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Abstract

Fast delivery is one of the most popular services in e-commerce retail. It consists in
shipping the items ordered on-line in short times. Customer orders in this segment
come with deadlines, and respecting this latter is pivotal to ensure a high service
quality. The most time-consuming process in the warehouse is order picking. It
consists in regrouping orders into batches, assigning those batches to order pickers,
sequencing the batches assigned to each order picker such that the orders deadlines are
satisfied, and the picking time is minimized. To speed up the order picking operations,
e-commerce warehouses implement new logistical practices. In this paper, we study the
impact of splitting the orders (assigning the orderlines of an order to multiple pickers).
We thus generalize the integrated orders batching, batch scheduling, and picker routing
problem by allowing the orders splitting and propose a route first-schedule second
heuristic to solve the problem. In the routing phase, the heuristic divides the orders
into clusters and constructs the picking tours that retrieve the orderlines of each cluster
using a split-based procedure. In the scheduling phase, the constructed tours are
assigned to pickers such that the orders deadlines are satisfied using a constraint
programming formulation. On a publicly available benchmark, we compare our results
against a state-of-the-art iterated local search algorithm designed for the non-splitting
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version of the problem. Results show that splitting the customer orders using our
algorithm reduces the picking time by 30% on average with a maximum reduction of
60%.

1 Introduction

Warehousing involves four main activities: receiving, storing, picking, and
shipping goods ([36]). Among all these activities, order picking is unanimously
considered as the most time-consuming and costly process. It can induce up to
65% of all labor activities ([11]) and 70% of the total operating costs ([18]). Two
classes of systems can be distinguished to process the picking activities in the
warehouses: manual picking systems and automated picking systems ([41]). In
this paper, we focus on the manual picking system, more precisely a picker-to-
part system, which is the most common in practice ([9]). It is characterized by
(human) order pickers starting from depot, walking or driving trolley through
aisles to pick stock-keeping units (SKUs) from storage locations, and coming
back to depot. Pickers are directed using picking lists where the orderlines to
retrieve in a single tour and their respective storage locations are itemized. A
picking list can be composed of orderlines of a single order (pick by order) or
orderlines of multiple orders (pick by batch).

In the last decades, a new retail model known as “e-commerce” has grown up
significantly throughout the world. Canadian e-commerce retailers for instance
sold for almost 40 billion $ of goods in 2018, accounting for 8.1% of the Canadian
total retail sales. It represents a 9.1% increase over the previous year (36.6 billion
$ in 2017), and it is expected to reach 56.6 billion $ in 2023. Similar growth rates
can be observed on a more global scale, where business to costumer e-commerce
sales have generated almost 995 billion in 2015, and are expected to exceed 1.5
trillion $ in 2018 ([34]).

The demand pattern in e-commerce warehouses is characterized by many but
small, time critical customer orders to process ([2]). Shifting toward e-commerce
requires combining a wide range of planning problems in integrated approaches.
The recent survey of [40] classifies the main tactical and operational planning
problems that occur in e-commerce warehousing and shows the correlation be-
tween these problems. In this study, we focus on the integration of 3 planning
problems: regrouping the customer orders into pick lists (order batching), de-
signing the tour that retrieves each pick list (picker routing), and assigning the
picking lists to a set of pickers and scheduling the lists assigned to each picker
(picker scheduling) in order to optimize a performance criterion.

A very large part of the picking literature assumes the integrity of the cus-
tomer orders when performing the picking process, i.e. the orderlines of cus-
tomer order have to be retrieved in a single tour. It is generally argued by the
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fact that splitting the customer orders over several batches will increase human
errors or causes unacceptable packing efforts ([32], [38], [16]). Nonetheless, new
sorting technologies and logistical techniques have emerged in the e-commerce
warehouses making the order accumulation and packing procedure more effi-
cient. For instance, some warehouses use fully automated conveyors that sort
the orderlines according to the belt ([3]). This mechanism, although it is effi-
cient, requires high investment costs. Other warehouses of business-to-customer
(B2C) segment (Amazon Europe, Zalando) apply a manual consolidation and
packing process based on the so-called “put walls” ([4]). Figure 1 schematizes
this process. A logistical worker, named “putter” receives orderlines from the
picking area and stores each orderline in a dedicated shelf of the put wall. On
the other side of the put wall, another logistical worker named “packer” retrieves
each completed order, packs it, and sends it to the shipping area. A put-to-light
mechanism is used to guide the putter and packer in their tasks. This system is
particularly relevant in the e-commerce context since the characteristics of the
orders (small sizes and tight shipping times) avoid the overload of the put wall.

Fig. 1: Consolidation and packing schema using put walls ([4])

We aim through this work to demonstrate the benefit of splitting the customer
orders when organizing the picking process in e-commerce warehouses. We thus
generalize the integrated order batching, batching routing, and picker schedul-
ing problem of [39] by allowing the splitting of customer orders and propose a
route first-schedule second (RFSS) heuristic to solve the problem. In the com-
putational experiments, we show that reductions up to 60% of the total order
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picking time are obtained by splitting the customer orders using our heuristic
compared to the ILS of [39] for the non-splitting version of the problem.

The remainder of this paper is organized as follows: in Section 2, we formally
describe the orderline batching, batch routing, and picker scheduling problem.
A MILP formulation of the problem is given in appendix. Section 3 comprises
a literature review regarding the traditionnal and e-commerce warehouses. Sec-
tion 4 presents a route first-schedule second heuristic to solve the problem. In
Section 5, the numerical results of our heuristic are presented and compared with
the results of [39] to demonstrate the benefits of splitting the customer orders.
Finally, section 6 provides conclusions and outlines research perspectives.

2 Problem Statement

We tackle an order picking problem in a warehouse of e-commerce segment
characterized by:

• A low-level picker-to-part system: in which order pickers start from
a central depot, travel through picking and cross-aisles to pick SKUs,
and return to the depot. The SKUs are stored in shelves (storage loca-
tions) directly accessible to the pickers without using a fork truck. The
cross-aisles divide the picking area into blocks and the part of a picking
aisle located between two cross-aisles is named subaisle. Figure 2 sketches
an example of a warehouse with a 2-block layout. The “pick locations”
represent the stop-points from where the pickers retrieve the SKUs. A set
of storage locations is associated with each pick location (red arrow in the
figure 2). We assume that the aisles are large enough to ignore the effect
of pickers blocking.

• Time-critical picking orders: Online retailers promise to customers
short time frames between the order “click” and the “knock” on the door
announcing its delivery. For instance, Amazon offers to its customers to
deliver the orders requested online in the next day or even in the same
day in some regions. Satisfying this promise is a main factor for the brand
management of the retailer. We thus assume that deadlines are associated
with the orders. The deadline of each order is assumed to be fixed in an
upper stream level according to the departure time of the vehicle that
delivers this order.

• Small orders: the orders in e-commerce segment consist of few orderlines.
For instance, the average number of orderlines in the Amazon warehouse
in Germany is 1.6 SKUs ([42]).

• Mixed-shelves storage policy: In e-commerce warehouses, a common
and efficient practice is to break up unit-load of an SKU into small quan-
tities that are scattered through multiple shelves in the warehouse. This
storage policy is referred to as mixed-shelves storage policy. It increases
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the probability to find SKUs of a pick list close by irrespective of the posi-
tion in the warehouse ([2]). However, the picking location of each orderline
has to be selected when assuming this storage policy. To keep the problem
tractable, we assume in our problem definition that the picking location
of each orderline is selected in an upperstream level (i.e. a fixed picking
location is associated with each orderline such as storage constraints are
satisfied).

Fig. 2: Two blocks warehouse layout

Formally, we consider a complete and undirected graph G = (V, E) that mod-
els the warehouse layout, where V = {0} ∪ L is the node set and E = {(i, j) ∈
E : i, j ∈ V, i < j} the edge set. In V, node 0 represents the depot while the
set L represents the pick locations where the pickers stop to collect the SKUs
around them. A non-negative weight ti,j is associated with each edge (i, j), and
it represents the travel time between nodes i and j. We assume that the pickers
travel at a constant speed, and hence the travel times are proportional to the
travel distances.

Let O be the set of customer orders. Each order o ∈ O consists of few
orderlines Mo that must be retrieved before a deadline do. An orderline m
corresponds to a particular SKU and has two associated parameters: a weight
qm and a dedicated pick location lm ∈ L from where to retrieve it.

