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In a foam, soap films meet by three in the liquid micro channels, called Plateau borders, which
contain most of the liquid of the foam. We investigated here the transverse vibration of a single
Plateau border isolated on a rigid frame. We measured and we computed numerically and analyti-
cally the propagation of a transverse pulse along the channel in the 20-2000 Hz frequency range. The
dispersion relation shows different scaling regimes, which provide information on the role of inertial,
elastic and viscous forces acting on the Plateau border: at low frequency, the dispersion relation is
dominated by the vibration of the deformed soap films and the displacement of the surrounding air,
and the Plateau border behaves as the free border of a soap film. The inertia of the liquid in the
Plateau border plays a role at high frequency, the critical frequency separating the low frequency
and the high frequency regimes being a decreasing function of the width R of the Plateau border.

I. INTRODUCTION

Liquid foams are dispersions of gas bubbles in a liq-
uid matrix stabilized by surfactants. Due to their dipha-
sic nature, the macroscopic behavior of liquid foams is
complex and closely linked to the structure of the liquid
skeleton [1]. The acoustic propagation in liquid foams
displays such a complex behavior: acoustic resonances
and several regimes of propagation have been recently
evidenced [2, 3], and interpreted as a result of the me-
chanical coupling between the constitutive elements of
the foam skeleton: soap films, liquid channels and the air
[3]. However, in order to model the acoustic propagation
in a foam, systematic studies of this local coupling must
be conducted to identify the local origin of inertia, elas-
ticity and dissipation in a vibrating foam, and the relative
roles of the physical characteristics of the bulk liquid, of
the gas and of the gas-liquid interfaces.

The liquid network of a foam has a well-defined struc-
ture. The liquid is contained predominantly in the
Plateau border (PB) channels, which form the edges of

FIG. 1: (a) Sketch of a Plateau border at the junction between
three soap films (side view). (b) Cross section (top view) of the
PB at equilibrium: R is both the thickness and the radius of
curvature of the PB. (c) Experimental setup (see description
in the text).

the faces of the polyhedral bubbles (Fig. 1(a)): faces
(soap films) meet threefold at 120 degrees in PBs. Each
PB is terminated by two vertices in which four PBs meet
tetrahedrally [1]. PBs can be isolated on rigid frames,
and vibrated by an external forcing in order to study the
foam vibration at the scale of the bubbles. Besson et al.
[4] have studied the case of an annular PB at the junc-
tion between two adhesive bubbles; they have evidenced
a frequency-dependent modulation of the contact angles
between the bubbles during a periodical oscillation of the
distances between the bubbles. Hutzler et al. [5] have
considered the growth of a linear PB, freshly created dur-
ing a topological rearrangement. They have observed a
free oscillation of the length of the PB, and suggested that
the frequency is fixed by the inertia of the displaced air,
as described for example in [6]. However, no systematic
study of the coupled vibration of a soap film connected
to a PB has been performed yet.

Several works currently attempt to rationalize the cou-
pled dynamics of the air, the soap films and the PB. These
studies differ by the geometry investigated and by the
amplitude of the forcing. Seiwert et al. investigate the
case of an annular PB bounding a horizontal soap film
suspended to two catenary films [7]. The free and forced
oscillations of the PB and the connected soap film display
a coupled dynamics where the displaced air plays a crucial
role. In this configuration and in the frequency range in-
vestigated, the soap film retains a parabolic shape during
the vibration. Cohen et al. [8] consider the case of a linear
PB, transversally vibrated with a high forcing amplitude:
they observe the modulation of the cross-sectional area of
the PB in response to the vibration.

In this letter, we consider the propagation of a trans-
verse wave along a linear PB. The PB is long enough
so that several wavelengths take place along the PB. We
measure the dispersion relation of the wave, for a small
forcing amplitude. A numerical and analytical model of
the wave propagation is developed and compared to the
experimental data. Two regimes of propagation are ev-
idenced in the frequency range 20-2000 Hz. At low fre-
quency, the dynamics is dominated by the vibration of
the adjacent soap films and the PB behaves as the free
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border of the films. At high frequency or large PB radius,
the inertia of the PB has to be taken into account. It in-
creases the wave number and lowers the phase velocity of
the wave.

