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Abstract—The general approach in modular robots is to hand
design the morphology, and then optimizes the controller of the
structure for a given task. Evolutionary robotics has proposed
evolution as a bio-inspired approach to overcome the limitations
of human intuition in designing robots; theoretically, the resulting
structures will be better adapted. In this work, we propose an
approach based on cooperative co-evolutionary genetic algorithms
to design configurations and controllers for homogenous robots
implicitly to support self-reconfiguration, The algorithm intro-
duces some elements to make finding solutions easier and faster
by co-evolving two populations; a population of motions sequence
to search a sequence of movements that can rearrange a given
modular configuration into a new one that suits a different task
defined by its desired function and a population of homogenous
fixed topology ANNs for the controllers to perform locomotion
as a behavior evolved using genetic algorithm based on standard
deviation norm. The modular robots are evaluated in a simulation
environment implemented with NVidia physics engine; PhysX.
The experiments carried out in this work show that co-evolving
both the configuration and the controllers positively contributes
to the robot’s performance and optimizes its locomotion behavior.

Keywords—modular robots, co-evolution, controllers, artificial
neural networks, genetic algorithms, locomotion.

I. INTRODUCTION

A Modular Self-reconfigurable Robot (MSR) can be con-
sidered as a universal robot because it has the ability to simu-
late any other physical robot, simply by connecting its modules
in many different ways [1]. These modules can rearrange their
connectivity which enables the self-reconfigurable robot to
adapt its shape autonomously to suit any given task.

In order to operate in unstructured environments, robots
will need to be adaptive; they must exhibit intelligent behavior.
Evolutionary robotics, a bio-inspired method in which evolu-
tionary algorithms are employed to optimize the control system
of a robot, has been proved to overcome the limitations of
human intuition in designing control strategies for autonomous
machines [2]. However, the majority of work has only opti-
mized control strategies for a human designed or bio-inspired
robot morphology. This methodology has severe limitations:
fixing a robots morphology places limits on the kinds of actions
that the robot can perform and even if they find the optima,
the resulting robot is certainly not the best possible solution
for its task [3].

Nevertheless, nature manifests co-evolution; there is no
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distinction between a body and a brain, each doing its job.
Evolution would not produce morphology and then evolve the
controller. The solidarity of natures solutions emerges from
co-evolutionary processes, mainly to allow creatures to survive
in their environments. Co-evolution may be either cooperative
between the body and the brain, or competitive between two
species or with a species and its environment.

Modular robots are especially suitable to co-evolution.
The complexity of designing the configuration and then pro-
gramming the controller for a robot grows exponentially with
the number of used modules, and might be impossible for
a robot of thousands modules. Co-evolutionary algorithms
give us the opportunity to evolve morphology and controllers
simultaneously to suit a specific task.

II. RELATED WORK

Karl Sims [5] was a pioneer in evolving both morphology
and controller for artificial creatures. The morphology and the
neural systems are both genetically specified, and the mor-
phology and behavior can adapt to each other as they evolve
simultaneously. The genotypes are represented as directed
graphs of nodes and connections. When simulated evolutions
are performed with populations of competing creatures, diverse
morphologies and gaits emerged.

Hornby and Pollack [6] used a co-evolutionary approach
to evolve robots. Elementary building blocks included bars
and actuators for morphology, encoded using L-systems and
artificial neurons for the controller. The best creatures were
used after in creating real robots.

Marbach and Ijspeert, also worked on co-evolution of
configuration and controllers for modular robots. They used
a tree based representation to encode configurations and con-
trollers for Adam [7] to develop a modular robot simulation
and evolution tool based on co-evolutionary approach. Using
modules that contain a joint and have flat connective surfaces,
body segments were connected through the joints; evolved
creatures display a wide range of locomotion strategies, often
similar to those of living organisms in nature. Furthermore,
successful individuals tend to be symmetric even though this
was not directly coded.

Auerbach and Bongard [2] evolve morphologies and con-
trol policies of simulated robots in virtual environments, mor-
phologies are composed of a number of triangular meshes that



can model arbitrary shapes and thus allow for the creation of
more complex morphologies than it is possible with cuboids
or spheres. They used Compositional Pattern Producing Net-
works (CPPNs) as a generative encoding for the purpose of
simultaneously evolving robot morphology and control. A
method is given for translating CPPNs into complete robots
including their physical topologies, sensor placements, and
neural network controllers. It is shown that this method can
evolve robots for a particular task.

