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BAYESIAN SPATIOTEMPORAL SEGMENTATION OF COMBINED PET-CT DATA USING A
BIVARIATE POISSON MIXTURE MODEL

Zacharie Irace, Hadj Batatia

University of Toulouse, IRIT/INP-ENSEEIHT, 2, rue Charles Camichel, 31071 Toulouse, France

ABSTRACT

This paper presents an unsupervised algorithm for the
joint segmentation of 4-D PET-CT images. The proposed
method is based on a bivariate-Poisson mixture model to rep-
resent the bimodal data. A Bayesian framework is developed
to label the voxels as well as jointly estimate the parame-
ters of the mixture model. A generalized four-dimensional
Potts-Markov Random Field (MRF) has been incorporated
into the method to represent the spatio-temporal coherence
of the mixture components. The method is successfully ap-
plied to 4-D registered PET-CT data of a patient with lung
cancer. Results show that the proposed model fits accurately
the data and allows the segmentation of different tissues and
the identification of tumors in temporal series.

Index Terms— multimodality, data fusion, 4-D segmen-
tation, PET-CT, bivariate Poisson distribution

1. INTRODUCTION

Cancer diagnosis and its treatment require precise localiza-
tion of lesions before any quantification. In clinics, tumors are
manually or semi-automatically delineated in Positron Emis-
sion Tomography (PET) and Computed Tomography (CT)
images, separately. Robust automatic segmentation meth-
ods are therefore necessary to help medical decision making.
However, the segmentation of PET images is a difficult task
due to their poor contrast and lack of anatomical information.
PET and CT images are usually fused a posteriori to allow the
visual localization of tumors. The advent of combined imag-
ing systems that allow the acquisition of registered PET-CT
images makes feasible the fusion of functional and anatomi-
cal modalities during segmentation [1, 2]. However, research
efforts have focused more on labeling techniques in separate
modality; only a few recent studies have been devoted to the
automatic segmentation based on both modalities.
Wojak et al. [3] proposed a segmentation technique on 3-D
bimodal (PET-CT). The method uses PET data to guide the
segmentation of CT images. Ballangan et al. [4] proposed
a technique where the tumor region obtained from PET is
used as a mask to resolve a 2-component Gaussian mixture
model in the corresponding CT image. These two methods
do not make full use of PET and CT modalities. They rather

use the PET image to inform the segmentation of the CT im-
age. Han et al. [5] formulated the problem as a graph-based
segmentation. Their method consists in minimizing a binary
Markov Random Field (MRF) energy for both PET and CT
images and penalizing the segmentation difference between
the two images. However, the method requires user interac-
tion. More recently, Bagci et al. [6] presented an automated
graph-based method for simultaneously segmenting func-
tional and anatomical structures. Gribben et al. [7] performed
a multimodal segmentation by using a maximum a posteriori
Markov random field (MAP-MRF) approach. A vectorial
representation is used for CT and PET data. The voxel inten-
sities are assumed to follow a bivariate Gaussian distribution.
A 3-D Potts model is proposed as prior spatial information.
An EM algorithm is used to estimate the resulting posterior.
The problem of accurate segmentation of PET-CT images
is particularly exacerbated when target organs exhibit nat-
ural motions, such as breathing. In such situation, prior
spatio-temporal registration between the two modalities is
required [8, 9]. Spatio-temporal segmentation of coherent
4D PET-CT offer the advantage of localizing and tracking
the tumors, especially important for radiotherapy applica-
tions. Recently, Bai et al. [10] proposed a co-segmentation
of 4D CT and PET images, based on MRF including a reg-
ularization between PET and CT. Their method consists in
segmenting the CT image based on PET data as prior using a
single maximum flow optimization algorithm.
This paper proposes a fully automatic technique to label vox-
els in 4D bimodal PET-CT images. A hierarchical Bayesian
model is proposed where the bimodal data is represented as
a mixture of bivariate Poisson distributions. A 4-D Markov
Random Field prior is incorporated to enforce the spatio-
temporal correlation of voxels. An MCMC algorithm is
developed to jointly estimate the mixture model parameters
as well as classification labels of the voxels.