II. EXPERIMENTS

A single Plateau border is created by pulling a rigid
plastic wire frame out of a soap solution. The frame
(Zometool plastic struts and balls) is made of two hor-
izontal equilateral triangles (width w = 20 cm) linked
at the vertices by vertical beams (height h = 23 cm) as
shown in Fig. 1c. In this geometry, three vertical soap
films are formed and meet at the centre of the prism to
form a PB. The soap solution is made of distilled water,
commercial dishwashing liquid (Fairy Liquid, 1 vol. %)
and glycerol (2 vol. %). The mass per unit volume of
the solution is ρl = 1003 kg m−3 and the surface tension
is γ = 30 mN m−1. At equilibrium, the PB is straight
and vertical, along the z axis. We insert into its top ver-
tex the tip of a vertical glass capillary (Fig. 1c.). The
capillary is connected to a vibrating pot, which generates
a transverse controlled vibration along the horizontal x
axis, in the plane of one of the three films meeting at the
PB. As a result of capillary forces, the vertex remains
attached to the capillary, and a transverse wave propa-
gates along the PB in the z direction. The vertical z
axis is the equilibrium position of the undeformed PB;
the tip of the capillary defines the origin z = 0. The
transverse displacement of the PB u(z, t) along the x di-
rection is recorded using a high speed camera (Phantom
V9) placed at a fixed adjustable height z, fitted with a
high-magnification objective (Navitar Zoom 6000). Fig.
2 shows the variation of the displacement u(t) of the PB
at different heights z during the propagation, where the
incident pulse is a single undulation starting at t = 0
and z = 0. The wire frame is large enough to postpone
sufficiently the arrival of the reflected pulse coming from
the soap boundaries or from the other end of the PB: we
checked that the signals presented in Fig. 2 correspond
to the incident propagating pulse alone. Soap solution
can be injected at a constant flow rate Q through the
capillary into the PB using a syringe pump (Pharmacia
Biotech P500). The flow rate Q controls the PB radius
R. We find that for Q < 3 ml/min, the variation of R(z)
is smaller than 10 % as soon as z > 2 cm.[13] The av-
erage vertical velocity of the liquid flowing in the PB is
Vz = Q/(CR2) where CR2 is the section of the PB with

C =
√

3− π/2 ' 0.161 (Fig. 1b). Vz varies between 0.09
m/s and 0.17 m/s in the range of flow rates investigated
here.

Fig. 2 shows the propagation of a transverse pulse
along the PB. The first extremum of the signal propa-
gates at a velocity of the order of 2 m s−1. However,
the deformation of the signal when z increases shows that
the propagation is dispersive. For a more precise analysis
of the dispersion, we performed Fast Fourier Transform

FIG. 2: Top: space-time diagram of the propagation of a
transverse pulse along the Plateau border, for f0 = 75 Hz,
Q = 2 ml/min and z = 3 cm, z = 0 being the altitude of
the exciting capillary. The Plateau border appears in black.
The PB radius R is deduced from the thickness measurement.
The vertical black bar represents 1 mm and the horizontal bar
represents 5 ms. Bottom: propagation of the transverse pulse
along the Plateau border each color corresponds to a different
altitude below the capillary.

(FFT) of the temporal signal. The FFTs of two signals
at two different heights z and z+ ∆z, are compared, and
the phase shift φ and the amplitude ratio T are extracted
for each angular frequency ω. Each mode of propagation
of the transverse wave along the PB is written

uq(t, z) = u0 e
i(ωt−qz). (1)

The real and imaginary parts of the complex wave
number are then given by <(q) = φ/∆z and =(q) =
− ln(T )/∆z. We checked that the measurements are in-
dependent of ∆z, as soon as z > 2 cm. Each signal al-
lowed us to explore a given range of frequencies, around
the central frequency of the pulse. Several acquisitions
at different central frequencies were made to broaden the
frequency range of the dispersion relation.