Recently, Faina et al. [3], has proposed a co-evolutionary
approach for encoding, evaluating or transferring to reality
using heterogeneous modular structures with distributed con-
trol. They used a constructive evolutionary algorithm based
on tree-like representations of the morphology. The algorithm
introduces some new elements to smooth the search space and
make finding solutions quiete easier. The evaluation of the
individuals is carried out in simulations and then transferred to
real robots assembled from the modules considered. All these
issues are analyzed by means of an evolutionary design system
called EDHMoR (Evolutionary Designer of Heterogeneous
Modular Robots) that contains all the elements involved in
this process. To show evidences of the conclusions of this
work, EDHMOoR was tested over two benchmark problems in
modular robotics. The first one is focused on solving a linear
robot motion mission and the second one on a static task of
the robot (painting) that does not require displacements.

Like these previous studies, this current work also aims to
evolve robot configurations and controllers in virtual environ-
ment. Although our approach takes inspiration from these other
studies, the methods employed are distinct. The most important
distinction is the type of genomic encoding utilized and using
the cooperative co-evolution method [8] for evolving two
populations of motion sequences and distributed homogenous
neural controllers.

III. METHODS

Co-evolution can optimize the controller while developing
the structure; in this way, it adapts the controller to different
configurations of the robots. There is a high variety of shapes
and controllers that can be developed if co-evolution is em-
ployed. throughout this research, locomotion is employed as
the required task.

Our goal is to achieve a realistic simulation of homogenous
modular robots; therefore this is modular robotics and not
artificial life work. Even though we are not currently working
on a hardware prototype, we want our results to be theoretically
transferable to reality. Therefore we aim at a realistic simula-
tion using modules with six connections and seven degrees of
freedom and we evolve the configuration and controllers of the
robot using this predefined module type.

A. The proposed Modular Robot

The module has a cubic form with six connection surfaces.
The form and description are inspired from Molecubes [9].
Each module is composed of two halves with an internal
rotation axis defined by two diagonally opposite corners
and six additional rotation axes on each connection surface
(Fig. 1). Each degree of freedom has a rotational range
between [—120°, 120°]. The dimensions of these modules are
20x20x20 mm.

(a)

Fig. 1. (a). Polyhedron representing half module. (b). The proposed modular
robot.

B. Robot’s Configuration and reconfiguration

This work is based on a research done by Duthen et al.
[10], which aimed to search a sequence of movements that can
rearrange a given modular configuration into a new one that
suits a different task. The target configuration is not explicitly
specified, it is defined only by its desired function. They used
Genetic Algorithms to find the optimal sequence of movements
to reconfigure modules to suit another task.

The modular robots are chain-type and therefore a move-
ment is allowed only if it keeps the modules connectivity. The
connectivity of the robot is represented in a graphical format.
The evolved solution is a sequence of movements executed
one after another to rearrange the robots configuration.

Individuals are a sequence of movements executed one after
another to rearrange the robots configuration. Each solution
(individual) has four main attributes:

e (Code: the movement is a rotation or connection /
disconnection action.

e  Connector: that will perform the action.
e  Angle: the rotation angle, between —120° and 120°.

e  Module: identifier of the module that will realize the
action.

An initial population is generated randomly and evolved
according to the parameters in Table. I , using a standard
genetic algorithm.

The simulation environment was implemented using
PhysX, which is widely used for video games and rigid body
simulators. The results of this work were very promising
and have been tested on many configurations, but its main
shortcoming is that there were no controllers in the modules;
therefore the tested fitness function was the greatest height
possible that can be achieved by any given configuration
(Fig. 2).

TABLE L. PARAMETERS USED FOR EVOLVING CONFIGURATION’S
POPULATION.
Parameters H Value ‘
Population size 60
generations 100
Mutation rate 15%
Elite population retained 40%




Fig. 2. One of the tested configurations tried to stand on four legs to achieve
the most possible height.

We used the simulator developed in [10], and implemented
our model of ANN controllers and the co-evoltionary approach
on it and tested it using different configurations.

C. Controllers

In our work, we dot the cubic modules with distributed
and homogeneous neural controllers. We will investigate their
efficiency for locomotion based on oscillatory output from
simple ANNSs, starting with robotic bio-inspired configurations.
We will use genetic algorithms for optimizing the synaptic
weights of the ANN to produce rhythmic gaits that maximize
the covered distance by the robot for predefined number of
time steps.

