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EXTENSION OF HOLOMORPHIC FUNCTIONS DEFINED ON

SINGULAR COMPLEX HYPERSURFACES WITH GROWTH

ESTIMATES IN STRICTLY PSEUDOCONVEX DOMAINS OF Cn

WILLIAM ALEXANDRE AND EMMANUEL MAZZILLI

Abstract. Let D be a strictly pseudoconvex domain and X be a singular analytic set

of pure dimension n − 1 in Cn such that X ∩ D 6= ∅ and X ∩ bD is transverse. We

give sufficient conditions for a function holomorphic on D ∩X to admit a holomorphic

extension which belongs to Lq(D), q ∈ [1,+∞[, or to BMO(D). The extension is given

by mean of integral representation formulas and residue currents.

1. Introduction

In this article we are interested in the following natural question : Given an analytic set

X, a strictly pseudoconvex domain D such that X ∩D 6= ∅ and a function h holomorphic

on X ∩D, does their exist a function H, holomorphic on D, such that the restriction of

H to X ∩D coincides with h ? Oka in [20] asserts that the answer is positive, even if D

is only pseudoconvex. Difficulties arise when we want H to satisfy growth conditions like

being bounded or belonging to Lq(D) or BMO(D).

When X is a hyperplane and D is pseudoconvex, Ohsawa and Takegoshi proved in [19]

that any h ∈ L2(X ∩D) ∩ O(X ∩D) admits an extension H ∈ L2(D) ∩ O(D). Ohsawa

in [18] generalized this result to complex manifolds of higher codimension. When D is

strictly pseudoconvex, Amar in [3] and Henkin-Leiterer in [14] proved that any function

holomorphic and bounded on X∩D has an extension holomorphic and bounded on D. The

case of bounded functions defined on a manifold and extended to bounded functions on

weakly pseudoconvex was also positively solved in the case of convex domain of finite type

in [1] and [10]. Concerning Lp extensions, the following results were proved by Beatrous

in [4] (see also [8] and [13]). Let δ(z) denote the distance from z to bD, the boundary of

D. For s > −1, 0 < p < ∞ and Y = D or Y = X ∩ D, we denote by Lps(Y ) the set of

measurable functions f on Y satisfying

‖f‖p,s :=

(∫
Y
|f |pδsdV

) 1
p

<∞

and for s = −1

‖f‖p,−1 :=

(∫
bY
|f |pdσ

) 1
p

<∞
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where dσ denotes the volume element on bY , the boundary of Y . Then Aps(Y ) is the space

of all holomorphic functions in Lps(Y ) and Ap−1(D) is the usual Hardy class consisting of

holomorphic functions on Y with boundary values in Lp−1(D). When D is strictly pseu-

doconvex in Cn and when X is an m-dimensional complex submanifold of a neighborhood

of D which intersects bD transversaly, Beatrous proved that for −1 ≤ s and 0 < p < +∞,

there exists a continuous extension operator from Apn−m+s(X ∩D) to Aps(D).

When X is no longer a manifold but a singular variety, things are much more com-

plicated. In [9], Diederich and the second author exhibit, in C3, an algebraic complex

hypersurface X with singularities and a function h bounded and holomorphic in the inter-

section of X and the unit ball which does not have a L2-extension in the unit ball. This

result was generalized to weighted L2-spaces by Guan and Li in [12].

In [5], for X a singular varieties and D pseudoconvex, Berndtsson gave a condition

under which h ∈ O(X ∩ D) has an extension in O(D) ∩ L2(D). However if h satisfies

this condition, h must vanish on Sing(X), the set of singular points of X. Hence, if h is

constant onX∩D, Berndtsson’s result does not provide a holomorphic extension of h which

belongs to L2(D) while it trivially exists. In [2], when X is a singular variety in Cn, when

D is a strictly convex domain and when q belongs to [1,+∞], the authors gave necessary

conditions for h ∈ O(X ∩D) to have an extension H ∈ O(D) ∩ Lq(D). When n = 2 and

q ∈ [1,+∞[, they also proved that these conditions are sufficient and when q = +∞, they

proved that these conditions imply that H belongs to O(D) ∩ BMO(D). In this article,

we aim at generalizing the results of [2] for n ≥ 2 and for strictly pseudoconvex domains.

Moreover, we want to give conditions which are stable by biholomorphic transformations.

