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The appendix is organized as follows. We first list most of the notations used in the paper in Appendix A. Lemma 1 is
proved in Appendix B. In Appendix C, we recall a Lemma from (Combes & Proutière, 2014) used by our own Lemmas and
Theorems, and then in Appendices D to F we respectively prove Theorem 2, Lemma 2, and Lemma 3. In Appendix G we
define KL-CombUCB and discuss its regret and its relation to GRAB. Finally in Appendix H we introduce and discuss
S-GRAB.

A. Notations
The following table summarize the notations used through the paper and the appendix.

SYMBOL MEANING

T TIME HORIZON
t ITERATION
L NUMBER OF ITEMS
i INDEX OF AN ITEM
K NUMBER OF POSITIONS IN A RECOMMENDATION
k INDEX OF A POSITION
[n] SET OF INTEGERS {1, . . . , n}
PLK SET OF PERMUTATIONS OF K DISTINCT ITEMS AMONG L
θθθ VECTORS OF PROBABILITIES OF CLICK
θi PROBABILITY OF CLICK ON ITEM i
κκκ VECTORS OF PROBABILITIES OF VIEW
κk PROBABILITY OF VIEW AT POSITION k
A SET OF BANDIT ARMS
aaa AN ARM IN A
aaa(t) THE ARM CHOSEN AT ITERATION t
ãaa(t) BEST ARM AT ITERATION t GIVEN THE PREVIOUS CHOICES AND FEEDBACKS (CALLED LEADER)
aaa∗ BEST ARM
G GRAPH CARRYING A PARTIAL ORDER ON A
γ MAXIMUM DEGREE OF G
NG(ãaa(t)) NEIGHBORHOOD OF ã(t) GIVEN G
ρi,k PROBABILITY OF CLICK ON ITEM i DISPLAYED AT POSITION k
ccc(t) CLICKS VECTOR AT ITERATION t

r(t) REWARD COLLECTED AT ITERATION t, r(t) =
∑K
k=1 ck(t)

µaaa EXPECTATION OF r(t) WHILE RECOMMENDING aaa, µaaa =
∑K
k=1 ρak,k

µ∗ HIGHEST EXPECTED REWARD, µ∗ = maxaaa∈PL
K
µaaa

∆a GAP BETWEEN µa AND µ∗

∆min MINIMAL VALUE FOR ∆a

∆ GENERIC REWARD GAP BETWEEN ONE OF THE SUB-OPTIMAL ARMS AND ONE OF THE BEST ARMS
CONTINUED ON NEXT PAGE
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SYMBOL MEANING

R(T ) CUMULATIVE (PSEUDO-)REGRET, R(T ) = Tµ∗ −E
[∑T

t=1 µaaa(t)

]
Πρρρ(aaa) SET OF PERMUTATIONS IN PKK ORDERING THE POSITIONS S.T. ρaπ1 ,π1 > ρaπ2 ,π2 > · · · > ρaπK ,πK
πππ ELEMENT OF Πρρρ(aaa)
π̃ππ ESTIMATION OF πππ
aaa ◦ (πk, πk+1) PERMUTATION SWAPPING ITEMS IN POSITIONS πk AND πk+1

aaa[πK := i] PERMUTATION LEAVING aaa THE SAME FOR ANY POSITION EXCEPT πK FOR WHICH aaa[πK := i]πK = i
F RANKINGS OF POSITIONS RESPECTING Πρρρ , F = (πππaaa)aaa∈PL

K
S.T. ∀aaa ∈ PLK ,πππaaa ∈ Πρρρ(aaa)

Ti,k(t) NUMBER OF ITERATIONS S.T. ITEM i HAS BEEN DISPLAYED AT POSITION k, Ti,k(t) =
∑t−1
s=1 1{ak(s) = i}

T̃aaa(t) NUMBER OF ITERATIONS S.T. THE LEADER WAS aaa, T̃aaa(t)
def
=
∑t−1
s=1 1{ãaa(s) = aaa}

Taaa(t) NUMBER OF ITERATIONS S.T. THE CHOSEN ARM WAS aaa, Taaa(t) =
∑t−1
s=1 1{aaa(s) = aaa}

T ãaaaaa (t) NUMBER OF ITERATIONS S.T. THE LEADER WAS ãaa, THE CHOSEN ARM WAS aaa, AND aaa WAS CHOSEN

BY THE ARGMAX ON
∑K
k=1 bak,k(t): T ãaaaaa (t) =

∑t−1
s=1 1

{
ãaa(s) = ãaa,aaa(s) = aaa, T̃ãaa(s)/L /∈ N

}
ρ̂i,k(t) ESTIMATION OF ρi,k AT ITERATION t, ρ̂i,k(t) = 1

Ti,k(t)

∑t−1
s=1 1{ak(s) = i}ck(s)

bi,k(t) KULLBACK-LEIBLER INDEX OF ρ̂i,k(t) , bi,k(t) = f
(
ρ̂i,k(t), Ti,k(t), T̃ãaa(t)(t) + 1

)
f KULLBACK-LEIBLER INDEX FUNCTION, f(ρ̂, s, t) = sup{p ∈ [ρ̂, 1] : s× kl(ρ̂, p) ≤ log(t) + 3 log(log(t))},
kl(p, q) KULLBACK-LEIBLER DIVERGENCE FROM A BERNOULLI DISTRIBUTION OF MEAN p

TO A BERNOULLI DISTRIBUTION OF MEAN q, kl(p, q) = p log
(
p
q

)
+ (1− p) log

(
1−p
1−q

)
Baaa(t) PSEUDO-SUM OF INDICES OF aaa AT ITERATION T, Baaa(t) =

∑K
k=1 bak,k(t)−

∑K
k=1 bãk(t),k(t)