The customer orders are processed by a set of homogeneous order pickers K
equipped with carts of capacity W . Each picker performs picking tours in the
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warehouse starting and ending at the depot. For each tour v, a set of orderlines
Mv is retrieved from their corresponding pick locations in a predefined sequence.
The processing time pv of a tour v is defined as the sum of:

• a fixed setup time βs to prepare the tour;

• a fixed search and pick time βp for each picked orderline;

• the travel time to walk between depot and the first pick location plus the
travel time between the pick locations according to the sequence visit plus
the travel time between the last pick location and depot.

We aim at constructing a picking plan Π = {Πk}{k∈K}, where Πk corresponds
to a set of sequenced picking tours that must be performed by the picker k during
his/her work-shift. Π must satisfy the following constraints:

1. Each order is completely picked before its deadline. Note that since the
splitting of a customer order is allowed, the completion time of an order
o equals the completion time of the last tour that processes an orderline
in Mo

2. The charge of each tour v, which is equal to the cumulative weight of its
orderlines Mv, does not exceed the cart capacity

3. The tours assigned to each picker do not overlap. Let consider v and v′

two consecutive tours assigned to the picker k, with etv the completion
time of v and stv′ the start time of v′, then: stv′ ≥ etv

4. Each tour starts and ends at the depot

Finally, Π is an optimal planning schedule of our problem if it minimizes the
total processing time (order picking time) function Z.

Z(Π) =
∑
k∈K

∑
v∈Πk

pv (1)

3 litterature review

In traditional warehouses, few number of customer orders are processed daily
and each one is made of a multiple number of orderlines and high quantities
[21]. To optimize the picking operations in this context, the picking literature
focuses on two main problems depending on the nature of the picking lists:
When assuming a pick by order system, the arising optimization problem is
named the picker routing problem and can be stated as follows: given a set
of storage locations to visit in a pick list, what sequence of visits minimizes
the total processing time. This problem is modeled in the literature as a TSP
problem in a complete and symmetric graph in which the nodes represent depot
and storage locations. The arc weights of the graph are fixed by computing the
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shortest travel time between each pair of nodes. The picker routing problem is
also modeled as a steiner-TSP problem in a rectangular warehouse (see figure
4 of [33]). A collection of exact and heuristic methods exists to solve this prob-
lem. [29] introduce a fundamental theorem that limits the number of possible
configurations for traversing an aisle in an optimal solution to 6 configurations.
Furthermore, they propose a dynamic programming algorithm (DP) that solves
the problem for a particular warehouse layout called one block layout warehouse.
Their work served as a basis for several extentions in the picker routing litter-
ature: In [31], an extention to warehouses with two blocks layout is proposed;
In [23], the algorithm is adapted to support an arbitrary starting and ending
point; In [26], the problem based on warehouses with two blocks, parralel but
non equal-sized subaisles is solved; Finaly, in [24], the DP of [29] is extended to
the so-called chevron warehouses which were proposed by [25] as a design op-
tion for unit-load warehouses with single-command operations. [27] propose two
exact methods to solve the picker routing problem: a steiner-TSP formulation
reinforced with warehouse-based valid inequalities and an adaptation of a dy-
namic programming algorithm for solving the rectilinear-TSP inspired from [7].
They showed that the dynamic programming algorithm outperforms (in CPU
time) the efficient TSP solver “CONCORDE” for instances with less than 11
blocks. In practice, the solutions returned by exact formulations can be rejected
by managers since they produce “illogical” picking tours and hence difficult to
memorize ([33]). The pickers are more familiar with the so-called “routing
strategies”. Routing strategies are warehouse-based heuristics that model in-
tuitive human practices such as: traversing entirely any aisle (except the last
one) that contains at least one orderline to pick (S-shape strategy); entering
and exiting each aisle that contains an orderline to pick from the same point
(return strategy)... A comparative study between those methods and the effi-
cient LKH (Lin-Kernighan-Helsgaun) heuristic for TSP problems can be found
in [35]. The picker routing problem was extended by [22] for AGV-assisted order
picking systems where a set of customer orders has to be picked in a single tour.
The orders have to be sequenced and all the pick locations of an order o must
be visited before processing the next order o+ 1 of the sequence. They propose
an adaptation of the DP of [29] to solve the special case when orders sequence is
assumed to be fixed and imbed it within a greedy heuristic to solve the general
problem.

When the customer orders are medium-sized and the pickers are equipped
with relatively high-capacity carts, a pick by batch system in which orders are
regrouped into batches is set up to decrease the processing times. The order
batching problem (OBP) seeks to regroup a given set of orders into batches
that satisfy a maximum capacity and construct the tour associated to each
batch in order to minimize the total processing time. This problem is proven
strongly NP-hard for more than two orders by batch ([12]). The picking litera-
ture proposes a rich body of exact and heuristic methods to solve the OBP. The
constructive heuristics can be classified into 3 categories: “priority heuristics”
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in which the orders are sorted according to a sorting rule and then assigned
greedily to empty batches according to an assignment rule; “seed heuristics”
in which each batch is first initialized with seed order, then filled according to
order congruency rule; and “saving heuristics” in which the Clarke & Wright
heuristic of [8] for the VRP is adapted to the OBP. [15] gives a detailed review
of the several heuristics and metaheuristics developed for the OBP. Most of the
existing work assumes a fixed routing strategy for computing the processing
time of each batch. To study the potential reduction of total processing time
that can be achieved by implementing more sophisticated routing methods, [33]
propose an iterated local search algorithm embedded with several heuristics to
compute the tours. They conclude that average savings of 25% can be obtained
when the tours are computed using near-optimal method.

In e-commerce warehouses, the 3 planning problems presented in the intro-
duction section (order batching, picker routing and picker scheduling) have to
be considered in an integrated fashion. In [14], due dates are associated with
the customer order and the total tardiness of customer orders is minimized. To
solve the problem, two metaheuristics based on variable neighborhood descent
(VND) and Variable neighborhood search (VNS) starting with the same initial
solution are proposed. The neighborhood structures embedded in the methods
are classified in two groups: the first group changes the position of a complete
batch or swaps two batches in the current solution and the second group moves
a customer order to another batch or swaps two customer orders of two dis-
tinct batches. Experiments show that even with higher computational efforts,
the VNS is outperformed by the VND. Furthermore, the neighborhood struc-
tures improve significantly (40% on average) the initial solution generated by a
priority-rule based heuristic. In [32], the same problem is solved with a meta-
heuristic based on VND. Their work can be outlined in three main contributions.
First, a new and efficient heuristic able to reduce the total processing time of the
initial solution of [14] by up to 63%. Second, a new neighborhood that breaks
up a complete batch and assigns its orders to other batches is introduced and
represents the largest proportion in the total tardiness reduction. Finally, the
tour that processes each batch is recomputed in each local optimum solution
using the LKH-heuristic leading to a massive reduction of the total tardiness
(up to 95%). From a managerial point of view, the customers satisfaction is the
main performance factor in e-commerce retail. Managers in that field prefer to
increase the labor insensitivity of the picking process (number of order pickers)
instead of accepting solutions that may violate the shipping deadlines of some
orders. Given this observation, [39] introduce the integrated batching, routing
and scheduling problem with hard time constraints and total processing time
minimization. An Iterative Local Search heuristic (ILS) is developed to solve
the problem and applied to a spare part e-commerce warehouse. Experiment
results report savings of 16.9% on average by using the ILS algorithm compared
to the priority-based rule usually applied in the warehouse.
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A limited number of articles in the literature allows the splitting of customer
orders in the picking process. Among these exceptions, [6] (resp. [5]) proposes
a heuristic (resp. exact formulation) for solving a variant of the order batching
problem in a men’s ready-to-wear warehouse named HappyChic. In their prob-
lem definition, capacitated boxes are used to pick the customer orders. Since
the orders are large, they generally cannot be regrouped in a single box. The
problem is thus to find which customer orders to split into a limited number of
boxes and regroup the boxes into batches in order to minimize the total pro-
cessing time. Note that due to safety considerations related to the warehouse
layout, the processing time of each batch is computed using a fixed routing
strategy. Furthermore, some managerial restrictions impose to consider a min-
imum volume constraint on boxes. [37] study an integrated order batching,
batch routing, and picker scheduling problem with orders splitting. However,
since they assume a single order picker, the assignment of batches to pickers
is not considered. Their objective function to minimize is defined as a linear
combination of the total processing time and the orders earliness and tardi-
ness. To solve the problem, they propose a multiple-Genetic-Algorithm. Their
computational experiments were devoted to study the impact of simultaneously
considering the distinct terms of the objective function instead of considering
them one by one. To the best of our knowledge, no approach in the litterature
studies the impact of splitting the customer order in e-commerce warehouses
where a set of small and time critical customer orders has to be picked by a set
of order pickers operating simultanoeusly.