Let D be a strictly pseudoconvex domain in Cn with smooth boundary. We write D as

D = {z ∈ U/ ρ(z) < 0} where ρ is a smooth strictly plurisubharmonic function defined

in a neighborhood U of D, such that the gradient of ρ does not vanish in a neighborhood

of bD, the boundary of D. We denote by Dt, t ∈ R, the set Dt = {z ∈ Cn, ρ(z) < t},
by bDt its boundary, by ηp the outer unit normal to bDρ(p) at a point p ∈ U and by

TC
p bDρ(p) the complex tangent space to bDρ(p) at the point p. For all p in U , we denote

by ε1(p) = ηp, ε2(p), . . . , εn(p) an orthonormal basis of TC
p bDρ(p) which locally smoothly

depends on p.

Let X = {ζ ∈ U/ f(ζ) = 0} be an analytic set of pure dimension n − 1 in Cn. We

denote by Reg(X) the set of regular points of X and by Sing(X) the set of singular

points of X. We also denote by C4(X, p) the fourth Whitney tangent cone at p ∈ X to

X, that is the set of vectors v for which there are sequences of points (zj)j of Reg(X)

converging to p and vectors (vj)j converging to v such that, for all j, vj is tangent to X

at zj . For all p ∈ X, dimC4(X, p) ≥ n − 1 and Stutz showed in [23] that the algebraic

set J = {p ∈ Sing(X)/ dimC4(X, p) > n − 1} has dimension at most n − 2 and is thus

strictly smaller than Sing(X). In this paper, we will assume that J is in fact empty.

In all this work, we assume that X and D satisfy the following assumptions :

(a) The intersection X ∩D is non empty.

(b) The intersection X ∩ bD is transverse in the sense of tangent cones, that is, for all

p ∈ bD ∩X, the vector space generated by TC
p bD and C4(X, p) is Cn.
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(c) X is irreducible at all point p ∈ X ∩ bD.

(d) Any point p ∈ bD∩X is either a regular point of X or p is a regular point of Sing(X),

such that dimC4(X, p) = n− 1.

We will prove the following theorem which gives extension in the class BMO(D).

Theorem 1.1. Let X be an analytic set of pure dimension n − 1 in Cn and let D be a

strictly pseudoconvex domain in Cn which satisfy (a-d). Let h belongs to O(X ∩D). If for

all holomorphic disc γ : ∆→ D such that γ(∆)∩X 6= ∅, there exists hγ ∈ O(∆) such that

• sup∆ |hγ | is bounded uniformly with respect to γ,

• for all t ∈ ∆ such that γ(t) belongs to X, hγ(t) = h ◦ γ(t),

then h has a holomorphic extension in BMO(D).

Of course, if H is bounded and holomorphic in D, its restriction to X ∩ D satisfies

the hypothesis of Theorem 1.1 which gives us not a bounded extension but only a BMO

holomorphic extension. The BMO class replaces in many problems of extension and

division of holomorphic functions the class of bounded functions that is missed by a little.

Thus the result given by Theorem 1.1 is not an “if and only if” theorem but is not, for

this kind of questions, a bad answer.

We also notice that the assumptions in Theorem 1.1 are kept under biholomorphic

transformations. Moreover, since any h belonging to O(X ∩D) always has a holomorphic

extension to D, it suffices in Theorem 1.1 to consider not all discs but holomorphic discs

close to the boundary of D. We will also see that it suffices to consider only regular

holomorphic discs γ such that the intersection of γ(∆) and any branch of X is either a

singleton or empty. And in fact, provided we are in suitable coordinates, it suffices to

consider linear discs, i.e. images of ∆ by complex affine transformations.

We finally point out that when X is a manifold, and when h is holomorphic and bounded

on X ∩D, given a holomorphic disc γ such that γ(∆) ∩X is a singleton, we can trivially

extend h to γ(∆) and we thus get a uniformly bounded extension of h to γ(∆). We thus

nearly recover Henkin’s results in [13].

Theorem 1.1 will be a consequence of the following theorem which generalizes Theorem

1.1 of [2] :

Theorem 1.2. Let X be an analytic set of pure dimension n − 1 in Cn and let D be a

strictly pseudoconvex domain in Cn which satisfy (a-d).