Nπ∗(a∗) NEIGHBORHOOD OF THE BEST ARM
Kaaa (WITH COMBINATORIAL BANDIT SETTING) NUMBER OF ELEMENTS IN aaa BUT NOT IN aaa∗ ,

Kaaa = minaaa∗∈A:µaaa∗=µ
∗ |aaa \ aaa∗|

Kmax (WITH COMBINATORIAL BANDIT SETTING) MAXIMAL NUMBER OF ELEMENTS IN A SUB-OPTIMAL ARM aaa
BUT NOT IN AN OPTIMAL ARM a∗ , Kmax = maxaaa∈A:µaaa 6=µ∗ Kaaa

c∗ (θθθ,κκκ) COEFFICIENT IN THE REGRET BOUND OF PMED
c (IN εn-GREEDY) PARAMETER CONTROLLING THE PROBABILITY OF EXPLORATION
c (IN PB-MHB) PARAMETER CONTROLLING SIZE OF THE STEP IN THE METROPOLIS HASTING INFERENCE
m (IN PB-MHB) NUMBER OF STEP IN THE METROPOLIS HASTING INFERENCE

References to Theorems
Lemma 1 (PBM Fulfills Assumption 1).

Theorem 1 (Upper-Bound on the Regret of GRAB).

Theorem 2 (Upper-Bound on the Regret of KL-CombUCB).

Lemma 2 (Upper-Bound on the Number of Iterations of GRAB for which ãaa(t) = ãaa 6= aaa∗).

Lemma 3 (Upper-Bound on the Number of Iterations of GRAB for which π̃ππ(t) /∈ Πρρρ(ãaa)).

B. Proof of Lemma 1 (PBM Fulfills Assumption 1)
Proof of Lemma 1. Let (L,K, (ρi,k)(i,k)∈[L]×[K]) be an online learning to rank (OLR) problem with users following PBM,
with positive probabilities of looking at a given position. Therefore, there exists θθθ ∈ [0, 1]L and κκκ ∈ (0, 1]K such that for
any item i and any position k, ρi,k = θiκk.

Let aaa ∈ PLK be a recommendation, and let πππ ∈ Πρρρ (aaa) be an appropriate ranking of positions. One of the four following
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properties is satisfied:

∃k ∈ [K − 1] s.t. θaπk < θaπk+1
, (7)

∃k ∈ [K − 1] s.t. κπk < κπk+1
, (8)

∃i ∈ [L] \ aaa([K]) s.t. θaπK < θi, (9)
∀k ∈ [K − 1], θaπk > θaπk+1

∀k ∈ [K − 1], κπk > κπk+1

∀i ∈ [L] \ aaa([K]), θaπK > θi

. (10)

Let prove, by considering each of these properties one by one, that aaa is either one of the best arms, or aaa fulfills either
Property (2) or Property (3) of Assumption 1.

If Property (7) is satisfied and θaπk = 0, then by definition of πππ and Πρρρ (aaa), 0 = θaπkκπk > θaπk+1
κπk+1

> 0 which is
absurd.

Therefore, If Property (7) is satisfied,
θaπk+1

θaπk
> 1.

Note that by definition of πππ and Πρρρ (aaa), and as ρi,k = θiκk, θaπkκπk > θaπk+1
κπk+1

.

Hence κπk >
θaπk+1

θaπk
κπk+1

> κπk+1
, and

µaaa − µaaa◦(πk,πk+1) = θaπkκπk + θaπk+1
κπk+1

−
(
θaπk+1

κπk + θaπkκπk+1

)
=
(
θaπk − θaπk+1

) (
κπk − κπk+1

)
< 0,

meaning µaaa < µaaa◦(πk,πk+1), which corresponds to Property (2) of Assumption 1.

Similarly, if Property (8) is satisfied, then Property (2) of Assumption 1 is fulfilled.

If Property (9) is satisfied,

µaaa − µaaa[πK :=i] = θaπK κπK − θiκπK

=
(
θaπK − θi

)
κπK

< 0.

Hence µaaa < µaaa[πK :=i], which corresponds to Property (3) of Assumption 1.

Finally, if Property (10) is satisfied, µaaa = µ∗.

Overall, either aaa is one of the best arms, or aaa fulfills Property (2) of Assumption 1, or aaa fulfills Property (3) of Assumption
1, which concludes the proof.

C. Preliminary to the Analysis of GRAB
The analysis of GRAB requires a control of the number of high deviations, as expressed by Lemma B.1 of (Combes &
Proutière, 2014). Let us recall this lemma, which we denote Lemma 4 in current paper.

Lemma 4 (Lemma B.1 of (Combes & Proutière, 2014)). Let i ∈ [L], k ∈ [K], ε > 0. Define F(T ) the σ-algebra generated
by (ccc(t))t∈[T ]. Let Λ ⊆ N be a random set of instants. Assume that there exists a sequence of random sets (Λ(s))s≥1 such
that (i) Λ ⊆

⋃
s≥1 Λ(s), (ii) for all s > 1 and all t ∈ Λ(s), Ti,k(t) ≥ εs, (iii) |Λ(s)| 6 1, and (iv) the event t ∈ Λ(s) is

Ft-measurable. Then for all δ > 0,
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E

∑
t≥1

1{t ∈ Λ, |ρ̂i,k(t)− ρi,k| > δ}

 6
1

εδ2

D. Proof of Theorem 2 (Upper-bound on the Regret of KL-CombUCB)
Proof of Theorem 2. Let aaa ∈ A be a sub-optimal arm. Let aaa∗ ∈ A be an optimal arm such that |aaa \ aaa∗| = Kaaa.