4 Route first-Schedule second heuristic

We propose in this section a matheuristic to tackle the problem. Algo-
rithm 1 describes the general structure of our approach. It is composed of
two phases: routing phase (lines 1-5) and scheduling phase (line 6). The rout-
ing phase regroups the customer orders into clusters and constructs a set of
picking tours for each cluster of orders. The clusters are built using the proce-
dure constructClusters(O, γ). This procedure assembles greedily the or-
ders that have close deadlines. To build the picking tours associated with
each cluster, we ignore the time constraints to obtain a variant of the or-
der batching problem in which we allow the orders splitting when we con-
struct the picking tours (batches). This problem is solved using the procedure
orderlinesBatching-SplitBasedProcedure(Oc). This latter starts by com-
puting a giant tour that starts from depot, retrieves all orderlines of the current
cluster of orders, and comes back to depot. It then uses an adaptation of the
split procedure by [28] to optimally extract a set Πc of tours that satisfy the
capacity constraints from the giant tour. It is worth noting that our method
differs from the classical version of the split algorithm in the computation of
the arcs’ costs in the auxiliary graph as will be explained in Subsection 4.1.2.
The tours generated for each cluster are added to the solution Π. After find-
ing the tours of all clusters, the routing phase ends and the scheduling phase
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starts. In this phase, we model the picking tours in Π as jobs and the pickers
in K as machines. Each job has a processing time (the processing time of its
associated tour) and a deadline (the shortest deadline of the orders processed
in its associated tour). We thus assign the picking tours in Π to the order pick-
ers and schedule the tours assigned to each order picker solving a constraint
programming model. Note that since the processing times of the jobs (i.e., the
constructed tours) are fixed during the routing phase, the scheduling problem
does not have an objective function (it is a decision problem). In the remainder
of this section, we describe the main algorithmic components.

Algorithm 1 Matheuristic: the general structure

Require: G,O,K, γ
1: C ← constructClusters(O, γ)
2: for Oc ∈ C do
3: Πc ← orderlinesBatching-splitProcedure(Oc)
4: Π← Π ∪Πc

5: end for
6: s∗ ← toursScheduling (Π,K)
7: return s∗

4.1 Routing phase

4.1.1 Order clustering

Algorithm 2 gives the pseudo-code of the procedure constructClusters(O, γ).
The procedure is based on a maximum capacity of a cluster W cluster = γ ·K ·W ,
with γ ≥ 1 being a parameter of the algorithm. First, the customer orders in
O are sorted in increasing order of their deadlines. Next, the clusters are con-
structed greedily one at a time. Starting from an empty cluster, the procedure
adds orders to the cluster while there is slack on the capacity constraint. If
adding an order o violates the maximum cluster capacity, we close the current
cluster and open a new empty cluster. The process is repeated until all customer
orders are assigned to a cluster. Note that the value of parameter γ impacts the
feasibility and the quality of the final solution. Indeed, setting γ to a large value
leads to a small set of large clusters (i.e. clusters with a large number of order-
lines). From such set of clusters, the solution to the orderline batching problems
would probably contain better tours in terms of the objective function but may
lead to an infeasible final solution. Indeed, since this resolution ignores the
deadlines of the customer orders, the orderlines that have close deadlines may
be spread across too many tours, compared to the number of pickers. Therefore,
they may be impossible to schedule their picking before the deadline.

4.1.2 Orderline Batching

LetMc be the set of orderlines of the customer orders in cluster c. The order-
line batching problem seeks to regroupMc into a set Πc of batches (tours) that
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Algorithm 2 constructClusters(O, γ)

1: C = ∅, w = 0, c = 0, Oc = ∅
2: sort O according to the earliest deadline rule.
3: for o← 1 to O do
4: while (w ≤ γ ·K ·W ) do
5: Oc ← Oc ∪ {o}
6: w ← w + wo

7: end while
8: C ← C ∪ Oc

9: c← c+ 1
10: Oc = ∅
11: w ← 0
12: end for
13: return C

satisfies the cart capacity and minimizes the total processing time. To perform
this task, the procedure orderlinesBatching-SplitBasedProcedure(Oc) starts
by computing a giant tour that retrieves all the orderlines inMc using the LKH,
an efficient heuristic for the TSP. According to a comprehensive computational
experiment conducted by [35], LKH produces near-optimal solutions for the
picker routing problem (i.e. solutions with an average 0.1% deviation with re-
spect to the optimal solution).

LKH returns a giant tour to pick all orderlines in Mc, we denote mc
i the or-

derline index at the ith position in the giant tour (∀i ∈ {1, . . . , |Mc|}mc
i ∈Mc).

The procedure orderlinesBatching-SplitBasedProcedure(Oc) then aims to
solve a specific shortest path problem in an auxiliary direct and acyclic graph
Gc = {Vc,Ac} where Vc = {mc

0,m
c
1, . . . ,m

c
|Mc|} is the node set and Ac the

arc set. The node mc
0 ∈ Vc is a dummy node while {mc

1,m
c
2, . . . ,m

c
|Mc|} rep-

resents the orderlines of the giant tour. The arc set Ac is defined as Ac =
{(mc

i ,m
c
i′) ∀i, i′ ∈ Mc/i < i′} and as each arc (mc

i ,m
c
i′) ∈ Ac models a fea-

sible picking tour v(i,i′) that starts from the depot, retrieves the orderlines
(mc

i+1,m
c
i+2, . . . ,m

c
i′) and comes back to the depot. A cost p̃(mc

i ,m
c
i′ )

is as-

sociated with each arc (mc
i ,m

c
i′), and it represents the processing time of the

tour v(mc
i ,m

c
i′ )

. The classic version of the split algorithm computes the travel
time of the tour v(mc

i ,m
c
i′ )

by assuming that the nodes between mc
i+1 and mc

i′

are visited according to their associated sequence in the graph (direct arc com-
putation). To improve this version, we adopt a different approach. As per the
observation of [35], combining a warehouse-based routing strategy and the best
improvement 2-opt operator leads to high-quality solutions and negligible com-
putational times for the picker routing problem. We decided to reevaluate the
travel time of each arc by using a combined heuristic + 2-opt operator proce-
dure. Combined heuristic is a hybrid routing strategy that combines S-shape
routing strategy and return routing strategy. An algorithmic description of the
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combined heuristic can be found in [30]. Note that we observed in preliminary
tests that the travel time of a tour v(mc

i ,m
c
i′ )

returned by the direct arc compu-
tation may outperform the reevaluated travel time in very rare cases. There-
fore, the procedure that computes the travel time of each tour v(mc

i ,m
c
i′ )

(noted

Compute-Travel-Time(mc
i ,m

c
i′)) selects the best value between the direct arc

computation version and the reevaluated version.

Algorithm 3 orderlinesBatching-SplitBasedProcedure(Oc)

1: Vc ← compute giant tour using the LKH heuristic
2: t̃0 = 0
3: for i← 1 to |Vc| do
4: t̃mc

i
=∞

5: Pmc
i

= −1
6: end for
7: for (i← 0 to |Vc| − 1) do
8: i′ ← i+ 1
9: load← 0

10: while (i′ ≤ |Vc| and load+ wmc
i′
≤W ) do

11: load = load+ wmc
i′

12: p̃(mc
i ,m

c
i′ )
← βs + βp · (i′ − i)+ Compute-Travel-Time(Gc,mc

i ,m
c
i′)

13: if t̃mc
i

+ p̃(mc
i ,m

c
i′ )
< t̃i′ then

14: t̃mc
i′

= t̃mc
i

+ p̃(mc
i ,m

c
i′ )

15: Pmc
i′

= mc
i

16: end if
17: i′ = i′ + 1
18: end while
19: end for
20: Construct Πc from the labels
21: return Πc

To find the optimal splitting of the giant tour into several feasible tours,
the split procedure aims to find the shortest path from mc

0 to mc
|Mc| in Gc.