There exists an integer k ≥ 1 depending only on X such that if h is a holomorphic function

on X ∩D which has a C∞ smooth extension h̃ on D which satisfies

(i) there exists N ∈ N such that |ρ|N h̃ vanishes at order k on bD,

(ii) there exists q ∈ [1,+∞] such that
∣∣∣ ∂|α|h̃
∂ε1α1 ...∂εnαn

∣∣∣ |ρ|α1+
α2+...+αn

2 belongs to Lq(D) for

all multi-index α with |α| ≤ k,

(iii) ∂|α|h̃
∂ε1α1 ...∂εnαn

= 0 on X ∩D for all multi-index α with 0 < |α| ≤ k,

then h has a holomorphic extension H in Lq(D) when q < +∞ and in BMO(D) when q =

+∞. Moreover, up to a uniform multiplicative constant depending only on k and N , the

norm of H is bounded by the supremum of the Lq-norm of ζ 7→
∣∣∣ ∂αh̃
∂ε1α1 ...∂ε1αn

∣∣∣ |ρ|α1+
α2+...+αn

2

for α multi-index such that |α| ≤ k.
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The extension will be given as in [2] by an integral operator combining a Berndtsson-

Andersson operator and the ∂ of a current T which is a refinement of the current of [16]

and which satisfies fT = 1. The current ∂T is some kind of a perturbation of the classical

current ∂
[

1
f

]
which defined in [15] via Hironaka’s theorem and thus which is not very

explicit. In order to have precise estimates of the extension, we need a completely explicit

current. We will defined it in a neighborhood of any point p ∈ D by taking into account

branches of X which are “close” or “far” from p. Having tools which enable us to quantify

how a branch is close or far from a point, is the first problem we have to overcome. The

first part of the solution will be given by Koranyi balls and the structure of homogeneous

space of a strictly pseudoconvex domains which will provide a good (pseudo-)metric in

order to quantify the meaning of being far or close from a point p. The second part of the

answer will be given by Hypothesis (c-d) which provide us a parametrization of X.

The current will act by differentiation on a Berndtsson-Andersson kernel and such

kernels have a worse behavior when they are differentiated in the normal direction than in

the tangential directions to the boundary of the domain. In dimension 2, there is only one

direction but not when n > 2 and we have to find the good one. Moreover, in dimension

2, the singularities of an analytic set are always isolated. In particular, a singularity is

either far from the boundary of the domain or belongs to the boundary of the domain and

so, there is a kind of dichotomy. When n > 2, there can be a “continuum” of singularity

which goes through the boundary of D. It should be noticed that in most papers dealing

with singular varieties and giving fine estimates, singularities are often assumed isolated,

but we do not make such an assumption here and we will learn to deal with non isolated

singularities.

We will face an other difficulty which does not appear in [2] and which is due to the non

convexity of D. In order to define the extension operator, we have to write f(z)− f(ζ) =∑n
j=1 bj(ζ, z)(zj − ζj). Any such decomposition b =

∑n
j=1 bjdζj enables us to define an

extension operator but not all b give a good extension because we need some kind of

compensation between b and the term 1
f which will appear in the kernel of our operator

(see Lemma 3.2 for details). In [2], the convexity of D was used in order to have bj equal

to
∑
|α|≤k

1
(|α|+1)α!

∂|α|+1f
∂ζj∂ζα

(ζ)(z − ζ)α + O(|ζ − z|k+1). Here, we will prove that given any

Hefer decomposition of f , we can construct a good decomposition which will be equal to

the derivatives of f up to order k (see Lemma 2.12).

In Theorem 1.2, we assume the existence of a smooth extension H of h ∈ O(X ∩ D),

although no such assumption was made in the previous papers (see [3, 8] for example).

However, during the proof of the existence of good extensions, often a smooth extension

is first constructed. In general, this construction is a bit obvious : if h is defined on a

manifold, maybe after a local biholomorphism, this manifold is equal to the set {ζ1 = 0}
and the smooth extension is just h̃(ζ) = h(0, ζ2, . . . , ζn). This smooth extension will then

satisfies the hypothesis (i-iii) of Theorem 1.2. Of course, a singular variety cannot be

written in such a way and, in our case, we have to assume the existence of such a smooth

extension. The next questions are thus “when such a smooth extension does exist ?” and

“how do we construct such a smooth extension ?”.
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In [2] we gave conditions under which such extensions exist in C2. They were formulated

in terms of control of divided differences on linear discs. Roughly speaking, a divided

difference of order m of a holomorphic function H near a singularity is close to a m-th

derivative of H and Cauchy inequalities tell us that if H is bounded in D or if H belongs to

Lq(D), we control its derivatives and thus its divided differences with powers of d(·, bD),

the distance to the boundary of D. These conditions, even if necessary and sufficient or

nearly sufficient, were not stable under biholomorphism. We want to give here conditions

which are kept under biholomorphic transformations.

