2.7 Nominal Data Marking 
The notification (Part C2) uses the result of the previous task. We use the chronology value r of each eijr 
observation as an index to notify all the nominal data on the dispersion tables:  
 
 ∀𝑒!"# ∈ 𝐸! , 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑇𝑎𝑏𝑙𝑒![𝑗][(𝑟 ∗ 𝐿! . 𝑙𝑒𝑛𝑔𝑡ℎ) + 𝐿! . 𝑖𝑛𝑑𝑒𝑥𝑂𝑓(𝑒!"#)] = 	X (12) 
 
 The function Li. indexOf(eijr) returns the eijr observation index in the set Li of different values to the 
event Ei.  
 
 The three (3) types of markings described above are reused.  
 
 Algorithm 3 describes these steps.  
 

Algorithm 3: Nominal Event Ei Marking.  
EventMarking(P, Ei, Li, DispersionTablei) { 
MarkingTablei= DispersionTablei; 
if(MarkingTypei= Symbol) {// Define an ordered alphabet S.  
 w= Li. length-1; 
 Create S of an ordered symbols S0,S1,...,Sw ; 
} 
for all Pj in P do { 
 for all Tr in Ei.T do { 
  SI= Li. indexOf(eijr); 
  RI=(r* Li.length)+SI;  
  if(MarkingType= Real Value)  // Marking per real value.  
   MarkingTablei[j][RI]= eijr; 
  if(MarkingType= Binary)  // Binary marking.  
   MarkingTablei[j][RI]= 1; 
  if(MarkingType= Symbol)  // Marking per symbol.  
   MarkingTablei[j][RI]= SSI; 
  } 
 } 
return MarkingTablei; 
} 
 

 
 
 

3.2.8 The Nominal Data Linearization Task 



Using the same numeric data linearization logic to collect the nominal events marking results into a single 
table (Part D2). There are always two (2) types of rearrangement, that via the nominal event v. that via the 
chronology of nominal observations.  
 

3.2.9 Results Assembly 
The two (2) linearization parts of numeric and nominal data require the assembly of their results. Two (2) 
proposals are advanced.  
 
 The first (part E1) joins the results of the numeric linearization and the nominal linearization in a 
single global representation for all patients. The consequences of this operation achieve a representation 
via real values, symbols, or binary representation. These results are two-dimensional tables, which 
highlights the simplicity of our final representation.  
 
 The second (part E2) is the view per patient (as illustrated in Table 6). Here, the proposal is to 
provide assistance to the health professionals, giving a clear idea of the variations in each event 
observations for a given patient. The view per patient comprises associating a data table to the patient Pj. 
The rows correspond to the captured events vis-à-vis the patient Pj representation. For each cell ki at each 
time Tr, we take only the non-null cells that contain the representation symbol. The created table must 
contain q columns so that Tq is the longest series Ei.T chronology for the event Ei. To provide the longest 
series Ei.T chronology information, we will color only the cells whose position is less or equal to the Ei.T 
length.  

Table 6. View per patient prototype.   

Events T1 T2 T3 T4 ...  
E1( On k1 Clusters )      
E2( On k2 Clusters )      
E3( On k3 Clusters )      
... .  ...  ...  ...   ...  

 

4.  EXPERIMENTATION 
For the model evaluation, we apply it to a real EHR dataset and compare the obtained representations 
with the results of the state-of-the-art SAX technique.  
 

4.1 Dataset Description 

We use the free data from OpenMRS Wiki (2018), system "Open Medical Record System". The 
OpenMRS platform in OpenMRS Project (2004) is an application for personalized EHRs. Based on 2,528 
medical concepts, this dataset stores 476,973 observations for 5,284 patients. Two (2) diseases are 
observed in this dataset, namely, the "HIV Program" v. the "TB Program".  
 

4.2 Data Selection/Transformation/Codification 

For our experiments, we use only observations on the disease "TB Program". Only concepts that have 
more than one observation are selected. We obtained 21 numerical events, two (2) nominal events and 



four (4) date type events require a transformation operation. However, this dataset does not include 
observations of temporal nominal and Boolean type.  
 
 In the first step and after the transformation, the data have been re-arranged in a three-dimensional 
(3D) form, thereby repositioning twenty-five (25) numeric events.  
 