Algorithm 3 describes the whole procedure based on a label setting algorithm.
A label (t̃mc

i
, Pmc

i
) is associated to each node mc

i , t̃mc
i

is the value of a path from

mc
0 to mc

i and Pmc
i

is the predecessor node from which t̃mc
i

has been determined.
After computing the giant tour, the labels are initialized. Then two nested loops
update the labels. The main loop traverses the nodes from mc

0 to mc
|Mc|−1. At

each iteration i of the main loop, the inner loop explores all the arcs (the routes)
that share the same tail node mc

i and satisfy the cart capacity. For each feasible
arc (mc

i ,m
c
i′), p̃(mc

i ,m
c
i′ )

is computed and the label of the head node is updated
using the bellman optimality principle. The picking tours in Πc are finally
constructed by a backward pass through the predecessor labels and starting by
the label (t̃mc

|Mc|
, Pmc

|Mc|
).
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Fig. 3: Split-based procedure: graphical example

Figure (3) depicts an example of the splitting procedure for a cluster of orders
composed of 2 orders, the first one consists of 3 orderlines and the second one
consists of 2 orderlines. The cart capacity is 2 orderlines. The path represented
by the orange lines shows the optimal TSP-like tour to retrieve all the orderlines.
Furthermore, the red, blue, and green paths show the optimal picking tours
associated with the red, blue, and green arcs of the optimal path in the auxiliary
graph.

4.2 Scheduling phase

The second phase problem is a variant of the identical parallel machine
scheduling problem with deadlines and without objective function (decision
problem). Each tour v ∈ Π represents a job to schedule on one of the K
machines (the pickers). To tackle the problem, we adopt a constraint program-
ming (CP) approach. Constraint programming has been applied successfully to
a variety of scheduling problems such as: manufacturing, computer and network
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scheduling, transportation,etc.[19, 13, 1, 17].

Fig. 4: Representation of interval variable xv

For the sake of brevity we do not present our CP formulation here, but the
interested reader can find it on Appendix C. To implement and solve our model,
we exploit the scheduling capabilities of CP Optimizer (CPO). In particular, we
use interval variables, sequence variables, and global constraints. The CP model
re-written using CPO objects reads:

Parameters

d̃v Deadline of a tour v (d̃v = mino∈Ov do)

Variables

yk,v Optional interval variable when tour v is assigned to
picker k with duration pv and domain

{[0, pv), [1, pv + 1), . . . , [d̃v − pv, d̃v)}
xv Interval variable associated with the tour v (not optional)
Zk = {yk,1, . . . , yk,|Π|} Set of optional interval variables (sequence variable) that

models the sequenced tours of picker k

Tab. 1: Notations used in the CP formulation
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Alternative(xv, {y1,v, . . . , yK,v}) ∀v ∈ Π (2)

NoOverlap(Zk) ∀k ∈ K (3)

Interval variables are a powerful tool for modelling scheduling problems. They
embed several attributes of a job such as start time, end time, and processing
time in a single decision variable ([20]). Figure (4) depicts a representation
of an interval variable xv for a picking tour v. The processing time of tour
v defines the size of its associated interval variable. The time interval (start
time, completion time) of tour v is fixed by assigning values to the attributes
“start” and “end” of the interval variable. Since the value “end” is bounded by
the tour deadline, the domain of an interval variable associated with tour v is
defined by the discrete set {[0, pv), [1, pv + 1) . . . , [d̃v − pv, d̃v)}. One feature of
an interval variable is that it can be optional. In this case, an empty decision is
added to its domain to model the case where the interval variable is absent in
the schedule. We use this feature to model the assignment of picking tour v to
picker k (variables yk,v). We also use sequence variable Zk to order the interval
variables assigned to each picker k.

Constraints (2) are alternative constraints. They force each tour v to be
assigned to exactly one picker. It works as follows: for a given v, if xv is
present (which is always the case since xv is not optional) then exactly one of
the elements of {y1,v, . . . , yK,v} will be present in the final schedule. Constraints
(3) prevent the overlapping of interval variables in each sequence variable Zk.
If the problem is unfeasible then no solution is returned.

5 Computational experiments

The computational experiments aim to show the benefits of splitting the cus-
tomer orders when building the picking routes. We thus test our heuristic
(RFSS) over the data set used in [39] and compare our results with the results
of their ILS heuristic. The instances are described in section 5.1. Then, the
benefits of recomputing the arc costs of the split graph is showed in section 5.3.
Next, parameter tuning and sensitivity analysis are discussed in section 5.2.
Finally, the benefits of splitting the customer orders is shown in section 5.4.

All computations were performed on a 64-bit laptop equipped with an intel
core i7-8550U CPU (1.80 GHz), 16 gigabytes main memory, running on Win-
dows 10. Our RFSS heuristic is coded in C++ (visual studio 2019), using IBM
ILOG CP Optimizer 12.8 to solve the constraint programming problems. Af-
ter preliminary experiments, we fixed a time limit of 30 s for the constraint
programming solver and assume that our algorithm returns infeasible solution
if the constraint programming solver reaches the time limit without finding a
feasible schedule of the picking tours. Finally, note that the computations in
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[39] were performed on an Intel Xeon Processor E5 − 2680 (2.8 GHz) using a
single thread.

5.1 Test problem instances

The data set generated by [39] is referred to as Set-VG. The data represent a
2-block warehouse layout. Storage locations are homogeneous and assumed to
be 1.3 m long and 0.9 m wide. Each picking aisle is 3 m wide. The distance
between two adjacent picking aisles is thus set to 4.8 m. The depot is located in
the front of the leftmost aisle and the distance between the depot and the closest
picking point is 15.65 m (12 m+3.65 m). The two blocks are separated by 6 m.
Figure 5 sketches out all these metrics. Each picker travels at a constant speed
of 1 m · s−1 and needs 10 s to identify and pick each orderline. Furthermore,
180 s are required to prepare each tour.

Fig. 5: Warehouse floor in Set-VG

In order to cover multiple warehouses scenarios, six factors (warehouse layout,
storage policy, cart capacity, order structure, deadline distribution) have been
varied during the instances generation process, with three levels for each factor.
For the warehouse layout, the number of subaisles and storage locations per
subaisle is varied resulting in small warehouses (SW) with 12 subaisles and 60
storage locations in each subaisle, medium warehouses (MW) with 24 subaisles
and 120 storage locations in each subaisle, and large warehouses (LW) with 36
subaisles and 180 storage locations in each subaisle. The assignment of SKUs to
storage locations is done using random (Rand), within-aisle (WA), and across-
aisle storage (AA) policies. WA and AA policies are class-based storage policies
where the picking area is divided into 3 classes (A,B,C). Class A includes 1

6 of all
SKUs with the highest order frequency (60%) whereas classes B and C include
1
3 and 1

2 of SKUs with order frequencies of 30% and 10% respectively. All the



5 Computational experiments 17

orderlines are assumed to have the same weight. The cart capacity is limited
to 15, 30, or 45 orderlines, depending on the instance. Similarly, the number of
orders is fixed to 100, 200 or 300. For each order o, the number of orderlines
|Mo| is computed using the following formula: min(W, bExp(β) + 0.5c), with
Exp(β) an exponential distribution with mean β = 8

3 for 300 orders, β = 4 for
200 orders, and β = 8 for 100 orders. The planning horizon is set to 4 h and
the deadlines are generated using a uniform distribution (Uni), a progressive
distribution (Prog), and a degressive distribution (Deg). Using the progres-
sive (resp. degressive) distribution, the highest proportion of orders has to be
retrieved at the beginning (resp. at the end) of the planning horizon. A com-
bination of the above-mentioned parameters results in 243 problem classes. 30
instances are generated for each problem class resulting in 7290 single instances.
The number of pickers varies between instances and is fixed using the following
regression equation: K(i) = d1.20(0.254M + 0.006OL+ 0.072W + 1.383Deg)e
with M the number of aisles, OL the total number of orderlines of instance
(i), W the capacity of the cart, and Deg representing the degressive distribu-
tion. The coefficients of the equation are obtained using a regression analysis
on a set of 30 instances randomly selected from test-VG. Note that test-VG

is a set of 243 generated test instances, each one of them corresponds to a dis-
tinct problem class. The number of pickers K(i) of each selected instance (i)
is computed as the smallest value of K that enables the ILS heuristic of [39]
to return a feasible solution in terms of the the deadline constraints (i.e. for
K(i) − 1, the ILS heursitc of [39] returns a solution with positive tardiness).
Note that the number of pickers of each instance obtained by the regression
equation is increased by 20% to ensure a feasible solution for each instance
(i.e. enough pickers to pick all orderlines in time). For more details about the
data set generation, please refer to [39]. The benchmark is publicly available at
https://www.uhasselt.be/Datasets-and-results.