We denote K̄aaa
def
= |aaa∗ \ aaa|, Taaa(t)

def
=
∑t−1
s=1 1{aaa(s) = aaa} the number of time the arm aaa has been drawn, and Te(t)

def
=∑t−1

s=1 1{e ∈ aaa(s)} the number of time the element e was in the drawn arm.

Let decompose the expected number of iterations at which the permutation aaa is recommended:

E

[
T∑
t=1

1{aaa(t) = aaa}

]
6

∑
e∈aaa\aaa∗

E

[
T∑
t=1

1

{
aaa(t) = aaa, |ρ̂e(t)− ρe| >

∆aaa

2Kaaa

}]

+
∑

e∈aaa∗\aaa

E

[
T∑
t=1

1{be(t) 6 ρe}

]

+ E

 T∑
t=|E|

1

{
aaa(t) = aaa,∀e ∈ aaa \ aaa∗, |ρ̂e(t)− ρe| <

∆aaa

2Kaaa
,∀e ∈ aaa∗ \ aaa, be(t) > ρe

}
+ |E|.

The proof consists in upper-bounding each term on the right-hand side.

First Term Let e ∈ aaa \ aaa∗, and denote Ae =
{
t ∈ [T ] : aaa(t) = aaa, |ρ̂e(t)− ρe| > ∆aaa

2Kaaa

}
.

Ae ⊆
⋃
s∈N Λk(s), where Λk(s)

def
= {t ∈ Ae : Taaa(t) = s}. For any integer value s, |Λk(s)| 6 1 as Taaa(t) increases for

each t ∈ Ae. Note that for each s ∈ N and n ∈ Λk(s), Te(n) > Taaa(n) = s. Then, by Lemma 4

E [|Ae|] ≤ E

[
T∑
t=1

1{t ∈ Ae}

]

= E

[
T∑
t=1

1

{
t ∈ Ae, |ρ̂e(t)− ρe| >

∆aaa

2Kaaa

}]

6
4K2

aaa

∆2
aaa

.

Hence,
∑
e∈aaa\aaa∗ E

[∑T
t=1 1

{
aaa(t) = aaa, |ρ̂e(t)− ρe| > ∆aaa

2Kaaa

}]
=
∑
e∈aaa\aaa∗ E [|Ae|] 6 4K3

aaa

∆2
aaa

.

Second Term Let e ∈ aaa∗ \ aaa, and denote Be
def
= {t ∈ [T ] : be(t) 6 ρe}.

By Theorem 10 of (Garivier & Cappé, 2011), E [|Be|] = O(log log T ), so
∑
e∈aaa∗\aaaE

[∑T
t=1 1{be(t) 6 ρe}

]
=

O(K̄aaa log log T ).

Third Term Let note C
def
=
{
t ∈ [T ] \ [|E|] : aaa(t) = aaa,∀e ∈ aaa \ aaa∗, |ρ̂e(t)− ρe| < ∆aaa

2Kaaa
,∀e ∈ aaa∗ \ aaa, be(t) > ρe

}
.

Let t ∈ C.

At each step of the initialization phase, the algorithm removes at least one element e of the set Ẽ of unseen elements.
Therefore, the initialization lasts at most |E| iterations. Hence, at iteration t, aaa(t) = aaa is chosen as

∑
e∈aaa be(t) =

maxaaa′∈A
∑
e∈aaa′ be(t).
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Then, by Pinsker’s inequality and the fact that t 6 T , and Te(t) > Taaa(t) for any e in aaa,

0 6
∑
e∈aaa

be(t)−
∑
e∈aaa∗

be(t)

=
∑

e∈aaa\aaa∗
be(t)−

∑
e∈aaa∗\aaa

be(t)

6
∑

e∈aaa\aaa∗
ρ̂e(t) +

√
log(t) + 3 log(log(t))

2Te(t)
−

∑
e∈aaa∗\aaa

be(t)

<
∑

e∈aaa\aaa∗
ρe +

∆aaa

2Kaaa
+

√
log(T ) + 3 log(log(T ))

2Taaa(t)
−

∑
e∈aaa∗\aaa

ρe

6
∑
e∈aaa

ρe −
∑
e∈aaa∗

ρe +Kaaa
∆aaa

2Kaaa
+Kaaa

√
log(T ) + 3 log(log(T ))

2Taaa(t)

= −∆aaa +
2∆aaa

2
+Kaaa

√
log(T ) + 3 log(log(T ))

2Taaa(t)
.

= −∆aaa

2
+Kaaa

√
log(T ) + 3 log(log(T ))

2Taaa(t)
.

Hence, Taaa(t) < K2
aaa

2 log(T )+6 log(log(T ))
∆2
aaa

. Therefore, C ⊆
{
t ∈ [T ] \ [|E|] : aaa(t) = aaa, Taaa(t) < K2

aaa
2 log(T )+6 log(log(T ))

∆2
aaa

}
,

and

E

 T∑
t=|E|

1

{
aaa(t) = aaa,∀e ∈ aaa \ aaa∗, |ρ̂e(t)− ρe| <

∆aaa

2Kaaa
,∀e ∈ aaa∗ \ aaa, be(t) > ρe

}
= E [|C|]

6 E

[∣∣∣∣{t ∈ [T ] \ [|E|] : aaa(t) = aaa, Taaa(t) < K2
aaa

2 log(T ) + 6 log(log(T ))

∆2
aaa

}∣∣∣∣]
6 K2

aaa

2 log(T ) + 6 log(log(T ))

∆2
aaa

.