In Theorem 4.3, still using extension on holomorphic discs, we will also give an analog of

Theorem 1.1 for Lq-extension when q < +∞. However in order to have Lq-extension, we

need some kind of average properties that will be formulated with homogeneous covering

and Koranyi discs. The condition of Theorem 4.3 will also be stable under biholomorphic

transformations and will be necessary and sufficient for h to have a holomorphic extension

which belongs to Lq(D).

The paper is organized as follows. In Section 2, we construct the extension operator. In

Section 3, we prove that it satisfies the conclusion of Theorem 1.2. In Section 4, we prove

Theorem 1.1 and give necessary and sufficient conditions on h for h to have a holomorphic

extension which belongs to Lq(D), q < +∞.

2. Construction of the current

We first want to define a current T such that fT = 1. We will define T locally but we

first need more analytic informations on the analytic set X. We denote by d(z, bD) the

distance from z to bD and we define the anisotropic Koranyi balls centered at z of radius

r > 0 by Pr(z) := {z + ληz + µv/ v ∈ TC
z bDρ(z), |λ|+ |µ|2 < r}.

We also adopt the following convention : we will write A . B if there exists a constant

c > 0 such that A ≤ cB. We write A h B if both A . B and B . A hold true. Moreover,

through out this paper, C will always represent a big constant and c a small one such that

choosing c smaller does not imply that C must be chosen bigger. However, we accept that

choosing C bigger implies that c must be chosen smaller.

2.1. Local parametrization of X. Without restriction, we assume that 0 belongs to

Sing(X) ∩ bD and we work near 0.

Hypothesis (c) and (d) and Proposition 4.2 of [23] imply that there are a neighborhood

U(0) and a one to one holomorphic map Φ of a neighborhood V(0) ⊂ Cn−1 of 0 onto

U(0) ∩X such that

(i) Sing(X) ∩ U(0) = Φ(V(0) ∩ {ζ1 = 0}),
(ii) Φ : V(0) \ {t1 = 0} → Reg(X) ∩ U(0) is biholomorphic,

(iii) after perhaps a holomorphic change of coordinates, Φ is of the form

Φ(t) = (tk1, t2, . . . , tn−1, t
k
1ϕ(t)),

where k is the multiplicity of the cover of X over Cn−1 in a neighborhood of 0, ϕ is

holomorphic in V(0) and ϕ(0) = 0.

Thus, locally and maybe after a local change of coordinates, Sing(X) = {z ∈ Cn/ z1 =

zn = 0} and by transversality, we deduce that η0 6= (0, . . . , 0, 1).
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Moreover we can write X near 0 as

X =

z ∈ Cn/ P (z) =
k−1∏
j=0

(
zn − z1ϕ(z

1
k
1 ω

j , z2, . . . , zn−1)

)
where z

1
k
1 satisfies (z

1
k
1 )k = z1.

Intuitively, in these local coordinates, the action of the current T on a test function φ

will be of the kind 〈T, φ〉 =
∫ P (ζ)

f(ζ)
∂kφ

∂ζ
k
n

. Since f = uP with u zero free, we integrate a

bounded quantity and so T is well defined. When we integrate k times by parts, we get

fT = 1.

The extension operator will make T acting on a Berndtsson-Andersson reproducing

kernel. Thus we will differentiate a reproducing kernel k times and it is well known that,

near the boundary of a domain, these derivatives explode like a power of 1
d(z,bD) . More

precisely, a derivative in the normal direction implies a loss of a factor d(·, bD) and a

derivative in a tangent direction implies a loss of a factor d(·, bD)
1
2 . Thus, our interest

will be to differentiate only in a tangential direction. In order to do this, we will cover

a neighborhood of bD with Koranyi balls Pd(zj ,bD)(zj), j ∈ N, and on each Koranyi ball,

we will define a current Tj of the previous kind such that we differentiate in a tangential

direction at zj . Thus for any point z close enough to 0, we will have to choose a basis

depending on z, not necessarily orthonormal, such that for example the last vector of this

basis is tangent to bDρ(z) at z and such that in the coordinates induces by this new basis,

X has a parametrization of type t 7→ (tk1, t2, . . . , tn−1, t
k
1ϕz(t)).