 Table 7 presents the statistics on ordered numerical events with each frequency.  
 

Table 7. Statistics of numeric events.  

N° Concept ID / Concept Name Different 
instances number Frequency 

1 21 / HEMOGLOBIN 82 282 
2 654 / SERUM GLUTAMIC-PYRUVIC TRANSAMINASE 207 278 
3 678 / WHITE BLOOD CELLS 81 282 
4 729 / PLATELETS 204 282 
5 730 / CD4% 52 476 
6 790 / SERUM CREATININE 154 160 
7 851 / MEAN CORPUSCULAR VOLUME 58 282 
8 853 / CD8 COUNT 396 470 
9 952 / ABSOLUTE LYMPHOCYTE COUNT 190 275 
10 980 / BODY SURFACE AREA 3 3 
11 1113 / TUBERCULOSIS DRUG TREATMENT START DATE 7 9 
12 1279 / NUMBER OF WEEKS PREGNANT 19 38 
13 5085 / SYSTOLIC BLOOD PRESSURE 31 2. 144 
14 5086 / DIASTOLIC BLOOD PRESSURE 21 2. 143 
15 5087 / PULSE 113 2. 269 
16 5088 / TEMPERATURE (C) 64 2. 274 
17 5089 / WEIGHT (KG) 216 2. 262 
18 5090 / HEIGHT (CM) 79 135 
19 5092 / BLOOD OXYGEN SATURATION 25 2. 267 
20 5096 / RETURN VISIT DATE 2. 049 2. 265 
21 5242 / RESPIRATORY RATE 15 105 
22 5314 / HEAD CIRCUMFERENCE 31 122 
23 5497 / CD4 COUNT 330 478 
24 5599 / DATE OF CONFINEMENT 6 7 
25 5919 / BIRTH YEAR 803 824 

 
 For the second step, the three-dimensional (3D) form of nominal events uses only the "GENDER" 
observations data and the "TRIBE" observations that are only available of this type.  
 
 Table 8 shows the statistics.  

Table 8. Statistics of nominal events.  

N° Concept ID / Concept Name Different 
instances number Frequency 

1 992843 / GENDER  2 824 
2 992844 / TRIBE 3 824 

 



4.3 Results & Discussion 

In line with the minimum length constraint (see Equation 5) vis-à-vis the list of different values applied 
on the numeric events to be partitioned, we have found that a single case generated by the event "980" has 
three (3) different values so that the clustering process is executed only for k= 2 and k= 3. The other cases 
of k = 4, 5 and 6 are not applicable.  
 
 The columns are named in relation to the event identifier, the cluster number and the observation 
number in the series, for example, if we take k =2 to partition the event "21 / HEMOGLOBIN," the 
maximum series of this event is observed on the patient number "3618" with three (3) values, which 
produces a representation with six (6) columns; in this case, "21_C0_S0, 21_C1_S0, 21_C0_S1, 
21_C1_S1, 21_C0_S2, 21_C1_S2".  
 
 Table 9 summarizes the statistics of the lengths of series maximums and the produced columns 
number (i.e., the length of the empty notifications tables to be created) during the partitioning of each 
event.  

Table 9. Statistics of series maximums lengths and the columns produced number.  

N° Concept ID Max Length of 
the longer series 

Produced columns number 
k=2 k=3 k=4 k=5 k=6 

1 21  3 6 9 12 15 18 
2 654 2 4 6 8 10 12 
3 678 3 6 9 12 15 18 
4 729 3 6 9 12 15 18 
5 730 3 6 9 12 15 18 
6 790 2 4 6 8 10 12 
7 851 3 6 9 12 15 18 
8 853 3 6 9 12 15 18 
9 952 3 6 9 12 15 18 
10 980 1 2 3    
11 1113 3 6 9 12 15 18 
12 1279 4 8 12 16 20 24 
13 5085 10 20 30 40 50 60 
14 5086 10 20 30 40 50 60 
15 5087 10 20 30 40 50 60 
16 5088 10 20 30 40 50 60 
17 5089 10 20 30 40 50 60 
18 5090 4 8 12 16 20 24 
19 5092 10 20 30 40 50 60 
20 5096 9 18 27 36 45 54 
21 5242 4 8 12 16 20 24 
22 5314 4 8 12 16 20 24 
23 5497 3 6 9 12 15 18 
24 5599 2 4 6 8 10 12 
25 5919 1 2 3 4 5 6 