Regret upper-bound Overall,

E

[
T∑
t=1

1{aaa(t) = aaa}

]
6

4K3
aaa

∆2
aaa

+O(K̄aaa log log T ) +K2
aaa

2 log(T ) + 6 log(log(T ))

∆2
aaa

+ |E|

=
2K2

aaa

∆2
aaa

log(T ) +O
((

K̄aaa +
K2
aaa

∆2
aaa

)
log log T

)
and

R(T ) =
∑

aaa∈A:µaaa 6=µ∗
∆aaaE

[
T∑
t=1

1{aaa(t) = aaa}

]

6
∑

aaa∈A:µaaa 6=µ∗

2K2
aaa

∆aaa
log(T ) +O

((
K̄aaa∆aaa +

K2
aaa

∆aaa

)
log log T

)

= O
(
|A|K2

max

∆min
log T

)
,
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which concludes the proof.

E. Proof of Lemma 2 (Upper-bound on the Number of Iterations of GRAB for which
ãaa(t) = ãaa 6= aaa∗)

Proof of Lemma 2. Let ãaa ∈ PLK \ {aaa∗} and prove that E
[∑T

t=1 1{ãaa(t) = ãaa}
]

= O (log log T ).

The proof requires notations related to the neighborhood of ãaa. Let N def
=
⋃
πππ∈PKK

Nπππ(ãaa) be the set of all the potential
neighbors of ãaa. By definition of the neighborhoods,

N =
{
ãaa ◦ (k, k′) : k, k′ ∈ [K]2, k > k′

}
∪ {ãaa[k := i] : k ∈ [K], i ∈ [L] \ ãaa([K])} ,

and its size is N = K(2L −K − 1)/2. As ãaa is sub-optimal, and due to Assumption 1, for any appropriate ranking of
positions πππ ∈ Πρρρ (ãaa), there exists a recommendation aaa+ with a strictly better expected reward than ãaa in the neighborhood
Nπππ(ãaa). We denote

N+ def
=

⋃
πππ∈Πρρρ(ãaa)

{
aaa+ ∈ Nπππ(ãaa) : µaaa+ = max

aaa∈Nπππ(ãaa)
µaaa

}
the set of such recommendations. We also chose ε < min{1/(2N), 1/L} and note

δ
def
= min

πππ∈Πρρρ(ãaa)
min

aaa∈Nπππ(ãaa)∪{ãaa}\N+

(
max

aaa′∈Nπππ(ãaa)
µaaa′ − µaaa

)
.

To bound E [1{ãaa(t) = ãaa}], we use the decomposition {t ∈ [T ] : ãaa(t) = ãaa} ⊆
⋃
aaa+∈N+ Aaaa+ ∪B where for any permutation

aaa+ ∈ N+,
Aaaa+ = {t : ãaa(t) = ãaa, Taaa+(t) > εT̃ãaa(t)}

and
B = {t : ãaa(t) = ãaa,∀aaa+ ∈ A+, Taaa+(t) < εT̃ãaa(t)}.

Hence,
E [1{ãaa(t) = ãaa}] 6

∑
aaa+∈A+

E [|Aaaa+ |] + E [|B|] .

Bound on E [|Aaaa+ |] Let aaa+ be a permutation in N+ and denote K+ the set of positions for which aaa+ and ãaa disagree:
K+ =

{
k ∈ [K] : a+

k 6= ãk
}

. The permutation aaa+ is in the neighborhood of ãaa, so either aaa+ = ãaa◦ (k, k′) or aaa+ = aaa[k := i],
with k and k′ in [K], and i in [L]. Overall, |K+| 6 2.

By the design of the algorithm and by definition of ε, we have that ∀t ∈ Aaaa+ , Tãaa(t) > T̃ãaa(t)/L > εT̃ãaa(t). Moreover, at the
considered iterations ãaa is the leader, so

Aaaa+ ⊆
{
t : ãaa(t) = ãaa, T̃ãaa(t) <

1

ε

}
∪

{
t : ãaa(t) = ãaa,min{Tãaa(t), Taaa+(t)} > εT̃ãaa(t) > 1,

∑
`

ρ̂ã`,`(t) >
∑
`

ρ̂a+` ,`
(t)

}

⊆
{
t : ãaa(t) = ãaa, T̃ãaa(t) <

1

ε

}
∪

{
t : ãaa(t) = ãaa,min{Tãaa(t), Taaa+(t)} > εT̃ãaa(t),

∑
k∈K+

ρ̂ãk,k(t) >
∑
k∈K+

ρ̂a+k ,k
(t)

}

⊆
{
t : ãaa(t) = ãaa, T̃ãaa(t) <

1

ε

}
∪
{
t : ãaa(t) = ãaa,min{Tãaa(t), Taaa+(t)} > εT̃ãaa(t),∃k ∈ K+, |ρ̂ãk,k(t)− ρãk,k| >

δ

2|K+|
or |ρ̂a+k ,k(t)− ρa+k ,k| >

δ

2|K+|

}
⊆
{
t : ãaa(t) = ãaa, T̃ãaa(t) <

1

ε

}
∪
⋃
k∈K+

⋃
i∈{ãk,a+k }

Λi,k,
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with Λi,k
def
=
{
t : ãaa(t) = ãaa,min{Tãaa(t), Taaa+(t)} > εT̃ãaa(t), |ρ̂i,k(t)− ρi,k| > δ

2|K+|

}
.