We have implemented a fully connected feed-forward MLP
ANN model (Fig. 3) with three input neurons, two output
neurons, and a single hidden layer with five hidden neurons.
We have tried to keep the architecture of the ANN simple, as
we wanted to focus on how locomotion gaits will evolve using
different configurations.

e [Input neuron 1: This neuron represents the connector
information of a module; how many neighbors are
connected to this module. This neuron is fed with
input between 1 and 6.

e  Input neuron 2: This neuron is fed with the previous
actuator value between —120° and 120°. These values
are chosen based on many experiments.

e  [Input neuron 3: This neuron is fed with module’s
identification; there is no specific interval to this
value because it changes according to the number of
modules in different configurations.

e  Qutput neuron I: represents the actuation angle and
this value is scaled to be between —120° and 120°.

e  Output neuron 2: generates the identification of the
connector that will execute the actuation, this move-
ment will be performed only if the connector is
connected.

Each module in a given configuration has its own ANN
model whose output neuron is connected to the module’s
actuators, making it a distributed controller. Furthermore, all
the modules in any given configuration have the same ANN
architecture, with exactly the same topology and weight vector,
making it a homogeneous distributed controller. Although all
the modules have an identical neural model, the difference in

Input neurons:

1.  Number of connected
conmnectors

2. Theprevious angle
3. Id of module

QOutput neurons

1. Movement angle
2.  Id of connector

Fig. 3. A schematic of the proposed neural architecture.

their behavior emerges based on the difference in the input fed
to their respective ANN at any given cycle.

With CPGs (Central Pattern Generators), if the configura-
tion of the modular robotic changes, the coupling of the CPGs
have to be changed to adapt to the new configuration, which
might be a drawback if the controller is implemented on self-
reconfigurable modular robots [11]. The proposed ANN model
has the potential to be extended for controlling more than just
locomotion for different configurations, along with the ability
to increase the complexity of the hidden layer of the ANN
architecture.

We have used the open source Neural Network library
called Flood [12] for implementing the ANN model for the
neural controller.

D. Evolving Controllers

For evolving neural controllers, we have implemented an
adjusted version of genetic algorithm. By taking this path, we
want to quickly achieve well-suited controllers for any given
configuration.

We started with a population of random individuals, and
followed the process in Fig. 4 to create new offspring. From
each generation we select the best individual and after cal-
culating its mean and standard deviation we generate a new
population based on them and finally perform mutation on
the new population to keep the diversity of individuals. The
parameters used for simulation are illustrated in Table. II.

TABLE II. PARAMETERS USED FOR EVOLVING NEURAL
CONTROLLERS.
Parameters ‘ ‘ Value
Population size 60
generations 100
Mutation rate 1/Size of genome
Number of time-steps 100
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Fig. 4. Process of evolving controllers.

IV. COOPERATIVE CO-EVOLUTION

To evolve configuration and controllers, we will implement
an adjusted version of a cooperative co-evolutionary algorithm
presented by Mitchell Potter and Kenneth De Jong [8] to
achieve well-suited configurations and controllers for any given
task and environment.

Since this is preliminary work, we tested our approach in
a plain environment; we started the simulation by creating the
environment, and then generating two initial populations of
random individuals of motions sequence and ANN controllers.
To co-evolve these two populations we followed this process
for each population (controllers / motions sequence) (Fig. 5):

While (not end of population)

e Create a robot;

e Choose a random individual from the other popula-
tion;
e  Execute the motions sequence to reconfigure the robot;

e generate the movements for n time steps using the
ANN controllers;

e Evaluate the two individuals and assign their fitness
(the covered distance by the robot in cm), only if it is
bigger than its current fitness (if it has been already

evaluated).
C
. v
Motion’s ANN’s
sequence Controller
. Dbopulation Population
N4

-

Fig. 5. Process of co-evolving motion’s sequence and controllers populations.

After that, we generate new two populations and evaluate
them using the same process, untill we reach the fixed number
of generation.

V. EXPERIMENTS AND RESULTS

We experimentally tested our approach on three different
configurations; we wanted to test the validity of the proposed
model for evolving more adapted configurations and producing
locomotive oscillations.

For each configuration, we run two tests; the first one by
implementing ANN controllers on a fixed configuration, for n
time steps, inputs were fed to the ANN of each module, outputs
were calculated, then after scaling the output value appropri-
ately to the range of the actuator, each module performed its
actuation and finally we calculate the covered distance. For the
second test, we implement the co-evolutionary approach, and
evaluated it by the travelled distance as well.

A conducted comparison between the fixed configurations
and the ones evolved using co-evolution will be done to show
the differences between the two methods.