5.2 Parameter tunning and sensitivity analysis

We study in this section the impact of parameter γ on the solution feasibility,
the solution quality, and the computational time of our RFSS heuristic. Recall
that since the number of pickers for each instance is fixed, the maximum weight
of a cluster of orders is proportional to γ (see section 4.1.2). For instance, as-
sume that γ = 3. If we assume that the tours constructed from a cluster of
orders should be executed in a relatively small time window and the workload is
uniformly balanced between the pickers, then each cluster (except the last one)
contains enough orders for constructing at least the three next tours of each
picker. Firstly, we execute the RFSS heuristic over Set-VG data set by setting γ
to the following values (1.5, 1.8, 2.0, 2.5, 2.8, 3.0, 4.0, best), where the value best
corresponds to a parallel multi-start version of our heuristic in which we run our
algorithm for each γ ∈ {1.5, 1.8, 2.0, 2.5, 2.8, 3.0, 4.0} and store the best feasible
solution found. Table 2 reports the total number of unsolved instances for each
parameter value and Figure 6 gives the proportion of best solutions found for
each γ ∈ {1.5, 1.8, 2.0, 2.5, 2.8, 3.0, 4.0}. Second, we remove all the instances for
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which the algorithm returns an infeasible solution for a given value of γ (1515)
and study the average order picking time and CPU time for each parameter
value on the remaining instances (5775). The main results are reported in Fig-
ure 7.

γ # of unsolved instances

1.5 0
1.8 0
2.0 0
2.5 1
2.8 4
3.0 56
4.0 1514
best 0

Tab. 2: Number of unsolved in-
stances per parameter
value

Fig. 6: Distribution of best solutions per param-
eter value

Fig. 7: Impact of parameter γ on the performance of the RFSS heuristic on the
selected set of instances

From table 2, we observe that setting γ ≤ 2 leads to feasible solutions for
all the 7290 instances. Infeasible solutions start to appear when γ = 2.5 and
the number of infeasible instances increases exponentially with the increase of
γ. Those results were expected, since the batching procedure ignores the order
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deadlines when generating the picking tours. Thus, short-but-incoherent picking
tours are produced when the clusters are too large. It follows that the constraint
programming procedure is unable to produce a feasible final solution with those
tours. However, we observe that our algorithm was able to find feasible solutions
for almost all instances when 2 < γ ≤ 3 and for 79.2% of instances even when
γ = 4. Hence, we conclude that even by assembling the orders into few-but-
large clusters and ignoring the deadlines during the construction of the picking
tours, our algorithm is able to return a feasible (and high-quality) solution for
a considerable proportion of instances. This result gives an indication on how
splitting the customer orders reduces the effect of the order deadline constraints
during the picking process.

Figure 7 reveals that increasing γ leads to a reduction in the average or-
der picking time. This result can be explained by the fact that the procedure
constructClusters(O, γ) produces few-but-large clusters when γ is set to
high values. Consequently, the search space of the orderline batching problem
is increased, leading to the generation of more efficient picking tours. This ob-
servation is confirmed by the results in figure 6 in which we observe that 97.7%
of the best solutions are found when γ > 2, 71.9% when γ = 4. Focusing on
execution times, we observe a linear increase in the computational time with
the increase of γ. This result is not surprising, since the highest portion of the
computational time is consumed by the LKH heuristic employed to build the
giant tours of each cluster. Larger clusters therefore result more complex TSP
problems to solve during this phase of the algorithm.

Given the previous observations, we conclude that setting γ to higher values
results in better solutions (on average) but also a higher risk of finding infeasible
solutions. To extract a feasible solution with a high quality, we decided to
set γ = best (parallel multi-start version) which represents the best trade-off
between the solution feasibility and the solution quality. Furthermore, we can
observe from figure 7 that the increase of the average computational time of
RFSS when setting γ = best is negligible compared to the average computational
time of RFSS when γ = 4. Thus, in the remainder of the manuscript, we use
the parallel multi-start version of our algorithm to prove the benefits of splitting
the customer orders. We refer to this version of our algorithm as RFSS+.

5.3 Classic versus improved split

In this section, we show the impact of recomputing the cost of each arc of
the split graph on the feasibility and the quality of the final solution. We
thus execute our algorithm using the classic version of the split algorithm and
compare it with the improved version. For the sake of brevity, we refer to the
version of our algorithm that uses the classic split as RFSS+

c and keep RFSS+

for the version that uses the improved split. Table 3 presents the main results.
It reports the average picking time, the average CPU time for each version,
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RFSS+
c RFSS+ ∆CV |IV

cost(s) time(s) cost(s) time(s) mean max

Layout
SW 21387.8 29.2 21327.5 34.8 0.3% 1.8%
MW 27303.7 55.4 26986.5 55.8 1.3% 9.0%
LW 33868.5 82.2 33231.1 77.8 2.0% 13.0%

Storage policy
AA 26925.5 44.4 26774.4 85.5 0.6% 11.5%
Ran 28690.7 38.5 28172.2 43.6 1.8% 13.0%
WA 26943.8 83.9 26598.6 39.3 1.2% 12.0%

Cart capacity
15 36674.0 31.3 36382.8 37.4 0.7% 3.8%
30 25104.2 55.4 24732.4 58.6 1.3% 9.9%
45 20781.8 80.1 20429.9 72.4 1.5% 13.0%

Order structure
100 24770.0 61.5 24436.4 50.0 1.3% 12.7%
200 27999.4 56.5 27664.7 56.2 1.2% 13.0%
300 29790.6 48.8 29444.0 62.2 1.1% 12.5%

Deadline distribution
Deg 27254.7 56.9 26952.8 59.8 1.1% 12.7%
Prog 27532.2 49.6 27202.6 56.7 1.2% 12.0%
Uni 27773.1 60.2 27389.8 52.0 1.3% 13.0%

All instances 27520.0 55.6 27181.7 56.1 1.2% 13.0%

Tab. 3: Comparaison between the performance of RFSS+
c and RFSS+.

and the savings indicators (mean, max.) for each factor level. Note that if we
note costCV ([.]) the order picking time returned by RFSS+

c for instance [.] and
costIV ([.]) the order picking time returned by RFSS+ for the same instance,
then the saving ∆CV |IV ([.]) is computed with the following formula:

∆CV |IV =
costCV ([.])− costIV ([.])

costCV ([.])
(4)

Globally, we observe that recomputing the arc costs of the split graph im-
proves the total picking time by 1.2% on average, with a maximal improvement
of 13%. Notice that in very few cases (19/7290 instances), the total order pick-
ing time returned by RFSS+

c is better than the one returned by RFSS+. This
is due to the fact that for those instances, the solution returned by RFSS+

c and
the one returned by RFSS+ do not correspond to the same value of γ. Indeed,
using the improved version of split results in no feasible solutions when setting
γ to large value. Thus, the solution returned by the RFSS+ corresponds to
a medium or small value of γ. On the other hand, RFSS+

c returns feasible
solutions when setting γ to large value for those instances.
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If we analyze the improvement indicators (mean, max.) per factor, we observe
that the impact of recomputing the cost of each arc of the split graph is more
significant on the instances with a large warehouse layout, for the instances with
a random storage assignment policy, and for the instances with a cart capacity
of 45 orderlines, which globally represent the conditions of e-commerce ware-
houses. By restricting the computations for the instances of large warehouses
with a random storage assignment policy and a cart capacity of 45 orderlines
(270 instances), we found that the mean gap increases to 3.7%. For the order
structure and the deadline, we do not observe a statistically significant correla-
tion between the factor levels and the improvement indicators. Concerning the
CPU time, we observe that recomputing the arc costs of the split graph does not
generate a significant computational overhead. For some instances, we found
that RFSS+ outperforms RFSS+

c in term of CPU time. Indeed, for each of
those instances, the constraint programming solver quickly finds a feasible solu-
tion for each value of γ ∈ {1.5, 1.8, 2.0, 2.5, 2.8, 3.0, 4.0} when running RFSS+

contrary to RFSS+
c where the constraint programming solver reaches the time

limit without finding a feasible solution for some values of γ.