If we denote by (e1, . . . , en) the canonical orthonormal basis, we have η0 6= ±en. So,

for z near 0, we can put wz = 1
|en−〈en,ηz〉ηz |(en − 〈en, ηz〉ηz) = wz,1e1 + . . .+wz,nen. Since

en 6= η0, we have w0,n 6= 0 and, by continuity, wz,n 6= 0 for all z sufficiently close to

0. For such a point z, we denote by Az = [e1, . . . , en−1, wz] the change of coordinates

matrix from the canonical basis to (e1, . . . , en−1, wz) and for ζ ∈ Cn, we put πz(ζ) =

(πz,1(ζ), . . . , πz,n(ζ)) = A−1
z ζ. We want to prove the following lemma which gives us a

parametrization of X in the coordinates induced by the basis (e1, . . . , en−1, wz).

Lemma 2.1. There exist a neighborhood U(0) of the origin in Cn and a neighborhood

V(0) of the origin in Cn−1 such that for all z close enough to 0, there exists a function ϕz
holomorphic in V(0) which satisfies

(i) |ϕz(t′)| . |t′|, uniformly with respect to z and t′,

(ii) X ∩ U(0) = π−1
z

{(
t′1
k, t′2, . . . , t

′
n−1, t

′
1
kϕz(t

′)
)
/ t′ = (t′1, . . . , t

′
n−1) ∈ V(0)

}
.

Moreover, ϕz can be assumed uniformly bounded.

Proof: We fix a holomorphic k-th roots in the disc D(1, 1) ⊂ C and put

Φ̃ : (z, t, t′) 7→


t′1 − t1

(
1− wz,1

wz,n
ϕ(t)

) 1
k

t′2 −
(
t2 − wz,2

wz,n
tk1ϕ(t)

)
...

t′n−1 −
(
tn−1 − wz,n−1

wz,n
tk1ϕ(t)

)


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where ϕ is given by (iii). Since ϕ(0) = 0, ∂Φ̃
∂t (0, 0, 0) = −IdCn−1 . The implicit functions

theorem implies that there exists a neighborhood U(0) of 0 ∈ Cn, two neighborhoods V(0)

and V ′(0) of 0 ∈ Cn−1 and Ψ̃ : U(0) × V ′(0) → V(0), holomorphic with respect to t′ and

smooth with respect to z, such that for all (z, t, t′) ∈ U(0)×V(0)×V ′(0), Φ̃(z, t, t′) = 0 if

and only if t = Ψ̃(z, t′). Moreover Ψ̃(z, 0) = 0 so |Ψ̃(z, t′)| . |t′|, uniformly with respect

to z and t′.

Differentiating the following equality

t′1 − Ψ̃1(z, t′)

(
1− wz,1

wz,n
ϕ ◦ Ψ̃(z, t′)

) 1
k

= 0,(1)

we get for all multi-index α = (0, α2, . . . , αn−1)

∂|α|Ψ̃1

∂t′α
(z, 0) = 0.

Differentiating (1) with respect to t′1 and evaluating at (z, 0), we get

∂Ψ̃1

∂t′1
(z, 0) = 1.

Therefore there exists a holomorphic function ϕ̃z such that Ψ̃1(z, t′) = t′1(1 + ϕ̃z(t
′)) and

|ϕ̃z(t′)| . |t′|, uniformly with respect to z and t′.

Finally, we put ϕz(t
′) = 1

wz,n
(1 + ϕ̃z(t

′))k ϕ(Ψ̃(z, t′)).

If ζ is close to 0 and belongs to X, then it can be written as ζ = (tk1, t2, . . . , tn−1, t
k
1ϕ(t)).

Putting t′ =

(
t1

(
1− wz,1

wz,n
ϕ(t)

) 1
k
, t2 − wz,2

wz,n
tk1ϕ(t), . . . , tn−1 − wz,n−1

wz,n
tk1ϕ(t)

)
we thus ob-

tain πz(ζ) = (t′k1 , t
′
2, . . . , t

′
n−1, t

′k
1 ϕz(t

′)) and conversely.

For a given point z, we will denote by ζ ′ the coordinates of a point ζ in the coordinates

system centered at 0 and of basis e1, . . . , en−1, wz. We define

Pz(ζ
′) =

k−1∏
j=0

(
ζ ′n − ζ ′1ϕz(ωjζ ′1

1
k , ζ ′2, . . . , ζ

′
n−1)

)
where ω = e

2iπ
k and ζ ′1

1
k is any complex number such that (ζ ′1

1
k )k = ζ ′1. Therefor ζ belongs

to X if and only if Pz(πz(ζ)) = 0. We want to link uniformly Pz to f :

Proposition 2.2. For all z near 0, there exists a holomorphic function uz such that

f(ζ) = uz(ζ)Pz(πz(ζ)) for all ζ in a neighborhood of 0 which does not depends on z and

|uz| h 1 uniformly with respect to z.