 
 Data dispersion affects only the two (2) selected nominal concepts. The first "992843/GENDER" 
generates a dispersion table with two (2) columns"992843_0_M and 992843_0_F". The second concept 
"992844/TRIBE" generates a dispersion table with three (3) columns "992844_0_Luo, 992844_0_Luhya, 
992844_0_Unknown".  
 



 Table 10 shows the data notification values for the numeric event "790/SERUM CREATININE" 
corresponding to the patient identified by "5126". We use the three (3) markings types, and the K-
MEANS technique with k=2. The alphabet S={a,b} of marking symbols has only two (2) symbols vis-à-
vis the number of centers.  

Table 10. Numeric event notification.  

 
 
 
 
 
 
 Also, Table 11 shows the nominal events "992843/GENDER" notification for the same patient.  

Table 11. Nominal event notification.  

 
 

 
 

 
 As argued by Chenguang et al. (2018), a better partition has either the lowest intra-class inertia, or 
the highest inter-class inertia. Hence, in order to compare the used classification techniques, we evaluate 
the results of our numerical events representation, at the base of intra and inter-class inertia. Radar graphs 
shown in Figure 5.a and Figure 5.b have been generated based on the results of intra-class and inter-class 
inertia respectively. These graphs visually highlight the statistics of the used clustering techniques of 
PAA, K-MEANS, EM, and MDBC and illustrate the most appropriate clustering technique according to 
the event considered.  

Figure 5. Appropriate clustering techniques corresponding to statistics of: (a) intra-class inertia, (b) 
inter-class inertia.  

 

Marking types 790_C0_S0 790_C1_S0 790_C0_S1 790_C1_S1 
Real value  27. 000,0 51,9  
Binary  1 1  
Symbol  b a  

Marking types 992843_0_F 992843_0_M 
Real value F  
Binary 1  
Symbol a  



 For each technique, we associate a best cases counter. This counter will be initialized to zero for each 
event; for each event and for each ki (ki=2,..., ki =6), we incrementally adjust the counter of the technique 
corresponding to the best inertia. If several techniques have the same best inertia in a given partition ki, 
we eliminate these results.  
 
 Altogether, Table 12 summarizes the global situation for the techniques used. For twenty-three (23) 
observed cases on twenty-five (25) events in the intra-class inertia evaluation, the K-MEANS technique is 
found to be superior to all the other approaches, followed by the MDBC, EM, and PAA techniques. The 
same result is obtained when evaluating the inter-class inertia, and for twenty-one (21) observed cases on 
twenty-five (25) events, the K-MEANS technique always remains the best.  

Table 12. Global statistics of intra and inter class inertia.  

 
 
 
 

 
 The K-MEANS technique is superior among all others, and it can be used with all events. Yet, the 
qualities of each event, especially the distribution of the values, push us to choose the most appropriate 
classification technique for each event. To choose the technique and the number of clusters ki for each 
event Ei, we compute for all ki and all techniques the total inertia ITki: 
 
 𝐼𝑇,! = 𝐼𝑊,! +	𝐼𝐵,!        (13) 
 
 The technique and the ki corresponding to the maximum ITki will be used for the event Ei 
representation.  
 
 Table 13 displays the evaluation results.  

Table 13. Chosen techniques and clusters numbers results.  

N° Concepts ID Chosen technique Chosen ki 
1 21 MDBC 4 
2 654 PAA 5 
3 678 EM 2 
4 729 MDBC 3 
5 730 EM 2 
6 790 PAA 2 
7 851 PAA 2 
8 853 MDBC 2 
9 952 EM 2 
10 980 PAA 2 
11 1113 PAA 4 
12 1279 MDBC 4 
13 5085 MDBC 4 
14 5086 MDBC 3 
15 5087 MDBC 4 
16 5088 MDBC 3 
17 5089 MDBC 4 
18 5090 MDBC 2 
19 5092 K-MEANS 6 
20 5096 MDBC 5 

Inertia PAA K-MEANS EM MDBC 
Intra class 4/23 8/23 5/23 6/23 
Inter class 0/21 10/21 3/21 8/21 



21 5242 MDBC 2 
22 5314 K-MEANS 4 
23 5497 MDBC 2 
24 5599 PAA 3 
25 5919 MDBC 2 

 
 For the nominal data dispersion statistics, no loss of information has occurred. The instances sum in 
each dispersion table of event "GENDER" (Figure 6.a) and event "TRIBE" (Figure 6.b) equals the total 
number of patients (824).  