Fix k in K+ and i in
{
ãk, a

+
k

}
. Λi,k ⊆

⋃
s∈N Λi,k(s), with Λi,k(s)

def
= {t ∈ Λi,k : T̃ãaa(t) = s}. |Λi,k(s)| 6 1 as T̃ãaa(t)

increases for each t ∈ Λi,k. Note that for each s ∈ N and n ∈ Λi,k(s), Ti,k(n) > min {Taaa(n), Taaa+(n)} > εT̃ãaa(n) = εs.
Then, by Lemma 4

E [|Λi,k|] = E

[
T∑
t=1

1{t ∈ Λi,k}

]

= E

[
T∑
t=1

1

{
t ∈ Λi,k, |ρ̂i,k(t)− ρi,k| >

δ

2|K+|

}]

6
4|K+|2

εδ2

Hence, E [|Aaaa+ |] 6 1
ε +

∑
k∈K+

∑
i∈{ãk,a+k }E [|Λi,k|] 6 1

ε + 8|K+|3
εδ2 .

Bound on E [|B|] We first split B in two parts: B = Bt0 ∪BTt0 , where Bt0
def
= {t ∈ B : T̃ãaa(t) 6 t0}, BTt0

def
= {t ∈ B :

T̃ãaa(t) > t0}, and t0 is chosen as small as possible to satisfy three constraints required in the rest of the proof.

Namely, t0 = max

{
1
ε , (1 +N)(1− 1

L − εN)−1, inf

{
t : 2

√
log(t+1)+3 log(log(t+1))

2εt < δ
8

}}
. Note that t0 only depends

on K, L and δ, and that (1− 1
L − εN) > 0 (assuming L > 2) as ε < 1/(2N).

We also define

• D
def
=
⋃

(aaa,k)∈(N∪{ãaa}\N+)×[K]Daaa,k, where Daaa,k
def
=
{
t ∈ [T ] : ãaa(t) = ãaa,aaa(t) = aaa, |ρ̂ak,k(t)− ρak,k| > δ

8

}
,

• E
def
=
⋃

(aaa+,k)∈N+×[K]Eaaa+,k, where Eaaa+,k
def
= {t ∈ [T ] : ãaa(t) = ãaa, ba+k ,k

(t) 6 ρa+k ,k
},

• and F
def
= {t ∈ [T ] : ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)}.

Let t ∈ BTt0 . By construction, GRAB forces itself to select
⌈
T̃ãaa(t)
L

⌉
times the leader ãaa between iterations 1 and t− 1. So,

T̃ãaa(t) =

⌈
T̃ãaa(t)

L

⌉
+

∑
aaa∈N∪{ãaa}

T ãaaaaa (t)

where T ãaaaaa (t) =
∑t−1
s=1 1

{
ãaa(s) = ãaa,aaa(s) = aaa, T̃ãaa(s)/L /∈ N

}
is the number of times arm aaa ∈ N ∪ {ãaa} has been played

normally (i.e not forced) while ãaa was leader, up to time t − 1. Let prove by contradiction that there is at least one
recommendation aaa that has been selected normally more than εT̃ãaa(t) + 1 times, namely T ãaaaaa (t) > εT̃ãaa(t) + 1.

Assume that for each recommendation aaa in N ∪ {ãaa}, T ãaaaaa (t) < εT̃ãaa(t) + 1. Then

T̃ãaa(t) =

⌈
T̃ãaa(t)

L

⌉
+

∑
aaa∈N∪{ãaa}

T ãaaaaa (t)

< 1 +
T̃ãaa(t)

L
+N(εT̃ãaa(t) + 1).

Therefore T̃ãaa(t)(1− 1
L −Nε) < 1 +N , which contradicts t ∈ BTt0 .

So, there exists a recommendation aaa such that T ãaaaaa (t) > εT̃ãaa(t) + 1. Let denote s′ the first iteration such that T ãaaaaa (s′) >
εT̃ãaa(t) + 1. At this iteration, T ãaaaaa (s′) = T ãaaaaa (s′− 1) + 1, meaning that ãaa(s′− 1) = ãaa, aaa(s′− 1) = aaa, T̃ãaa(s′− 1)/L /∈ N, and
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T ãaaaaa (s′ − 1) > εT̃ãaa(t). Therefore, the set {s ∈ [t] : ãaa(s) = ãaa, T ãaaaaa(s)(s) > εT̃ãaa(t), T̃ãaa(s)/L /∈ N} is non-empty. We define
ψ(t) as the minimum on this set

ψ(t)
def
= min

{
s ∈ [t] : ãaa(s) = ãaa, T ãaaaaa(s)(s) > εT̃ãaa(t), T̃ãaa(s)/L /∈ N

}
.

We note aaa the recommendation aaa(ψ(t)) at iteration ψ(t). We have aaa /∈ N+ since for any recommendation aaa+ ∈ N+,
T ãaaaaa+(ψ(t)) 6 T ãaaaaa+(t) 6 Taaa+(t) < εT̃ãaa(t). Letaaa+ be one of the best recommendations inNπ̃ππ(ψ(t)) (ãaa)∪{ãaa}, meaning µaaa+ =
maxaaa′∈Nπ̃ππ(ψ(t))(ãaa)∪{ãaa} µaaa′ , and let K denote the set of positions for which aaa and aaa+ disagree. As both recommendations are
in Nπ̃ππ(ψ(t))(ãaa) ∪ {ãaa}, |K| 6 4.

Let prove by contradiction that ψ(t) ∈ D ∪ E ∪ F . Assume that ψ(t) /∈ D ∪ E ∪ F .