The imaginary part of the wave vector (not shown here)
lies between 10 and 25 m−1 in the whole investigated
frequency range. This is at least one order of magnitude
lower than <(q), therefore =(q) will be neglected in the
following, and the wave vector q ' <(q) is considered as
a real number. The dispersion relation of the transverse
wave along the PB is shown in Fig. 3. The parameters
used in the experiments are shown in Table I. At low
frequency or for small R, all the data collapse on the same
master curve, described by a power law q ∝ ω2/3. This
law corresponds to the dispersion relation of a transverse
wave on a soap film, and suggests that the PB behaves as
the free border of a soap film. At higher frequency, and
for the largest values of R, the data deviate from this
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TABLE I: Values of the parameters used in the experiments.
The flow rate Q is a control parameter. The radius R of
the PB is determined using image analysis (see Fig. 2); the
thickness e of the soap films is measured using a white light
spectrometer (IDIL Fibres optiques – USB2000). The relative
errors on R and on e are 10 %. The differences between several
values of R for the same Q remain within errors, except for Q
= 0, where the value of R depends on the time elapsed since
the PB has been formed.

Q (ml/min) 0 0 0 0 0.2 0.2
R (mm) 0.03 0.04 0.07 0.12 0.18 0.19
e (µm) 0.15 0.15 0.15 0.15 0.9 0.9
Q (ml/min) 0.5 1 1 2 2 3
R (mm) 0.27 0.41 0.44 0.53 0.60 0.72
e (µm) 1.6 2.3 2.3 2.8 2.8 2.8
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FIG. 3: Dispersion relation of the transverse wave on the
PB for different radius R. The lines correspond to Eq. (15)
without any fitting parameter. Black solid line: R = 0.03
mm, magenta dotted line : R = 0.18 mm, blue dashed line:
R = 0.27 mm and cyan solid line: R = 0.41 mm. The typical
power laws q ∼ f2/3 and q ∼ f2 are indicated on the graph.

power law; the larger the R, the smaller the frequency
separating both regimes: In this regime, the inertia of
the PB starts to play a role. Simultaneously, we observed
that in this regime the amplitude of vibration suddenly
decreases. Hence, only the start of this regime can be
measured with our experimental technique.

III. MODEL: PROBLEM STATEMENT

The PB is the meeting line between three soap films.
The vibration occurs along the x direction, in the plane
of one soap film, and causes an out-of-plane vibration of
the other two films called film 1 and film 2 (see Fig. 4a).
Let (y1, z) be the plane of film 1, and x1 the axis normal
to this plane, which forms an angle of π/3 with the x axis
(Fig. 4). Similarly, (y2, z) is the plane of film 2, and x2
the axis normal to this plane. (x1, y1, z) and (x2, y2, z)
define two direct orthonormal frames, tilted one with re-

FIG. 4: (a) Side view of the PB and notations (see text).
(b) Top view of the three soap films meeting at the PB. The
dashed lines correspond to the PB at equilibrium; the solid
lines correspond to the deformed PB. Each soap film pulls on
the PB with a force per unit surface equal to 2γ.

spect to another so that the three axes x, x1 and −x2
form relative angles of π/3. The transverse displacements
of film 1 and film 2 along x1 and x2 are respectively de-
noted by ζ1 and ζ2. Since (x, z) is a plane of symmetry of
the system, ζ2(y2, z) = −ζ1(y1, z) when y2 = y1. In the
following, we describe the deformation of film 1.

The transverse deformation of film 1 and film 2 leads
locally to a deviation from 2π/3 of the angles at the

PB. Therefore, a net restoring force ~f due to the surface
tension acts on the PB to bring it back to equilibrium
(Fig. 4b) [9]. Moreover, the transverse vibration of the
films causes a displacement of the surrounding air [6, 10].
Therefore, the propagation of the transverse wave on the
PB results from the coupling between the vibration of the
PB, of the films and of the surrounding air.

Three main simplifications are assumed in the follow-
ing model. First, the role of the longitudinal deformations
of the films is neglected and only the transverse deforma-
tions are considered. It means that the films are infinitely
compressible, with an instantaneous response. In other
words, the role of the interfacial visco-elasticity is ne-
glected compared to the role of the surface tension forces.
Second, we assume that the problem is linear, therefore
the Fourier modes are not coupled. Third, we consider
that the soap film has an effective moving mass which
takes into account the mass of liquid and the mass of the
displaced surrounding air, according to the dispersion re-
lation of an infinite soap film [10]. This assumption is
valid for a periodic oscillation [14]. The model developed
below thus describes the propagation of a single mode
of oscillation. Finally, the amplitude of the deformation
remains small compared to the wavelength. Under these
assumptions, the dispersion relation can be computed as
follows.