Figure 6. Dispersion of nominal events: (a) "GENDER", (b) "TRIBE".  

 
 
 Finally, the global representation has been generated on 431 columns. Of these, 426 columns 
associate with numeric events, several between them containing time-series in its initial form. The 
remaining 5 columns are associated with nominal events. These results prove the capacity of time-series 
treatments via our model.  
 
 Depending on the type of marking used, we obtain a global representation via real value (as shown in 
Figure 7), a binary global representation (as shown in Figure 8) or a global representation via symbol (as 
shown in Figure 9).  

Figure 7. Part of a representation by real value.  

 
 

Figure 8. Binary representation part.  

 



Figure 9. Part of a representation by symbol.  

 
 
 The binary and symbolic global representations use only one type of data, which provides 
homogeneous representations and eliminates heterogeneity in the initial data types of events "Numeric, 
Nominal, Date, Boolean".  
 

4.4 Representation Example & Evaluation 

To evaluate our approach, we compute three (3) data symbolic representations of the patient identified 
with the id =75. Table 13 results have been enlisted for this purpose. The first representation demonstrates 
our DRRD approach whereby each event representation is taken separately from the others. The strategy 
entails concatenating the representation symbols of each event vis-à-vis their chronological order. The 
second and third representations apply the SAX technique with two (2) values different of the segments 
number W. W indicates the resulting representation length, which must be less than or equal to the series 
length in treatment. W =1 is used here as the minimum length acceptable by SAX in the second 
representation named SAX1, with W =10 as the maximum length corresponding to the longest series for 
the third representation named SAX10. The SAX technique requires an input symbol number Z 
comparable to the number of clusters. We then apply SAX1 and SAX10 on each event with Zi=ki.  
 
 Table 14 shows three (3) events symbolic representations to showcase the essential points in the 
comparison. Empty cells allude to the unobserved events (e.g., event 790) on this patient. Cells containing 
"/" are presented only for the SAX technique, and are informed by the minimum lengths conditions not 
respected for the series to be presented (e.g., event 21). For the nineteen (19) marked events, DRRD and 
the SAX1 generate new representations, whereas for the SAX10, new representations are generated for 8 
events only. Additionally, our model represents each observation, whatever the length of the series. Even 
so, the SAX technique generates only the results with the same length if the series have passed the 
minimum length condition W. More generally, the SAX technique eliminates all series having a length 
less than W, which constitutes an information loss that directly affects the quality of the obtained 
representation. For instance, patients representation having only series lengths less than or equal to one 
will fail directly with the SAX technique and the parameter W≥2.  
 
 This example demonstrates the capacity of the proposed novel model to preserve time-series 
information and to conserve as much data as possible throughout the process of representation and 
transformation.  
 
 
 
 
 
 
 
 



Table 14. Representation by symbol of the patient identified by id = 75.  

Event Id Z=ki DRRD SAX1 SAX10 
21 4 c d / 
654 5 a c / 
678 2 a b / 
729 3 a a / 
730 2 a a / 
790 2    
851 2 a a / 
853 2 a b / 
952 2 a b / 
980 2    
1113 4    
1279 4    
5085 4 dcdcccccdd c dbdaadcbdd 
5086 3 cccccccccc b cacaabbacc 
5087 4 cccccccccc c bcabdcbbbd 
5088 3 bbbbbbbbbb c bccccccccc 
5089 4 cccccccccc c cbcccccccc 
5090 2    
5092 6 adbbbbbabb a adaaaaaaaa 
5096 5 ccccccccc e / 
5242 2    
5314 4    
5497 2 a a / 
5599 3    
5919 2 b b / 
992843 2 b b b 
992844 3 a a a 