Since ψ(t) /∈ F , π̃ππ (ψ(t)) belongs to Πρρρ (ãaa) and hence aaa+ is in N+ and
∑
k ρa+k ,k

−
∑
k ρak,k = µaaa+ − µaaa > δ.

Moreover, since ψ(t) /∈ D ∪ E, for each position k ∈ [K], |ρ̂ak,k(ψ(t))− ρak,k| < δ
8 , and ba+k ,k(ψ(t)) > ρa+k ,k

.

Finally, Taaa(ψ(t)) > T ãaaaaa (ψ(t)) > εT̃ãaa(t) > 1, and therefore bak,k(ψ(t)) and ρ̂ak,k(ψ(t)) are properly defined for any
position k ∈ [K].

Then, by Pinsker’s inequality and the fact that ψ(t) 6 t, T̃ãaa(s) is non-decreasing in s, and Taaa(ψ(t)) > εT̃ãaa(t),

∑
k

bak,k(ψ(t))−
∑
k

ba+k ,k
(ψ(t)) =

∑
k∈K

bak,k(ψ(t))− ba+k ,k(ψ(t))

6
∑
k∈K

ρ̂ak,k(ψ(t)) +

√
log(T̃ãaa(ψ(t)) + 1) + 3 log(log(T̃ãaa(ψ(t)) + 1))

2Taaa(ψ(t))
− ba+k ,k(ψ(t))

<
∑
k∈K

ρak,k +
δ

8
+

√
log(T̃ãaa(t) + 1) + 3 log(log(T̃ãaa(t) + 1))

2εT̃ãaa(t)
− ρa+k ,k

6
∑
k∈K

ρak,k +
δ

8
+
δ

8
− ρa+k ,k

6
∑
k

ρak,k −
∑
k

ρa+k ,k
+ |K| · 2δ

8

6 −δ + 8
δ

8
= 0,

which contradicts the fact that aaa is played at iteration ψ(t). So ψ(t) ∈ D ∪ E ∪ F .

Overall, for any t ∈ BTt0 , ψ(t) ∈ D∪E∪F . So,BTt0 ⊆
⋃
n∈D∪E∪F B

T
t0∩{t ∈ [T ] : ψ(t) = n}. Let n be inD∪E∪F . For

any t in BTt0 ∩ {t ∈ [T ] : ψ(t) = n}, T ãaaaaa(n)(n) = dεT̃ãaa(t)e and T̃ãaa(t+ 1) = T̃ãaa(t) + 1. So |BTt0 ∩ {t ∈ [T ] : ψ(t) = n} | <
1/ε+ 1. Overall,

E [|B|] 6 t0 + E
[
|BTt0 |

]
6 t0 + (1/ε+ 1) (E [|D|] + E [|E|] + E [|F |]).

It remains to upper-bound E [|D|], E [|E|], and E [|F |] to conclude the proof.

Bound on E [|D|] The upper-bound on E [|D|] is obtained with the same strategy as the last step in the proof of the
upper-bound on E [|Aaaa+ |]. Let aaa be a recommendation inN ∪{ãaa}\N+, and k ∈ [K] be a position. Daaa,k ⊆

⋃
s∈N Λaaa,k(s),

where Λaaa,k(s)
def
= {t ∈ Daaa,k : Taaa(t) = s}. |Λaaa,k(s)| 6 1 as Taaa(t) increases for each t ∈ Daaa,k. Note that for each s ∈ N

and n ∈ Λaaa,k(s), Tak,k(n) > Taaa(n) = s. Then, by Lemma 4
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E [|Daaa,k|] ≤ E

[
T∑
t=1

1{t ∈ Daaa,k}

]

= E

[
T∑
t=1

1

{
t ∈ Daaa,k, |ρ̂ak,k(t)− ρak,k| >

δ

8

}]

6
64

δ2

Hence, E [|D|] ≤
∑

(aaa,k)∈(N∪{ãaa}\N+)×[K]E [|Daaa,k|] 6 64(N+1)K
δ2 .

Bound on E [|E|] By Theorem 10 of (Garivier & Cappé, 2011), E
[
|Eaaa+,k|

]
= O(log(log(T ))), so E [|E|] 6∑

(aaa+,k)∈N+×[K]E
[
|Eaaa+,k|

]
= O(|N+|K log(log(T ))).

Bound on E [|F |] By Lemma 3, E [|F |] = E
[∑T

t=1 1 {ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)}
]

= O (1) .

Overall E [1{ãaa(t) = ãaa}] 6 |K+|
ε + 8|K+|3|N+|

εδ2 + t0 +
(

1
ε + 1

) 64(N+1)K
δ2 + O

(
|N+|K

ε log log T
)

+ O(1) =

O
(
|N+|K

ε log log T
)

, which concludes the proof.

F. Proof of Lemma 3 (Upper-bound on the Number of Iterations of GRAB for which
π̃ππ(t) /∈ Πρρρ(ãaa))

Proof of Theorem 3. Let ãaa be a K-permutation of L items. If Πρρρ (ãaa) contains all the permutations of K elements, the set
{t : ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)} is empty.

Otherwise, let denote δ the smallest non-zero gap between the probability of click at position k and the probability of click

at position k′ 6= k: δ
def
= min

{
ρãk,k − ρãk′ ,k′ : (k, k′) ∈ [K]2, ρãk,k − ρãk′ ,k′ > 0

}
. The gap δ is the minimum on a finite

set, so δ > 0.