Considering ζ1(y1, z, t) = ζ1(y1, z)e
iωt, the equation of

the transverse motion of soap film 1 writes:

mf ζ̈1 = 2γ (∂2y1 + ∂2z ) ζ1 (2)
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FIG. 5: Numerical resolution of Eqs. (5) and (6) with f =
200 Hz, Ny = Nz = 800 and dy = dz = 0.5 mm (displayed
region is ny, nz ≤ 200). Left: R = 0.03 mm i.e. α/k = 0.006;
right: R = 0.27 mm i.e. α/k = 0.43.

where mf = mf(ω) is the effective mass per unit surface

area of the film (see below). The restoring force ~f exerted
by the soap films pulling on the PB is along the x axis
(fig. 4b) and its amplitude is f = 2 γ (1− 2 cos a) =

2 γ [1− 2 cos(π/3 + ε)] ' 2
√

3 γ ε in the limit of small
deformations, where 2a is the relative angle between film
1 and film 2, and ε is the local deviation of film 1 from
equilibrium: ε = ∂y1ζ1(y1 = 0) [9]. The inertia of the
PB is of the form µ(∂t + Vz∂z)∂tu, where µ = CρlR2 is
the linear mass of the PB and Vz is the average vertical
liquid velocity in the PB. Considering a single mode of
propagation (Eq. (1)), the inertia becomes −µω(ω−qVz).
In the experiments, Vz is 10 to 50 times smaller than ω/q,
hence Vz will be neglected in the following. Therefore, the
equation of the transverse motion of the PB reads:

µ ü = 2
√

3 γ ∂y1ζ1|y1=0. (3)

Since the PB lies at the edge y1 = 0 of the soap film, the
following boundary condition must be satifsfied:

ζ1(y1 = 0, z, t) =

√
3

2
u(z, t). (4)

Eqs. (2) and (3) are the two equations of motion of the
system. They are solved below considering a continuous
forcing in z = 0: u(0, t) = u0e

iωt. They must be com-
plemented with suitable boundary conditions to reflect
the exact geometry of the forcing. Solving the whole sys-
tem analytically requires some assumptions concerning
the geometry of wave (plane or circular) propagating on
the soap film. Because the forcing by the capillary is al-
most point-like, it should generate a circular wave on an
infinite soap film. Here, the presence of an inertial PB
at the edge of the film deforms the wave front. There-
fore no simple approximation can be infered concerning
the geometry of the wave front. Consequently, we first
compute numerically the solutions of Eqs. (2) and (3).

IV. NUMERICAL SIMULATIONS

Soap film 1 is approximated by a rectangle and dis-
cretized in directions y1 and z with Ny and Nz in-

tervals of length dy and dz respectively. The trans-
verse displacement is represented by a complex ampli-
tude, ζ1(y1, z, t) = ζ0Any,nz

eiωt, where y1 = nydy and
z = nzdz, with 0 ≤ ny ≤ Ny and 0 ≤ nz ≤ Nz.

The imposed motion of the capillary is taken into ac-
count by setting a unit amplitude A0,0 = A0,1 = 1. Below
the capillary, the PB sits at the boundary node ny = 0
at every altitude z = nzdz for nz > 1.

The upper boundary at nz = 0 is assumed to be a free
boundary, i.e. with a vanishing film slope ∂zζ1|z=0 = 0,
which can be expressed as Any,1 − Any,0 = 0, or more

precisely − 3
2Any,0 + 2Any,1 − 1

2Any,2 = 0, for all ny > 0.
Eq. (2) translates into:

Any−1,nz
+Any+1,nz

d2y
+
Any,nz−1 +Any,nz+1

d2z

+

[
k2 − 2

d2y
− 2

d2z

]
Any,nz = 0 (5)

with k2 = ω2mf/(2γ), and Eq. (3) into αA|y1=0 =
∂y1A|y1=0, which becomes:(

α− 3

2dy

)
A0,nz +

2

dy
A1,nz −

1

2dy
A2,nz = 0 (6)

with α = µω2/(3γ). The parameter α comes directly
from the first term of the left-hand part of Eq. (3). It
depends on the section of the PB and on the frequency:
this term controls the inertia of the PB. Similarly, the
parameter k2 describes the inertia of the soap film. The
results of the computation, conducted using free software
GNU octave, are shown in Fig. 5 for two values of α.