 

4.5 View per Patient Example 

This solution consists in presenting a window on the data and its variations for each patient taken 
individually. Figure 10 shows an instance of this window for the patient identified by Id = 75. This data 
visualization can help practitioners in analyzing the observations. In this example, the patient has only 
one appearance of the "HEMOGLOBIN" event. The ‘c’ character encodes this event as it corresponds to 
the third level of this event among 4 levels (the number of clusters). The practitioner can also know the 
maximum length of the time-series of this event according to the number of colored cells. For the 
"HEMOGLOBIN" event, the time-series include a maximum of three samples. According to this 
information, a practitioner can easily decide if the patient has a strong need for other specimens or 
diagnostics. After certain experiments on the patients, the practitioners can notice then the key events for 
a given disease. This allows them to directly examine the desired event on this dashboard for the 
suspicious cases. Overall, this solution presents a detailed view of the data of a given patient in view of all 
the patient data.  

 

 

 



Figure 10. View per patient example "Patient Id=75".  

 
 

5.  CONCLUSION 
In this paper, we first discuss PM, and its associated data, citing some types of patient profile data. The 
need to consider the composition of these data and to extract the hidden knowledge underlying the data 
have become a necessity for various critical data-intensive PM tasks, including reporting, evaluation, 
analysis, and medical decision-making.  
 
 Eventually, we argue that the patient data preparation and its representation can provide a staging 
basis for these different PM tasks. To date, the exploration of data for realizing PM has attracted a 
plethora of research. Notwithstanding, most of these works carry certain limits in their methodologies. 
Inevitably, the heterogeneity and number of data types, the information and data loss are the key 
challenges, and in order to showcase these difficulties, we cite some of the prominent works and describe 
certain limits in their results.  
 
 Subsequently, we propose a novel representation model working on numeric, nominal, date and 
Boolean data types to ensure maximum data resource coverage. By means of transformations and 
treatments on the nominal and numeric data, our proposed model overcomes the data types heterogeneity 
issues. The nominal data are processed by dispersion, and the numeric data is processed by data belonging 
region (Clustering and nearest centers). Such a resolution has a strong contribution on the time-series 
representation. This last is treated as a part of numeric data. Following the experiments, a single global 
representation is obtained for all patients. This representation includes the basic data detail even if the 



data have only one observation. It conserves the information embedded within the data especially for 
time-series as it represents each observation in relation to its original region.  
 
 On the individual patient scale, the results of the view per patient shows other details at the level of 
each patient, including the absence and presence of medical events, the number of tests and the specimens 
from the patient and their levels in relation to a global scale (number of clusters) of the event examined. 
The comparison of our approach vis-à-vis the SAX technique and its parameters shows the high 
efficiency and the capacity of our proposed model to minimize the information and time-series data loss 
(as compared to SAX10, where the segments number W is large) during the transformation and to provide 
strong descriptiveness of patient data (as compared to SAX1, where W is small). Put simply, our approach 
has the capability to process several data types at the same time whereas the SAX technique processes 
only the numeric data.  
 
 Our work simplifies the understanding of personalized medicine data by healthcare practitioners. It 
also provides a tool for the analysis and comparison of data between patients, and facilitates the tracking 
of key events and important observations by practitioners. Both diagnosis and treatment planning can 
benefit of such a tool. In particular, we believe that our proposed representation makes EHR data 
exploration easier and can help practitioners to turn towards personalized medicine as well as using 
computer-aided decision systems that mine EHR data.  
 
 The other essential point of our model is the three marking types proposal "By real value, Binary, By 
symbol", and the production of a simple, homogeneous and unified representation in the form of a table 
for each marking type. Achieving this solution will open the way for our future work, such as medical 
decision-making, classification and data exploration. Our representation richness in terms of data types, 
and data mining richness in terms of classification algorithms availability and their capacities for 
processing different data types, will give us the possibility to do other work that takes this representation 
as a basis for initial and forward learning. Currently, we are actively working to apply our representation 
model to other similar data resources, even if they are not medical. We believe the step ahead is to tackle 
the challenges in transforming and representing massive datasets containing time-series data.  
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