Proof: We consider the family of functions (fz)z where for all z, fz(ζ
′) = f(π−1

z (ζ ′)) =

f(ζ ′1e1 + . . .+ζ ′n−1en−1 +ζ ′nwz). We first want to apply Rouché’s theorem to f0(0, . . . , 0, ·)
and fz(ζ

′
1, . . . , ζ

′
n−1, ·).

Weierstrass Preparation Theorem implies that, near 0, there exist a non vanishing holo-

morphic function u and a Weierstrass polynomial P (ζ) = ζkn + ζk−1
n a1(ζ1, . . . , ζn−1)+ . . .+
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ak(ζ1, . . . , ζn−1) such that f = uP . Since the function ζn 7→ f(0, . . . , 0, ζn) vanishes at

order k at 0, we also have a1(0, . . . , 0) = . . . = ak(0, . . . , 0) = 0. Moreover, we can write

P (ζ) =

k−1∏
j=0

(
ζn − ζ1ϕ(ζ

1
k
1 ω

j , ζ2, . . . , ζn−1)

)
from which we get

f0(0, . . . , 0, t) = u(tw0)

k−1∏
j=0

(
tw0,n − w0,1tϕ((tw0,1)

1
kωj , tw0,2, . . . , tw0,n−1)

)
= tkũ(t)

where |ũ(t)| = |u(tw0)|
∏k−1
j=0

∣∣∣w0,n − w0,1ϕ((tw0,1)
1
kωj , tw0,2, . . . , tw0,n−1)

∣∣∣ h 1 if |t| is

small enough.

Therefore there exists a small ε > 0 such that for t in D(0, ε) = {ξ ∈ C/ |ξ| ≤ ε},
f0(0, . . . , 0, t) = 0 if and only if t = 0. In particular, f0(0, . . . , 0, ·) does not vanish on

bD(0, ε), the boundary of the disc D(0, ε). We put a = infbD(0,ε) |f0(0, . . . , 0, ·)| > 0.

The mean value inequality then gives us ε′ > 0 such that if (t1, . . . , tn−1, t) belongs to

D(0, ε′)n−1 ×D(0, ε) then |f0(t1, . . . , tn−1, t)− f0(0, . . . , 0, t)| < a
4 .

Again the mean value inequality gives us ε′′ > 0 such that if z belongs to B(0, ε′′) = {z ∈
Cn/ |z| < ε′′} and (t1, . . . , tn−1, t) belongs toD(0, ε′)n−1×D(0, ε), then |fz(t1, . . . , tn−1, t)−
f0(t1, . . . , tn−1, t)| < a

4 . This yields |fz(t1, . . . , tn−1, t) − f0(0, . . . , 0, t)| < a
2 for all z ∈

B(0, ε′′) and (t1, . . . , tn−1, t) ∈ D(0, ε′) × D(0, ε). Rouché’s theorem then implies that

fz(t1, . . . , tn−1, ·) has exactly k zeros in the disc D(0, ε).

Now we apply Weierstrass Preparation Theorem to fz and we write fz = uzQz where

Qz(ζ
′) = ζ ′n

k+a
(z)
1 (ζ ′1, . . . , ζ

′
n−1)ζ ′n

k−1 + . . .+a
(z)
k (ζ ′1, . . . , ζ

′
n−1) is a Weierstrass polynomial

and uz does not vanish in D(0, ε′)n−1 ×D(0, ε). Since fz(t
′
1
k, t′2, . . . , t

′
n, t
′
1
kϕz(t

′)) = 0, we

conclude that Qz = Pz.

For all ζ ′ ∈ D(0, ε′)n−1 ×D(0, ε), we have∣∣∣∣ 1

uz(ζ ′)

∣∣∣∣ ≤ sup
|t|=ε

|Qz(ζ ′1, . . . , ζ ′n−1, t)|
|fz(ζ ′1, . . . , ζ ′n−1, t)|

.