2. BAYESIAN FRAMEWORK

Let x be a 4-D PET-CT image (a time series of 3-D im-
ages). The value of the nth voxel xn ∈ N2 is written as a
2-component vector corresponding to the CT and PET data
xn = (xCT

n , x
PET
n )T . The image x is assumed to be com-

posed of K distinct biological tissues {C1, ..., CK}. Let z =



{z1, . . . , zN} be a hidden label variable defined such as zn =
k if xn ∈ Ck. The image segmentation problem can be for-
mulated as a maximum a posteriori (MAP) problem:

ẑ = argmax
z

p(θ, z|x)

where θ is an unknown parameter vector. This problem can
be solved in a Bayesian framework by estimating the posterior
and jointly estimating θ and z. For this purpose, the data
likelihood and priors are established in the following sections.

2.1. Data likelihood model

In [7], a bivariate-Gaussian mixture has been used to model
PET-CT bimodal data. However, the Poisson mixture model
(PMM) has been considered as more appropriate to model
the PET projections and PET reconstructed images [11], [12].
CT data is also considered to follow a mixture of Poisson
distributions [13]. Given a class k, let XCT

k and XPET
k the

random variables associated to the CT and PET data respec-
tively. Considering that each modality follows a Poisson dis-
tribution, if the two channels are independent, the joint likeli-
hood can be expressed as the product of the two distributions.
However, it has been established that PET and CT data are in-
trinsically dependent [7]. Accordingly, we propose a bivariate
Poisson model for the bimodal data to take into consideration
their dependence. The data is considered as the result of the
following process:

XCT
k = X1

k +X0
k and XPET

k = X2
k +X0

k

where Xi
k are Poisson random variables:

∀i,Xi
k ∼ P(θki )

andX0
k represents the common dependence between PET and

CT intensities. This yields the Poisson marginal distributions,

XCT
k ∼ P(θk1 + θk0 ) and XPET

k ∼ P(θk2 + θk0 )

Consequently, the bimodal PET-CT data in the class Ck
follows a bivariate Poisson distribution:

(XCT
k , XPET

k ) ∼ BP(θk1 , θk2 , θk0 )

where
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By assuming that all the observations from each channel

are independent, the likelihood can be defined as:

p(x|θ, z) =
K∏
k=1

∏
n∈Ik

p(xn|θk, zn = k) (1)

where Ik is the set of voxels belonging to class Ck and θk =
(θk1 , θ

k
2 , θ

k
0 ).

2.2. Prior distributions of θ

The matrix θ = {θki }i=0,1,2;k=1..K is the set of unknown pa-
rameters of the proposed model. In this study, the number of
classes K is assumed to be known. An inverse Gamma dis-
tribution with hyperparameters a0 and b0 is chosen as a prior
distribution for each θki

θki ∼ IG(a0, b0), ∀k = 1 . . .K,∀i = 0 . . . 2,

The hyperparameters are set to a0 = 1 and b0 = 1, leading to
a flat non-informative prior. Assuming independent mixture
parameters, the joint prior distribution for θ is written:

p(θ) =

K∏
k=1

2∏
i=0

p(θki ) (2)

2.3. Prior distribution of z

It is natural to consider that the label of a voxel is correlated
with those of its neighbors. In this study, a first order 4-D
Potts Markov random field is proposed for the prior density
of z. Each voxel is then connected to its 6 spatial neighbors
and 2 temporal neighbors (see figure 1). The prior density on

Fig. 1. 4-D neighborhood

the labels is expressed as the Potts distribution:

p(z) =
1

C(β)
exp

 N∑
n=1

∑
n′∈V(n)

βδ(zn − zn′)

 (3)

where β is the granularity coefficient, C(β) is the partition
function, δ(·) is the Kronecker function and V(·) represents
the neighborhood structure (Fig. 1).

2.4. Posterior distribution p(θ, z|x)

Considering the parameter vector θ and z independent, using
Bayes’ theorem, we can express the posterior distribution of
the vector (z,θ) as:

p (θ, z|x) ∝ p(x|θ, z)p(θ)p(z) (4)

where the likelihood p(x|θ, z) and the prior distributions
p(θ) et p(z) have been defined in (1), (2) and (3) respec-
tively.



3. HYBRID GIBBS SAMPLER

A Metropolis-within-Gibbs sampler is proposed to solve the
segmentation problem. Samples are iteratively drawn accord-
ing to the conditional densities of the posterior (4) and then
used to estimate the maximum a posteriori (MAP). The algo-
rithm (1) summarizes the proposed process. For more details
on MCMC methods, the reader is referred to [14].