By definition of π̃(t), ρ̂ãπ̃1(t)(t),π̃1(t)(t) > ρ̂ãπ̃2(t)(t),π̃2(t)(t) > · · · > ρ̂ãπ̃K (t)(t),π̃K(t)(t), so,

{t : ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)} =
⋃

π̃ππ∈PKK

⋃
k∈[K−1]

{
t : ãaa(t) = ãaa, π̃ππ(t) = π̃ππ, ρãπ̃k ,π̃k < ρãπ̃k+1

,π̃k+1

}
⊆

⋃
π̃ππ∈PKK

⋃
k∈[K−1]

{
t : ãaa(t) = ãaa, π̃ππ(t) = π̃ππ,

|ρ̂ãπ̃k ,π̃k (t)−ρãπ̃k ,π̃k |>
δ
2

or |ρ̂ãπ̃k+1
,π̃k+1

(t)−ρãπ̃k+1
,π̃k+1

|> δ
2

}
=

⋃
π̃ππ∈PKK

⋃
k∈[K]

Λπ̃ππ,k,

with Λπ̃ππ,k
def
=
{
t : ãaa(t) = ãaa, π̃ππ(t) = π̃ππ, |ρ̂ãπ̃k ,π̃k(t)− ρãπ̃k ,π̃k | >

δ
2

}
, for any ranking of positions π̃ππ ∈ PLK and any rank

k ∈ [K].

Let π̃ππ ∈ PLK be a ranking of positions, and k ∈ [K] be a rank. Λπ̃ππ,k ⊆
⋃
s∈N Λπ̃ππ,k(s), with Λπ̃ππ,k(s)

def
= {t ∈ Λπ̃ππ,k :

T̃ãaa(t) = s}. |Λπ̃ππ,k(s)| 6 1 as T̃ãaa(t) increases for each t ∈ Λπ̃ππ,k. Note that for each s ∈ N and n ∈ Λπ̃ππ,k(s), Tãπ̃k ,π̃k(n) >
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Algorithm 2 KL-ComUCB1 (generic version)
Input: set of elements E, set of arms A
t← 1
while {e ∈ E : Te(t) = 0} 6= ∅ do
Ẽ ← {e ∈ E : Te(t) = 0}
Ã ← {aaa ∈ A : aaa ∩ Ẽ 6= ∅}
recommend aaa(t) = argmax

aaa∈Ã

∑
e∈aaa

be(t)

observe the weights [we(t) : e ∈ aaa]
t← t+ 1

end while
t0 ← t
for t = t0, t0 + 1, . . . do

recommend aaa(t) = argmax
aaa∈A

∑
e∈aaa

be(t)

observe the weights [we(t) : e ∈ aaa]
end for

Tãaa(n) > T̃ãaa(n)/L = s/L. Then, by Lemma 4

E [|Λπ̃ππ,k|] = E

[
T∑
t=1

1{t ∈ Λπ̃ππ,k}

]

= E

[
T∑
t=1

1

{
t ∈ Λπ̃ππ,k, |ρ̂ãπ̃k ,π̃k(t)− ρãπ̃k ,π̃k | >

δ

2

}]

6
4L

δ2

Hence,

E

[
T∑
t=1

1{ãaa(t) = ãaa, π̃ππ(t) /∈ Πρρρ (ãaa)}

]
6
∑
π̃ππ∈PKK

∑
k∈[K]

E [Λπ̃ππ,k]

6
4LKK!

δ2

= O (LKK!) ,

which concludes the proof.

G. KL-CombUCB and its Application to PBM Setting
In this section we first define the generic combinatorial semi-bandit algorithm KL-CombUCB and we compare two
upper-bounds on its regret. Then, we present the application of KL-CombUCB to PBM setting and discuss its relation to
GRAB.

G.1. KL-CombUCB for Generic Setting

CombUCB1 (Kveton et al., 2015) is a bandit algorithm handling the following combinatorial setting. Let E be a set of
elements and A ⊆ {0, 1}E be a set of arms, where each arm aaa is a subset of E. Following the terminology used in (Kveton
et al., 2015), E is the ground set and A the feasible set. At each iteration, the bandit algorithm chooses a subset of elements
aaa ∈ A and receives the reward

∑
e∈aaa we, where www is an independent draw of a distribution ν on [0, 1]E . Given these

assumptions, CombUCB1 chooses an arm aaa(t) at each iteration, aiming at minimizing the total regret defined as usual.
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Algorithm 3 KL-ComUCB1 (applied to PBM)
Input: number of items L, number of positions K

for t = 1, 2, . . . , L do
recommend aaa(t) = (((t− 1)%L) + 1, (t%L) + 1, . . . , ((t+K − 2)%L) + 1)
observe the clicks-vector ccc(t)

end for
for t = L+ 1, L+ 2, . . . do

recommend aaa(t) = argmax
aaa∈PLK

K∑
k=1

bak,k(t)

observe the clicks-vector ccc(t)
end for

We denote ρe
def
= Ewww∼ν [we] the expected reward associated to element e, µaaa

def
= Ewww∼ν

[∑
e∈aaa we

]
=
∑
e∈aaa ρe the

expected reward when choosing the arm aaa ∈ A, and µ∗
def
= maxaaa∈A µaaa the best expected reward. We also denote

∆aaa
def
= µ∗ − µaaa the gap between the best expected reward and the reward of an arm aaa, and ∆min

def
= minaaa∈A:∆aaa>0 ∆aaa the

smallest gap of a suboptimal arm. Finally, K
def
= maxaaa∈A |aaa| denotes the maximum size of an arm (meaning the maximum

number of chosen elements), Kaaa
def
= minaaa∗∈A:µaaa∗=µ∗ |aaa \ aaa∗| is the smallest number of elements to remove from aaa to get

an optimal arm, and Kmax
def
= maxaaa∈A:µaaa 6=µ∗ Kaaa is its lager value.