In the simulations, the forcing is a continuous oscilla-
tion. To minimize wave reflections at the edges of the
film, we included an imaginary part kd of k as described
in ref. [10] to reflect the viscous dissipation in the air.
We also took large samples (Fig 5 shows a region of size
200×200 points out of 800×800). At the remote edges
(ny = Ny and nz = Nz), we chose a fixed (vanishing)
displacement, i.e. A = 0. Although kd/|k| � 1, we
checked that these boundary conditions do not to affect
the system substantially in the region of interest.

Because the forcing is different in the numerical sim-
ulations (continuous oscillation) and in the experiments
(single burst), the exact value of the transverse amplitude
cannot be compared. However, the numerical calculation
can be used to visualize the mapping of the deformation
in the film. Fig. 5 shows that, for α = 0 (the edge of the
film is free), the wave fronts are circular, as expected for a
quasi-punctual perturbation. For α 6= 0, the circular pat-
tern is deformed close to the PB: a second wave pattern
appears, confined along the PB, when the inertia of the
PB is finite. In the following, we shall consider that the
transverse deformation of the soap film is a linear super-
position of a circular wave and of a plane wave localized
close to the PB. Under those conditions, an analytical
model can be derived.
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V. ANALYTICAL MODEL

In this section, we solve analytically Eqs. (2) and (3)
considering the propagation of a single mode given by
Eq. (1) on the PB. We consider two kinds of waves prop-
agating on the soap film: a circular wave and a plane
wave.

A. Circular wave

Eq. (3) writes, in polar coordinates

µ ü = 2
√

3 γ
1

r
∂θζ1|θ=π/2 (7)

where r is the radial distance from the tip of the capillary,
and θ is the polar angle from the y1 axis. In the case
of a circular wave, the deformation ζ1(r, θ, t) is radial,
therefore ∂θζ1 = 0, and consequently µü = 0: only in the
case of an infinitely thin PB or of a vanishing frequency
the wave propagating in the soap film remains circular.
If µ ü 6= 0, the presence of the PB must deform a circular
wave in the vicinity of the PB, as illustrated in Fig. 5.

B. Plane wave

We assume here a plane wave propagating in the soap
film and along the PB:

ζ1(y1, z, t) = ζ0 e
i(ωt−qy1y1−qzz) (8)

where qy1 and qz are the components of the wave vector
in the soap film. Using Eq. (8), Eqs. (4) and (1) lead to

q = qz and ζ0 = (
√

3/2)u0 and Eqs. (2) and (3) lead to:

mf

2γ
ω2 − q2y1 − q

2 = 0 and
µ

3γ
ω2 = i qy1 . (9)

Therefore:

q2 =
mf

2γ
ω2 +

(
µ

3γ

)2

ω4. (10)

Eqs (9) and (10) can be simplified:

qy1 = −iα (11)

q2 = k2 + α2, (12)

where α, and k are defined after Eq. (6). Fig. 6a
shows that the amplitude of the transverse displacement
decreases exponentially in the y1 direction of the soap
film, with a decreasing rate equal to α, as predicted by
Eq. (11). Eq. (12) gives the (implicit, see below) dis-
persion relation of a transverse plane wave on the PB.
It is plotted in Fig. 6b, which shows that the data ex-
tracted from the numerical simulations, performed with
dy = dz = 0.5mm (circles), 0.2mm (squares) and 0.1mm
(triangles), are very well described by the Eq. (12).

FIG. 6: Comparison between the numerical and the analyt-
ical dispersion relation, for R = 0.18 mm (triangles), R =
0.27 mm (squares) and R = 0.41 mm (circles). (a) Amplitude
of the transverse displacement in the y1 direction. The am-
plitude decreases exponentially, with a damping factor equal
to α (insert), as predicted by Eq. (11). (b) Wavenumber q
given by the numerical simulations (dots) and by Eq. (10)
with µ = CρlR2 (solid lines) as a function of f . Insert: mas-
ter curve displaying q/k versus α/k in numerical simulations
(dots) and according to Eq. (12) (solid line).

Those comparisons validate the analytical model of a lo-
calized plane wave propagating along the PB. Therefore,
this analytical model is used in the following to describe
the experimental data.