5.4 The benefits of splitting the customer orders

To evaluate the potential benefits of splitting the customer orders during the
picking process, we compare the solution returned by RFSS+ and the solution
returned by the state-of-the-art ILS of [39] for the non-splitting version. Table
4 summarizes the main results. The first part of the table includes the aver-
age order picking time (cost), the average computational time (time), and the
average number of created tours (T) for each method and factor level. Note
that the ILS of [39] is referred to simply as ILS. The second part of table 4
includes the mean savings, the min. savings, and the max. savings obtained
by comparing the order picking time returned by ILS and the order picking
time returned by RFSS+. Note that if we denote costILS([.]) the order picking
time returned by ILS for instance [.] and costRFSS+([.]) the order picking time
returned by RFSS+, then the saving ∆ILS|RFSS+([.]) obtained for this instance
is computed with the following formula:

∆ILS|RFSS+ =
costILS([.])− costRFSS+([.])

costILS([.])
(5)

Aditionally, non-parametric tests (test of Kruskal-Wallis, test of Dunn) are per-
formed to analyse the effect of warehouse factors on the order picking time, on
the CPU time, and on the gap ∆ILS|RFSS+ . The main results are provided in
appendix B.

5.4.1 Reduction of order picking time

We observe from table 4 that splitting the customer orders during the picking
process using our algorithm leads to a massive reduction of the order picking
time. Indeed, RFSS+ improves the solution without splitting of ILS by 30%



5 Computational experiments 22

ILS RFSS+ ∆ILS|RFSS+

cost(s) time(s) T cost(s) time(s) T mean min max

Layout
SW 26283.1 118.4 36 21327.5 34.8 36 19% 8% 30%
ML 39348.8 125.4 36 26986.5 55.8 37 32% 19% 50%
LW 53683.0 127.1 37 33231.1 77.8 37 38% 23% 60%

Storage policy
AA 37901.6 139.5 36 26774.4 85.5 37 28% 13% 51%
Ran 43788.9 117.0 37 28172.2 43.6 37 34% 14% 60%
WA 37624.4 114.3 36 26598.6 39.3 37 27% 8% 50%

Cart capacity
15 50681.0 69.9 58 36382.8 37.4 58 27% 12% 44%
30 37246.1 127.5 31 24732.4 58.6 31 31% 11% 54%
45 31387.7 173.4 21 20429.9 72.4 21 32% 8% 60%

Order structure
100 38466.9 55.1 32 24436.4 50.0 33 34% 13% 60%
200 40346.2 113.7 37 27664.7 56.2 37 29% 11% 54%
300 40501.8 202.1 40 29444.0 62.2 40 26% 8% 48%

Deadline distribution
Deg 39891.5 116.0 37 26952.8 59.8 37 30% 12% 60%
Prog 39471.5 140.6 36 27202.6 56.7 37 29% 8% 57%
Uni 39951.8 114.2 37 27389.8 52.0 37 29% 9% 57%

All instances 39771.6 123.6 36 27181.7 56.1 37 30% 8% 60%

Tab. 4: Comparison between the performance of RFSS+ and ILS.

(on average) with a minimal and maximal improvement of 8% and 60%. In
term of workload, the order picking time reduction can reach up to 11.5 h by
splitting the customer orders and it equals approximately 6 h on average. If we
normalize the results by the number of pickers, we find that the picking time
of each picker can be reduced by more than 1 h (on average) with a maximum
reduction of 1.8 h (for a planning horizon of 4 h). In practice and compared
to the scenario where the splitting order is not allowed, even if splitting orders
implies an additional time to gather all the items of a same order before finalize
the preparation of the order, the gain in the order picking time is large enough
to justify considering it in practice.

We observe that the reduction in order picking time is significantly higher for
medium and large warehouses compared to small warehouses. It is probably
due to the fact that small warehouses contain fewer storage locations leading to
a higher probability of finding orderlines of distinct orders stored in the same
(or in a nearby) storage locations. Hence, the effect of splitting the customer or-
ders is mitigated. For the storage policy, we observe that splitting the customer
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orders results on larger benefits when the SKUs are scattered in the warehouse
(random assignment policy), which is the case of B2C e-commerce warehouses
[2]. This result seems to be natural. Indeed, when we prohibit the splitting of
the customer orders, we are forced to retrieve all the orderlines of a subset of
customer order (batch of orders) in a single tour. Due to the random storage
assignment policy, those orderlines are potentially stored in remote locations
leading to long picking tours. Given a set of order batches, we can considerably
reduce the picking time of those orders when allowing the splitting of customer
orders by decomposing the order batches and assembling the nearby located
orderlines of each batch in new picking tours. For the cart capacity, we observe
a small growth on average savings with the increase of the cart capacity. An
opposite effect is observed for the order structure where increasing the number
of orders leads to a small reduction in order picking time. For the deadline dis-
tribution, no significant correlation between each factor level and its associated
indicators (min., max., mean) can be observed. Globally, we can conclude that
splitting the customer orders offers the best results for the configuration that
corresponds to realistic e-commerce warehouses (large warehouse, random stor-
age assignment policy, cart capacity of 45 orderlines). By restricting the analysis
to instances with this configuration, the average reduction in order picking time
reaches 49%.

From table 4, we also notice that RFSS+ does not reduce the number of
picking tours with respect to ILS. Given this observation, we conclude that
the savings reported do not result from a better use of the cart capacity when
splitting the customer orders. Thus, the reduction in order picking time is
essentially caused by the ability to split up a customer order over all the pickers
and assemble closely located orderlines in a single tour leading to short picking
tours.

5.4.2 Computation time analysis

We observe that although the complexity of our problem (the splitting of
customer orders is allowed) is higher than the complexity of the problem intro-
duced in [39] (the splitting of customer orders is avoided), RFSS+ is consid-
erably faster than ILS (56 s on average versus 123 s on average). Note that
this observation does not prove that our heuristic is more efficient than ILS
since the problems considered are different. However, we can conclude that the
significant savings in order picking time reported in table 4 do not come from
higher computation efforts. Note also that in the implementation of our heuris-
tic, we call the procedure orderlinesBatching-SplitBasedProcedure(Oc) for
each cluster Oc sequentially. Since the clusters Oc ∈ C are independent, sig-
nificant reductions of the computational time could be obtained by calling the
orderlinesBatching-SplitBasedProcedure(Oc) for each cluster in parallel.

The results show that the computational effort of our heuristic strongly de-
pends on the size of the warehouse. the average CPU time increases from 34.8 s
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for small warehouses to 77.6 s for large warehouses. A same (but less significant)
correlation is observed for the ILS algorithm (from 118.4 s to 127.1 s). For both
algorithms, increasing the number of aisles and storage locations reduces the so-
called “similarity of customer orders” ( i.e. the probability of finding orderlines
of multiple orders in the same pick location) which makes the total number of
pick locations in the warehouse higher and hence the TSPs more complex. For
the storage assignment policy, we observe that the average computation time on
instances that follow the “across aisles” storage policy (85.5 s) is considerably
higher than the average computation time on instances that follow the “ran-
dom” (43.6 s) and the “within aisle” (39.1 s) storage policies. The difference
is also less significant for the ILS algorithm (139.5 s for “across aisles” storage
policy and (114.3 s, 117.0 s) for the two other storage policies). We also observe
a direct and positive correlation between the cart capacity and the average com-
putation time. The increase in execution time is caused by the computation of
the routing phase. Indeed, increasing the cart capacity leads to large clusters
and hence, the computation time to execute the split procedure becomes higher.
Note that the same correlation between the cart capacity and the execution time
of the ILS algorithm is observed.