A. Experiment 1

For the first test, we chose the most simple and intuitive
form which is the worm-like configuration, the modular robots
consists of five modules and we run the simulation twice;
evolving just locomotion (Fig. 6.a), co-evolving configuration
and controllers (Fig. 6.b).

Fig. 6.c plots the covered distance by the best performing
individuals of the two approaches; evolving locomotion (20.96
cm) and co-evolving both controllers and configuration (54.48
cm). The neural controller was able converge and settle into
a stable oscillation pattern and into a stable locomotion gait
within a very short period of time for both approaches.

(a) (6)

Distance (em)
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Fig. 6. (a). 5 modules’ robot (b). A co-evolved configuration (c). Distance
covered by the best performing individuals of each approach.
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Fig. 7. (a). 7 modules’ robot (b). A co-evolved configuration (c). Distance
covered by the best performing individuals of each approach.

We validated the same model by evolving seven module
linear configurations (Fig. 7.a, Fig. 7.b), which produced a
locomotion gait with a covered distance of 37.45 cm for just
locomotion, and for co-evolution 65.48 cm (Fig. 7.c).

B. Experiment 2

For the second test, we implemented our model on a four-
legged configuration, Fig. 8.a, 8.b, under the same conditions
of the first test.

The results as shown in Fig. 8.c which plots the covered
distance by the best performing individuals of the two ap-
proaches; evolving locomotion (42.56 cm) and co-evolving
both controllers and configuration (69.64 cm). As it was ob-
served in the first experiment the controller quickly converged
and settled into stable oscillation pattern.

C. Experiment 3

As for the last experiment, we tested the model on a
spiderlike configuration, Fig. 9.a, Fig. 9.b, and we ran tests
according to the evolution process.

Fig. 9.c plots the difference between the covered distances
by the best individual of each approach; the one of evolved
locomotion was able to travel for 31.80 cm, and the other one
covered a distance 94.58 cm. There was a quick converge and
settle into stable different oscillation patterns for both tests.

VI. DISCUSSION

All evolved individuals reconfigure at least by changing an
angle between two modules, but not all of them were able to
move significantly far from the starting position.

Simulations time varies between the different configura-
tions, and gradually increases with the complexity of the
configuration.
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Fig. 8. a. Four-legged robot (16 modules). b. A co-evolved configuration c.
Distance covered by the best performing individuals of each approach.
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Fig. 9. (a). Spider-like robot (17 modules) (b). A co-evolved configuration

(c). Distance covered by the best performing individuals of each approach.

There are several important observations based on the
results:

e  The neural controller is able to quickly converge and
settle into a stable oscillation pattern and with that
into a stable locomotion gait for all the configurations,
using simple ANN model to investigate the minimal



neural architecture required for locomotion. However,
some produced locomotion strategies for complex con-
figurations could cover large distances but a detailed
examination showed that they received high impacts
from the ground. These high impacts are not tolerable
by the real hardware of modular robots, since the
modules might break.

e A variety of locomotion gaits were evolved, while a
few of them seem as if they were symmetrical.

e  The instability of evolution curves is due to the used
process in generating new populations. This instability
does not prevent the production of more effective
gaits, since the evolution curve is gradually increasing.

e By implementing a cooperative co-evolutionary ap-
proach we show that evolving both morphology and
control realize increasingly better behaviors for modu-
lar robots and increases the rate of adaptation by cov-
ering larger distance. This was demonstrated for three
different configurations which travelled the maximum
distance (Fig. 10).

e Sometimes minor changes in configuration generate
better behaviors, which does prove that modular robots
have their own characteristics which must be taken
into consideration while designing robots.

e  The characteristics of the proposed modular robot re-
strict the configurations’ search space, which prevents
the evolution of better performing configurations.

VII. CONCLUSION AND PERSPECTIVES

The work has only just started but it has already proved to
be promising in producing locomotive oscillations for differ-
ent configurations and in co-evolving more adapted modular
robots. To the best of our knowledge, this is the first work that
implicitly co-evolves configuration and controllers of homoge-
nous chain-type robots to support self-reconfiguration even
though the proposed modular robot imposes much contraints
on the configurations’ search space.

For the next first step, we would like to focus on evolving
both the topology and the weight of the ANN using the

Performance of bestindividuals
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NEAT methodology; to both increase the complexity of the
architecture for adaptive locomotion and other behaviors in
different robotic configurations and to evolve modular robots
in more complex environments rather than simple ones, to
achieve more accurate results on multiple levels and approach
real life scenarios. Secondly, To propose an hybrid modular
robot model that support self-reconfiguration to evolve robots
for different tasks.
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