In our paper, we use the Kullback-Leibler variation of CombUCB1 which chooses the arm based on the index be(t) (defined
hereafter) instead of the usual confidence upper-bound derived from the Hoeffding’s inequality. The corresponding algorithm
(KL-CombUCB) also assumes that the weight-vectorwww(t) is in {0, 1}E . KL-CombUCB is depicted by Algorithm 2 which
uses the following notations. At each iteration t, we denote

ρ̂e(t)
def
=

1

Te(t)

t−1∑
s=1

1{e ∈ aaa(s)}we(s)

the average number of clicks obtained by the element e, where

Te(t)
def
=

t−1∑
s=1

1{e ∈ aaa(s)}

is the number of times element e has been selected; ρ̂e(t)
def
= 0 when Te(t) = 0. The statistics ρ̂e(t) are paired with their

respective indices

be(t)
def
= f (ρ̂e(t), Te(t), t) ,

where f(ρ̂, s, t) stands for
sup{p ∈ [ρ̂, 1] : s× kl(ρ̂, p) ≤ log(t) + 3 log(log(t))},

with

kl(p, q)
def
= p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
the Kullback-Leibler divergence from a Bernoulli distribution of mean p to a Bernoulli distribution of mean q; f(ρ̂, s, t)

def
= 1

when ρ̂ = 1, s = 0, or t = 0.

Kveton et al. prove that the regret of CombUCB1 is upper-bounded by O (|E|K/∆min log T ), and a similar proof would
lead to the same upper-bound for KL-CombUCB. In our paper we prove in Theorem 2 a completely different regret
upper-bound for KL-CombUCB: O

(
|A|K2

max/∆min log T
)
. For most combinatorial bandit settings, this new bound is

useless since |A| � |E|, and Kmax ≈ K. However, the analysis of GRAB involves an application of KL-CombUCB to a
setting where the new bound is smaller than the standard one as |A| = |E| − 1 and Kmax = 2.
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Algorithm 4 S-GRAB: Static Graph for unimodal RAnking Bandit
Input: number of items L, number of positions K
γ ← K(2L−K − 1)/2
for t = 1, 2, . . . do

ãaa(t)← argmax
aaa∈PLK

K∑
k=1

ρ̂ak,k(t)

recommend aaa(t) =


ãaa(t) , if T̃ãaa(t)(t)γ+1 ∈ N,

argmax
aaa∈{ãaa(t)}∪NG(ãaa(t))

K∑
k=1

bak,k(t) , otherwise

where NG(aaa) =
{
aaa ◦ (k, k′) : k, k′ ∈ [K]2, k > k′

}
∪ {aaa[k := i] : k ∈ [K], i ∈ [L] \ aaa([K])}

observe the clicks vector ccc(t)
end for

G.2. KL-CombUCB Applied to PBM Setting

In the experiments (Section 6), we apply KL-CombUCB to PBM bandit setting by choosing the ground set E = [L]× [K],
the feasible set Θ = {{(ak, k) : k ∈ [K]} : aaa ∈ PLK}, and the expected weights ρ(i,k) = θiκk for any “element” (i, k) ∈ E.
Note that the observed weights of the generic setting correspond to the clicks-vector in the PBM setting.

The corresponding algorithm, depicted by Algorithm 3, recommends at each iteration t the best permutation given the
indices bi,k(t) defined for GRAB. This optimization problem is a linear sum assignment problem which is solvable in
O
(
K2(L+ logK)

)
time (Ramshaw & Tarjan, 2012). Note the close relationship with GRAB:

• both algorithms solve a linear sum assignment problem, they only differ from the metric to optimize:
∑K
k=1 ρ̂ak,k(t)

for GRAB vs.
∑K
k=1 bak,k(t) for KL-CombUCB;

• both algorithms recommend the best permutation aaa regarding
∑K
k=1 bak,k(t), they only differ from the considered set

of permutations: {ãaa(t)} ∪ Nπ̃ππ(t) (ãaa(t)) for GRAB vs. PLK for KL-CombUCB.

By considering a larger set of permutations, KL-ComUCB1 suffers a O(LK2/∆min log T ) regret (by applying (Kveton
et al., 2015) bound), which is higher than the upper-bound on the regret of GRAB by a factor K2.

H. S-GRAB: OSUB on a Static Graph
The algorithm S-GRAB, depicted in Algorithm 4, is similar to GRAB except that it explores a static graph G = (E, V )
defined by

V
def
= PLK ,

E
def
=
{

(aaa,aaa ◦ (k, k′)) : k, k′ ∈ [K]2, k > k′
}
∪ {(aaa,aaa[k := i]) : k ∈ [K], i ∈ [L] \ aaa([K])} .

This graph is chosen to ensure that with PBM setting any sub-optimal recommendation has a strictly better recommendation
in its neighborhood given G. This graph is fixed and does not require the knowledge of a mapping P , but its degree is also
about K times larger than the degree of the graphs handled by GRAB.

As for GRAB, any recommendation in the neighborhood of the leader givenG differs with the leader at, at most two positions.
Therefore a proof similar to the one of Theorem 1 ensures that S-GRAB’s regret is upper-bounded by O (LK/∆min log T ).
This regret upper-bound is higher than GRAB’s one by a factor K due to the larger size of the considered neighborhoods.
However, this regret remains smaller than KL-CombUCB’s one by a factor K thanks to the bounded number of differences
between the leader and the arm played.
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