Finally, we observe that increasing the number of orders does not cause a
significant increase in the average execution time unlike the ILS algorithm
where the increase of orders number leads to much higher computational efforts.
This result can be explained by the fact that the complexity of our algorithm is
not related to the number of customer orders rather than the total number of
orderlines to pick. The number of orderlines per order decreases with the growth
of the number of orders (see section 5.1) which makes the growth in the total
number of orderlines stable. This is not the case for the ILS algorithm where
increasing the number of customer orders leads to an increase of the search space
of the algorithm as explained in [39]. For the deadline distribution, the average
execution times are uniformly distributed between the factor levels.

6 Conclusion

In this paper, we study the potential benefit of splitting the customer or-
ders into orderlines during the picking process for warehouses that process a
large number of small and time-critical orders (e-commerce warehouses). For
this purpose, we extend the integrated batching, routing, and picker scheduling
problem by allowing the orders to be splitted over several tours. The problem
consists in determining a set of picking tours by regrouping orderlines, assigning
the tours to a set of order pickers, and scheduling the tours assigned to each
picker such that the orders deadlines are satisfied and the total processing time
is minimized.

To solve the problem, we propose a route first-schedule second heuristic. In
the routing phase, we divide the set of orders into clusters and apply a modified
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version of the split algorithm to determine the tours to retrieve the orderlines
of each cluster. In the scheduling phase, we build a feasible scheduling of the
picking tours over the order pickers by solving a constraint programming prob-
lem.

To assess the benefits of splitting the customer orders, we tested our method
on a data set of 2970 instances with different orders characteristics and different
warehouse environments generated by [39]. We compared the total order pick-
ing time of the solutions delivered by our heuristic with that of the solutions
retrieved by the ILS of [39]. We found that by allowing order splitting, our
heuristic delivers a massive reduction of 30% on average and 60% in the best
case. For a planning horizon of 4 h, it represents more than a 1 h reduction of
the shift of each picker on average with a maximum reduction of 1.8 h.

Our model assumes that the picking operations and the packing operations
(i.e. assemble the picked orderlines into final customer orders ready to be
shipped) are planned sequentially. Since these operations appear to be corre-
lated, further research should focus on extending our model to an integrated ver-
sion that considers the picking and packing operations simultaneously. It would
be worthwhile to model the several sorting systems existing in the e-commerce
warehouses and compare them. Furthermore, we assume in our problem defini-
tion that the aisles are wide enought to safely neglect the effect of blocking on
the performance of the picking process. This assumption may be too strong for
small warehouses that are implanted in cities as a consequence of the growth
of e-commerce caused by the COVID pandemic. One interessting reseach per-
spective would be to extend our model by considering the picker blocking as a
hard constraint or a performance criterion.

Appendix A. Mathematical formulation

We propose a mixed-integer linear formulation (MILP) to model the problem.
The formulation is defined on a new directed graph G′ = (V ′,A′). The node set
V ′ = {0, n+ 1} ∪ L contains two copies of the depot ({0, n+ 1}) in addition to
the pick locations set L. The arc set A′ is composed of arcs from 0 to the nodes
in V ′−{0}, arcs from the nodes in V ′−{0, n+1} to n+1, and two directed arcs
between each pair of nodes in V ′−{0, n+1}. Arc (0, n+1) models an empty tour
with null processing time t0,n+1 = 0. Note that the travel time between pick
location i and the two depot copies are equivalents (t0,i = ti,n+1). Moreover,
the induced sub-graph G′[L] is complete and symmetric (ti,j = tj,i|∀i, j ∈ L).
The table 5 presents the sets, parameters and variables used in the following
MILP formulation.
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Sets

O Set of customer orders, where O = {1, . . . , o, . . . , O}
K Set of order pickers, where K = {1, . . . , k, . . . ,K}
P Set of positions, where P = {1, . . . , p, . . . , P}. Note that P represents

the maximum number of tours that can be assigned to a picker.
Mo Set of orderlines of customer orders o
L Set of storage locations, where L = {1, . . . , i, . . . , n}
G′ = (V ′,A′) Auxiliary graph with V ′ the node set and A′ the arc set

Parameters

W Capacity of the cart
qm Weight of orderline m
do Deadline of customer order o
ti,j Travel time between nodes i and j
βs Setup time of each tour
βp Search and pick time of each orderline
lm Index location of orderline m
M A sufficiently large positive number

Variables

xk,pm,o ∈ {0, 1} Equals 1 if orderline m of order o is picked by the picker k in the p-th
tour, 0 otherwise.

yk,pi,j ∈ {0, 1} Equals 1 if the picker k uses arc (i, j) in the p-th tour, 0 otherwise.

eto ∈ R+ Completion time of order o.

atk,pi ∈ R+ Arrival time of picker k to node i in the p-th tour.

Tab. 5: Notations used in the MILP formulation

min
∑
k∈K

atk,Pn+1 (6)∑
k∈K

∑
p∈P

xk,pm,o = 1 ∀o ∈ O,∀m ∈Mo (7)

∑
o∈O

∑
m∈Mo

qm · xk,pm,o ≤W ∀k ∈ K,∀p ∈ P (8)

∑
i∈L∪{0}

yk,pi,j −
∑

i∈L∪{n+1}

yk,pj,i = 0 ∀j ∈ L,∀k ∈ K,∀p ∈ P (9)

∑
i∈V′−{0}

yk,p0,i = 1 ∀k ∈ K,∀p ∈ P (10)

∑
i∈V′−{n+1}

yk,pi,n+1 = 1 ∀k ∈ K,∀p ∈ P (11)

ti,j −M(1− yk,pi,j ) ≤ atk,pj − atk,pi ∀(i, j) ∈ A′,∀k ∈ K,∀p ∈ P (12)

+ (βs)1(i=0 ∩ j 6=n+1)

+

βp ·
∑
o∈O

∑
m∈Mo|i=lm

xk,pm,o


1(i6=0)
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atk,pn+1 ≤ at
k,p+1
0 ∀k ∈ K,∀p ∈ P − {P} (13)∑

j∈L
yk,p0,j ≥

∑
j∈L

yk,p+1
0,j ∀k ∈ K,∀p ∈ P − {P} (14)

∑
j∈L∪{n+1}

yk,plm,j ≥ x
k,p
m,o ∀o ∈ O,∀m ∈Mo,∀k ∈ K,∀p ∈ P (15)

eto ≥ atk,pn+1 −M · (1− xk,pm,o) ∀o ∈ O,∀m ∈Mo,∀k ∈ K,∀p ∈ P (16)

eto ≤ do ∀o ∈ O (17)

eto ≥ 0, atk,pi ∈ {0, 1} ∀o ∈ O,∀i ∈ V ′,∀p ∈ P,∀k ∈ K (18)

xk,pm,o ∈ {0, 1}, y
k,p
i,j ∈ {0, 1} ∀o ∈ O,∀m ∈Mo,∀(i, j) ∈ A′ (19)

∀p ∈ P,∀k ∈ K

The objective function (6) is the sum of pickers completion time. Assuming
that the horizon start time equals 0, it is equivalent to minimize the total
processing time defined in equation (1) since there is no waiting times between
tours and at picking point in the optimal solution. Constraints (7) assign each
orderline to exactly one position of one picker. Constraints (8) ensure that each
tour satisfies the cart capacity. Constraints (9), (10),(11) are flow constraints for
each picker’s tour. Constraints (12) are an adaptation of the subtour elimination
constraints of Miller-Tucker-Zemlin ([10]) that use nodes arrival time variables.
Besides the travel time between the nodes of arc (i, j) in the current tour (p, k),
a setup time is added to the constraint if (i = 0) and (j 6= n+ 1). Furthermore,
the search and pick time of all orderlines retrieved from the tail of the arc
(i, j) are added to the constraint if (i 6= 0). Constraints (13) prevent overlaps
between the consecutive tours of each picker. Constraints (14) ensure that the
non-empty tours of each picker are positioned at the begenning of the sequence
to avoid the exploration of some symmetric solutions (i.e. symmetries that
result in having an empty tour at different positions between two non-empty
tours). Constraints (15) link the variable xk,pm,o and yk,pi,j : A picker k must stop at
the picking locations of all orderlines that he/she retrieves during his/her tour
at position p. Constraints (16) define the completion time of each order as the
completion time of the last tour that retrieves one of its orderlines. Constraints
(17) force the satisfaction of the deadlines. Finally, constraints (18) and (19)
define the domain of the variables.