On the first hand, for all (ζ ′1, . . . , ζ
′
n−1) ∈ D(0, ε′)n−1 and all t ∈ bD(0, ε), we have

|fz(ζ ′1, . . . , ζ ′n−1, t)| ≥ |f0(0, . . . , 0, t)| − |fz(ζ ′1, . . . , ζ ′n−1, t)− f0(0, . . . , 0, t)| ≥ a

2
.

On the other hand, since (fz)z converges uniformly to f0 when z tends to 0, Weierstrass

Preparation Theorem also implies that (Qz)z converges uniformly to Q0 when z tends to

0 and so Qz is uniformly bounded. Therefore we have |uz(ζ ′)| ≥ 1 uniformly with respect

to z and ζ ′ . Analogously, we also have |uz| ≤ 1 and so |uz| h 1.

We now want to understand the interplay of the geometries of X and D. This will be

the goal of the following propositions, firstly near Sing(X).

Proposition 2.3. There exists C > 0 big enough such that for all c > 0, all z suf-

ficiently close to 0 such that d(z,Sing(X)) ≤ 10C(c|ρ(z)|)
1
2 , all ζ ∈ Pc|ρ(z)|(z) and all

ξ ∈ C such that ξk = πz,n(ζ), we have |πz,n(ζ)− πz,1(ζ)ϕz(ξ, πz,2(ζ), . . . , πz,n−1(ζ)| ≤
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C2|cρ(z)|
1
2 and the point π−1

z

(
πz,1(ζ), . . . , πz,n−1(ζ), πz,1(ζ)ϕz(ξ, πz,2(ζ), . . . , πz,n−1(ζ))

)
=

ζ +
(
πz,1(ζ)ϕz(ξ, πz,2(ζ), . . . , πz,n−1(ζ))− πz,n(ζ)

)
wz belongs to X ∩ PcC4|ρ(z)|(z).

Proof: If d(z, Sing(X)) ≤ 10C|cρ(z)|
1
2 then for all ζ ∈ Pc|ρ(z)|(z) we have

d(ζ,Sing(X)) ≤ |ζ − z|+ d(z,Sing(X))

≤ (10C + 1)|cρ(z)|
1
2 .

Since d(ζ,Sing(X)) =
√
|ζ1|2 + |ζn|2, it comes |πz,1(ζ)| =

∣∣∣ζ1 − wz,1
wz,n

ζn

∣∣∣ . C|cρ(z)|
1
2 , and

|πz,n(ζ)| . C|cρ(z)|
1
2 . Now, if ξ ∈ C is such that ξk = πz,1(ζ), if C is big enough, we have

uniformly with respect to ζ, C and c

|πz,n(ζ)− πz,1(ζ)ϕz(ξ, πz,2(ζ), . . . , πz,n−1(ζ))| . C|cρ(z)|
1
2 ≤ C2|cρ(z)|

1
2 .

Moreover, since wz is a tangent vector to bDρ(z) at z, provided C > 0 is big enough, the

point ζ + (πz,1(ζ)ϕz(ξ, πz,2(ζ), . . . , πz,n−1(ζ))− πz,n(ζ))wz belongs to X ∩PcC4|ρ(z)|(z).

Now we are interested in the case where z is far from Sing(X).

Proposition 2.4. There exists C > 0 sufficiently big such that for all small c > 0, for all

z near 0 with d(z,Sing(X)) ≥ 10C|cρ(z)|
1
2 and X ∩ Pc|ρ(z)|(z) 6= ∅, for all ζ ∈ Pc|ρ(z)|(z)

we have

(i) |πz,1(z)| ≥ 2C|cρ(z)|
1
2 ,

(ii) |πz,1(ζ)| ≥ C|cρ(z)|
1
2 ,

(iii) πz,1(ζ) belongs to D(πz,1(z), C|cρ(z)|
1
2 ).

Proof: Firstly, for all z and all ζ belonging to Pc|ρ(z)|(z), we have |πz,1(ζ) − πz,1(z)| ≤
C|cρ(z)|

1
2 for some big C > 0 which does not depend on ζ or z and so πz,1(ζ) belongs to

D(πz,1(z), C|cρ(z)|
1
2 ).

If z is a point such that d(z, Sing(X)) ≥ 10C|cρ(z)|
1
2 and X ∩ Pc|ρ(z)|(z) 6= ∅ we prove

that |πz,1(z)| ≥ 2C|cρ(z)|
1
2 so that |πz,1(ζ)| ≥ C|cρ(z)|

1
2 for all ζ ∈ Pc|ρ(z)|(z).