Algorithm 1 Proposed Gibbs sampler
Initialisation:
− Draw θ(0) according to (2).
− Generate z(0)1 , z

(0)
2 , . . . , z

(0)
N randomly.

for t = 1, 2, . . . to T do
— Update θ —
for k = 1, 2, . . . to K do

1. Propose θk∗ ∼ T N (θk
(t−1)

, εk · I3) (see (6)).
2. Compute the acceptation ratio a (see (3.2)).
3. Draw u ∼ U(0, 1).
if (u < a) then

4. Set θk(t)
= θk

∗.
else

5. Set θk(t)
= θk

(t−1).
end if

end for
— Update z —
for n = 1, 2, . . . to N do

7. Draw zn in {1, . . . ,K} according to (5).
end for

end for

3.1. Conditional distribution p(z|θ,x)

The conditional distribution of the discrete label zn can be
expressed as:

p(zn = k|xn, θk, z−n) ∝ p(xn|θk, zn = k)p(zn|z−n) (5)

where k = 1, . . . ,K and z−n represents the vector z whose
nth element has been deleted. Because (5) defines a Markov
random field, samples are generated according to this condi-
tional distribution by randomly drawing a discrete value in the
finite set {1, . . . ,K} with probabilities (5).

3.2. Conditional distribution p(θ|z,x)

To generate samples asymptotically distributed according to
p(θ|z,x), a Metropolis-Hastings (MH) algorithm is used,
leading to a Metropolis-within-Gibbs algorithm [14, p. 317].
More precisely, θ is updated by the mean of a Random-Walk
Metropolis-Hastings (RWMH) algorithm [14, p. 245] with
the following proposal distribution:

θk
∗ ∼ T N (θk

(t−1)
, εk · I3). (6)

(a) Data (b) Model

Fig. 2. Data fit. (a) 2-D histogram of the data ; (b) Estimated
Bivariate Poisson Mixture Model

where T N refers to the trivariate normal distribution, θ(t−1)k

is the last value of the chain and the parameter εk is chosen
so the acceptation ratio tends to 1

2 , as recommended in [15].
Moreover, by considering the fact that the proposal is sym-
metrical, the acceptation ratio can be expressed as the product
of the likelihood ratio and the prior ratio:

a = min

{
1,

N∏
n:zn=k

p(xn|θk∗
, zn = k)p(θk∗

)

p(xn|θk(t−1)
, zn = k)p(θk(t−1)

)

}

where the prior p(θk) is defined in (2).

4. EXPERIMENTAL RESULTS

Experiments have been made on real chest 4-D PET-CT data,
reconstructed according to the methodology described in [8,
9]. The original PET and CT images have been obtained by a
GE Discovery ST scanner on a patient suffering from a lung
cancer. Six images have been reconstructed in each modality,
corresponding to different temporal bins in the respiratory cy-
cle. The CT images have been re-scaled by linear interpola-
tion to match the dimensions of the PET images. Finally, both
images have been registered and cropped to a (56× 91× 11)
voxels sized Region Of Interest (ROI). Results from fitting
various models to the data are presented as well as the associ-
ated labeling results.

4.1. Validation of the data model

This section reports results on how well the proposed model
fits the real data. First, figure 2 represents the 2-D histogram
of the measured data and the corresponding estimated model.
One notice that the model closely fits the data.

The goodness-of-fit of the proposed model has been as-
sess quantitatively and compared to other models from the lit-
erature. The proposed algorithm has been applied on the data
by considering mixture models of different statistical distri-
butions:

• N ×N : mixture of normal distributions for PET and CT
channels independently.



• BN : mixture of bivariate normal distributions without in-
dependence assumption.

• P × P: mixture of Poisson distributions for PET and CT
channels independently.

• BP: the proposed mixture of bivariate Poisson distribu-
tions.

The MAP values of each parameter has been measured as the
mean of 6000 generated samples of the Monte-Carlo chains,
for K = 5 classes. The measured log-likelihood, the Akaike
information criterion (AIC) as well as the Bayes information
criterion (BIC) are reported in table 1. According to the three

log-likelihood AIC BIC
N ×N −2.4485 5.5697 9.1774
BN −2.4433 5.5594 9.1672
P × P −2.4222 5.5170 9.1246
BP −2.3875 5.4476 9.0553

Table 1. log-likelihood (×106), AIC (×106) and BIC (×106)
for each mixture model.

criteria, the proposed bivariate Poisson mixture fits better the
data, although all four models provide interesting fits. It is
particularly interesting to notice that the two Poisson mixture
models have better scores than the two normal mixture mod-
els, although the normal models have more parameters mak-
ing them more flexible. Moreover, the relative advantage of
the bivariate Poisson over the univariate Poisson model con-
firms the dependence assumption.