To test our MILP formulation, we conducted preliminary experiments on a
benchmark of small instances generated by [39]. In these instances, the number
of orders is set to {18, 12, 6} and the batch capacity is set to {4, 8, 12}. We ran
the MILP formulation on some of those instances by setting a time limit of 2
hours. We observed that the MILP is not able to return a feasible solution for
most of the instances, even for the smallest ones (6 orders, W = 15). For the
few instances where the MILP returned feasible solutions, the gaps were poor
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(no less than 100%). We thus conclude that those results are not exploitable in
any comparative analysis.

Appendix B. Kruskall-Wallis test

Table 6 presents results of a Kruskal-Wallis H test on order picking time, on
CPu time, and on gap ∆ILS|RFSS+ . Tables 7, 8, and 9 present results of a
pairwise-comparison between groups of each warehouse factor on order picking
time, on CPu time, and on gap ∆ILS|RFSS+ using the test of Dunn. Note that
the Test of Dunn is done when the p − value returned by the Kruskall-Wallis’
test is significant (i.e. p− value < 0.05).

Tab. 6: Kruskal-Wallis H test on order picking time, on CPU time, and on gap
∆ILS|RFSS+

N Statistic df p-value
Kruskal-Wallis H test on order picking time
Layout 7290 2340 2 0.000
Storage policy 7290 32.3 2 0.0000001
Cart capacity 7290 4110. 2 0
Order strcture 7290 318. 2 7.94e-70
Deadline distribution 7290 2.69 2 0.26

Kruskal-Wallis H test on CPU time
Layout 7290 1607. 2 0
Storage policy 7290 2353. 2 0
Cart capacity 7290 1823. 2 0
Order strcture 7290 204. 2 5.47e-45
Deadline distribution 7290 54.5 2 1.47e-12

Kruskal-Wallis H test on ∆ILS|RFSS+

Layout 7290 5129. 2 0
Storage policy 7290 543. 2 1.35e-118
Cart capacity 7290 320. 2 2.63e-70
Order strcture 7290 780. 2 4.37e-170
Deadline distribution 7290 19.2 2 0.000067
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Tab. 7: Dunn test on order picking time

N1 N2 Statstic p.adj p.adj.signif
Layout
SW - MW 2430 2430 -26.0 5.67e-149 ∗ ∗ ∗∗
MW - LW 2430 2430 22.3 1.50e-109 ∗ ∗ ∗∗
LW - SW 2430 2430 -48.3 0. ∗ ∗ ∗∗
Storage policy
AA - Ran 2430 2430 4.62 0.0000114 ∗ ∗ ∗∗
WA - AA 2430 2430 -0.558 1 ns
Ran - WA 2430 2430 -5.18 0.000000667 ∗ ∗ ∗∗
Cart capacity
15 - 30 2430 2430 -39.9 0. ∗ ∗ ∗∗
30 - 45 2430 2430 -23.5 9.20e-122 ∗ ∗ ∗∗
45 - 15 2430 2430 -63.4 0. ∗ ∗ ∗∗
Order strcture
100 - 200 2430 2430 11.2 1.74e-28 ∗ ∗ ∗∗
200 - 300 2430 2430 6.46 3.11e-10 ∗ ∗ ∗∗
300 - 100 2430 2430 17.6 4.32e-69 ∗ ∗ ∗∗

Tab. 8: Dunn test on CPU time

N1 N2 Statstic p.adj p.adj.signif
Layout
SW - MW 2430 2430 -26.5 1.02e-153 ∗ ∗ ∗∗
MW - LW 2430 2430 12.9 2.14e-37 ∗ ∗ ∗∗
LW - SW 2430 2430 -39.3 0. ∗ ∗ ∗∗
Storage policy
AA - Ran 2430 2430 -37.7 0. ∗ ∗ ∗∗
WA - AA 2430 2430 -45.3 0. ∗ ∗ ∗∗
Ran - WA 2430 2430 -7.56 1.24e-13 ∗ ∗ ∗∗
Cart capacity
15 - 30 2430 2430 27.9 1.06e-170 ∗ ∗ ∗∗
30 - 45 2430 2430 14.1 2.18e-44 ∗ ∗ ∗∗
45 - 15 2430 2430 41.9 0. ∗ ∗ ∗∗
Order strcture
100 - 200 2430 2430 8.38 1.58e-16 ∗ ∗ ∗∗
200 - 300 2430 2430 5.82 1.77e-8 ∗ ∗ ∗∗
300 - 100 2430 2430 14.2 2.74e-45 ∗ ∗ ∗∗
Deadline distribution
Deg - Prog 2430 2430 -3.45 1.66e-3 ∗∗
Deg - Uni 2430 2430 -7.38 4.85e-13 ∗ ∗ ∗∗
Prog - Uni 2430 2430 -3.92 2.62e-4 ∗ ∗ ∗
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Tab. 9: Dunn test on gap ∆ILS|RFSS+

N1 N2 Statstic p.adj p.adj.signif
Layout
SW - MW 2430 2430 -47.4 0. ∗ ∗ ∗∗
MW - LW 2430 2430 22.8 8.65e-115 ∗ ∗ ∗∗
LW - SW 2430 2430 -70.2 0. ∗ ∗ ∗∗
Storage policy
AA - Ran 2430 2430 18.6 1.77e- 76 ∗ ∗ ∗∗
WA - AA 2430 2430 -2.90 1.10e- 2 ∗
Ran - WA 2430 2430 -21.5 8.56e-102 ∗ ∗ ∗∗
Cart capacity
15 - 30 2430 2430 14.8 3.51e-49 ∗ ∗ ∗∗
30 - 45 2430 2430 1.29 5.88e-1 ns
45 - 15 2430 2430 16.1 6.69e-58 ∗ ∗ ∗∗
Order strcture
100 - 200 2430 2430 -14.5 5.64e-47 ∗ ∗ ∗∗
200 - 300 2430 2430 -13.5 9.09e-41 ∗ ∗ ∗∗
300 - 100 2430 2430 -27.9 4.45e-171 ∗ ∗ ∗∗
Deadline distribution
Deg - Prog 2430 2430 -4.30 0.0000521 ∗∗
Deg - Uni 2430 2430 -2.90 0.0111 ∗
Prog - Uni 2430 2430 1.39 0.491 ns

Appendix C. Cconstraint programming formulation

We propose a natural CP formulation to model the problem. The formulation
uses the parameters and variables summirized in table 10.

K∑
k=1

(poskv ≥ 1) = 1, ∀v ∈ Π (20)∑
v∈Π

(poskv = t) ≤ 1, ∀k ∈ {1, . . . ,K},∀t ∈ {1, . . . , P} (21)

stk1 = 0, ∀k ∈ {1, . . . ,K} (22)

stkt+1 = stkt + pkt , ∀k ∈ {1, . . . ,K},∀t ∈ {1, . . . , P − 1} (23)

poskv = t =⇒ pkt = pv, ∀v ∈ Π,∀k ∈ {1, . . . ,K},∀t ∈ {1, . . . , P} (24)

poskv = t =⇒ stkt = stv, ∀v ∈ Π,∀k ∈ {1, . . . ,K},∀t ∈ {1, . . . , P} (25)

stv + pv ≤ d̃v ∀v ∈ Π ∪ {v+} (26)

pkt , stv, st
k
t ∈ R+, ∀v ∈ Π,∀k ∈ {1, . . . ,K},∀t ∈ {1, . . . , P} (27)

poskv ∈ {1, . . . , P}, ∀k ∈ {1, . . . ,K},∀t ∈ {1, . . . , P}
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Parameters

v+ Artificial tour with pv+ = 0 and d̃v+ = maxv∈Π d̃v

Variables

poskv Position number of tour v if assigned to picker k, −1 otherwise.
stkt Start time of tour at position t of picker k
stv Start time of tour v
pkt Processing time of tour at position t of picker k

Tab. 10: Notations used in the CP formulation

Constraints (20) guarantee that each tour is sequenced once and only once.
Constraints (21) ensure that no more then one tour is sequenced at the tth

position of picker k. Constraints (22) and (23) sequence the tours assigned to
each picker. Constraints (24) link the variables poskv and pkt while constraints
(25) synchronize stv and stkt variables. Constraints (26) bound the end time
of each tour by its deadline. Finally, constraints (27) define the domain of the
variables.
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