VI. COMPARISON BETWEEN THE MODEL
AND THE EXPERIMENTAL DATA

In order to be compared to the experimental dispersion
relation presented in Fig. 3, Eq. (12) must be expressed
as a function of measurable parameters. The effective
displaced mass per unit surface area mf = mf(ω) is im-
plicitly given by the dispersion relation of a transverse
wave on an infinite soap film [10]:

ω2

k2
=

2γ

mf
=

2γ

ρle+ 2ρa/k
. (13)

where k(ω) is the real part of the wave number of the
transverse wave on the soap film and ρa = 1.2 kg m−3

is the mass per unit volume of the surrounding air.
We introduce the notations k0 = (ρaω

2/γ)1/3 and δ =
ρle/(6ρa). Eq. (13) reads k3/k30 = 1 + 3kδ and has one
real positive solution:

k/k0 =

[
1+
√

1−4(k0δ)3

2

]1/3
+

[
1−
√

1−4(k0δ)3

2

]1/3
. (14)

In our experimental conditions, k0 δ � 1 and Eq. (14)
can be developed to the first order in k0 δ. Therefore, eq.
(12) becomes q '

√
k20 + 2k30 δ + α2, that is:

q '

√(
ρa
γ

)2/3

ω4/3 +
ρle

3γ
ω2 +

(
ρlCR2

3γ

)2

ω4. (15)

The comparison between Eq. (15) and the experimental
data is shown in Fig. 3. The data are very well described
by the analytical dispersion relation without any fitting
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parameter. The low frequency or small R regime is de-
scribed by a power law q ' k0 ∝ ω2/3. In this regime, the
dispersion relation of the PB is the same as the dispersion
relation of transverse waves on a soap film, the inertia be-
ing dominated by the displaced air: the PB behaves as the
free border of a vibrating soap film. When the frequency
or the PB radius increases, the inertia of the liquid in the
PB affects the vibration of the soap film edge. Asymptot-
ically, the high frequency or large R regime is dominated
by the inertia of the liquid in the PB, according to Eq.
(15): q ' α ∝ R2ω2. We do not capture this asymptotic
regime experimentally because of the sudden decrease of
the amplitude of vibration of the PB at high frequency.
However we clearly observe a crossover between the low
frequency q ∝ ω2/3 behavior and another regime with a
higher exponent at higher frequencies, and the crossover
frequency is lower for higher R.

VII. DISCUSSION AND CONCLUSION

By mixing experiments, numerical and analytical anal-
ysis, we have shown that the propagation of a transverse
displacement wave along a linear vertical PB isolated on a
frame exhibits two regimes of propagation, in the range 20
Hz - 2000 Hz: a low-frequency regime, dominated by the
vibration of the adjacent soap films, and a high-frequency
regime, where the inertia of the PB dominates. The fre-
quency of transition between those two regimes is a de-
creasing function of the PB cross-section.

Several points have to be discussed. Firstly, the ver-
tical liquid velocity has been neglected here. This liquid
advection should decrease q and have larger effect for the
larger flow rate. It might explain that in Fig. 3, the
data corresponding to the highest R seem to saturate,
and have a value lower than expected.

Secondly, the vanishing vibration amplitude, which
limits the accessible frequency range at high frequency
or large PB is not fully understood. We suspect that it
could be due to a low transmission in the intermediate
region between the end of the capillary and the PB: in
this region, the PB is strongly deformed along a length
Lt over which it transits from a positive to a constant
negative curvature. If Lt is larger than some attenuation
length La, the signal would be totally damped in the PB.
Lt should increase with the liquid flow rate Q and La a
should decrease with an increasing frequency f ; therefore
the signal could be totally damped if Q is large enough
(i.e. for large R) or if f is large. However, rationalization
of the dissipation in the transient region would be neces-
sary for a complete understanding of this effect, which is
beyond the scope of the present letter.

Finally, the attenuation of the signal along the PB is
too small to be measurable with the technique presented
here. In the future, we plan to investigate the resonances
curves of the vibrating wave on the PB as a function of
the frequency, to measure the imaginary part of the wave
vector of the PB. Changing the physicochemical compo-
sition of the surfactant solution and of the gas should
allow us to systematically describe the contributions
of the dissipation in the bulk liquid, in the deformable
interfaces and in the gas. We believe that this study
could bring new elements to address the more general
problem of the dissipation in liquid foams, which is an
important and currently active subject of research (see
for example the reviews [11, 12] and references therein).
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