4.2. Segmentation results

Figure 3 presents the original PET (Fig.3.a) and CT (Fig.3.b)
images as well as the results of the separate segmentation by
the univariate Poisson mixture applied to PET (Fig.3.c) and
CT (Fig.3.d), respectively. The PET results show anatomi-
cally incoherent classes due to the coarse resolution and lack
of anatomical information. In the CT image, misclassifica-
tions are visible (different tissues associated to same classes).
For instance, background pixels and the tumor are inaccu-
rately associated to the same class.

Figures (3.e) to (3.h) report the labeling results obtained
by the four models described in section 4.1. It is visually
obvious that the segmentation results of both bivariate and
univariate Poisson distributions are better than those of the
normal distributions. The shapes of the classes are in better
accordance with anatomical structures. And interestingly, re-
gions showing different functional activities (see the original
PET image) have distinct labels. This indicates the benefit of
PET and CT bimodal data fusion during segmentation.
Moreover, the proposed bivariate Poisson model (BP) gives
better results (Fig.3.h) than the univariate Poisson (P × P)
(Fig.3.g). One can notice that voxels corresponding to the

(a) PET data (b) CT data

(c) Poisson on PET only (d) Poisson on CT only

(e) N ×N (f) BN

(g) P × P (h) BP

Fig. 3. Segmentation results. (a) Original PET channel ; (b)
Original CT channel ; (c) Segmentation of the PET channel
only, based on a mixture of Poisson model ; (d) Segmentation
of the CT channel only, based on a mixture of Poisson model
; (e to h) Segmentation of both channels based on the 4 tested
mixture models

bones (see the white zones in the original CT image) belong
to the same class in the result of the BP segmentation (3.h).
This indicates that the level of dependence between the PET
and CT data is significant and correctly taken into considera-
tion by the BP model. Another remarkable result is the single
class that surrounds the tumor in both BP and (P × P) seg-
mentations. This class seems to represent the partial volume
effect that produces statistics distinct from the tumor and the
healthy tissues.



4.3. Discussion

The goodness of fit reported in table (1) showed that the uni-
variate and especially bivariate Poisson models fit slightly
better the data than the univariate and bivariate normal mix-
tures. However, the two Poisson models give better segmen-
tation results and the bivariate Poisson mixture shows the im-
portance of considering the dependence of the two modalities
(PET and CT) when doing bimodal joint segmentation.
One might consider the poor segmentation of the normal mix-
tures paradoxical with their good enough fit to the data. This
can be explained by the flexibility of the normal distribu-
tion given the number of its parameters compared to Poisson.
This flexibility leads to faster estimation of fitting parameters
without being able to find optimal labels. This behavior sug-
gests that the labels space has not been fully explored by the
Markov chains for the normal based models, favoring the es-
timation of the model parameters, at the expense of the labels.

5. CONCLUSION AND FUTURE WORK

This paper proposed a bivariate Poisson mixture model to
perform multimodal data fusion of PET and CT images. A hi-
erarchical Bayesian model has been elaborated that includes
a 4-D Potts-Markov field to consider spatial and temporal
coherence in a time series of PET-CT images. An MCMC al-
gorithm based on Metropolis-within-Gibbs sampler has been
developed to jointly estimate the parameters of the Bayesian
model while segmenting distinct tissues. In addition to the
proposed model, this work brings two contributions con-
sisting in performing statistical multimodal data fusion, and
spatio-temporal dynamic images segmentation. The method
has been applied to real four-dimensional PET-CT images of
a patient having a lung tumor. The proposed model shows a
good goodness of fit compared to three other models. The
segmentation results obtained are visually in excellent con-
cordance with anatomical structures while delineating the
tumor.

The proposed framework can be generalized to other
modalities and other statistical models can be integrated.
Future work will consider distributions that handle hetero-
geneity within tumors in PET data [16]. In addition, more
reliable sampling methods [17] will be investigated to con-
sider the unsymmetrical role of the parameters θ1, θ2 and θ0,
which slows the exploration of the posterior distribution.
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