Let ζ̃ be a point in Pc|ρ(z)|(z) ∩ X. Since π−1
z (0, πz,2(ζ̃), . . . , πz,n−1(ζ̃), 0) belongs to

Sing(X) and since d(z,Sing(X)) ≥ 10C|cρ(z)|
1
2 , provided C is big enough, it comes

10C|cρ(z)|
1
2 ≤ |z − π−1

z (0, πz,2(ζ̃), . . . , πz,n−1(ζ̃), 0)|

≤
∣∣∣π−1
z (πz,1(ζ̃), 0, . . . , 0, πz,n(ζ̃))

∣∣∣+ |z − ζ̃|

≤
√
|πz,1(ζ̃) + wz,1πz,n(ζ̃)|2 + |wz,nπz,n(ζ̃)|2 + C|cρ(z)|

1
2 .

Therefor √
|πz,1(ζ̃) + wz,1πz,n(ζ̃)|2 + |wz,nπz,n(ζ̃)|2 ≥ 9C|cρ(z)|

1
2 > 0.(2)

Since ζ̃ belongs to X, if z is close enough to 0 which implies that ζ̃ is close to 0, Lemma

2.1 implies that |πz,n(ζ̃)| ≤ |πz,1(ζ̃)|. Therefor, with (2), we get |πz,1(ζ̃)| ≥ 3C|cρ(z)|
1
2 .

Finally, since ζ̃ belongs to Pc|ρ(z)|(z), |πz,1(ζ̃)− πz,1(z)| ≤ C|cρ(z)|
1
2 which yields

|πz,1(z)| ≥ |πz,1(ζ̃)| − |πz,1(ζ̃)− πz,1(z)| ≥ 2C|cρ(z)|
1
2 .
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We notice that, under the hypothesis of Proposition 2.4, there exist holomorphic k-roots

of πz,1 on Pc|ρ(z)|(z). We also point out that the constant C and c in Propositions 2.3 and

2.4 are independent. This is of importance because we will have to chose c even smaller.

Corollary 2.5. Under the hypothesis of Proposition 2.4, if ξ 7→ ξ
1
k is a holomorphic k-th

root on D(πz,1(z), C|cρ(z)|
1
2 ), for all j we have :

(i) if ζ belongs to Pc|ρ(z)|(z), the point π−1
z

(
πz,1(ζ), . . . , πz,n−1(ζ), πz,1(ζ)ϕz

(
πz,1(ζ)

1
kωj ,

πz,2(ζ), . . . , πz,n−1(ζ)
))

belongs to X,

(ii) if ζ = π−1
z

(
ζ ′1, . . . , ζ

′
n−1, ζ

′
n) belongs to Pc|ρ(z)|(z) and if |ζ ′n − ζ ′1ϕz(ζ

′
1

1
kωj , ζ ′2, . . . ,

ζ ′n−1)| ≤ 2|cρ(z)|
1
2 , then for all ζ̃ belonging to Pc|ρ(z)|(z), we have, uniformly with

respect to ζ, ζ̃ and z,

|πz,1(ζ̃)ϕz(πz,1(ζ̃)
1
kωj , πz,2(ζ̃), . . . , πz,n−1(ζ̃))− πz,n(ζ̃)| ≤ C2|cρ(z)|

1
2 .

In particular, ζ̃+

(
πz,1(ζ̃)ϕz(πz,1(ζ̃)

1
kωj , πz,2(ζ̃), . . . , πz,n−1(ζ̃))− πz,n(ζ̃)

)
wz belongs

to X ∩ PcC4|ρ(z)|(z) if C is big enough.

Proof: For ζ ∈ Pc|ρ(z)|(z), we set αj(ζ) = πz,1(ζ)ϕz(πz,1(ζ)
1
kωj , πz,2(ζ), . . . , πz,n−1(ζ)) as

a shortcut. By Lemma 2.1, π−1
z (πz,1(ζ), . . . , πz,n−1(ζ), αj(ζ)) belongs to X.

Provided C is big enough, the first derivatives of αj are uniformly bounded by C. So,

if some point ζ belongs to Pc|ρ(z)|(z), then for all ζ̃ ∈ Pc|ρ(z)|(z), we have uniformly

|αj(ζ̃)− πz,n(ζ̃)| ≤ |αj(ζ̃)− αj(ζ)|+ |αj(ζ)− πz,n(ζ)|+ |πz,n(ζ)− πz,n(ζ̃)|

. C|ζ − ζ̃|+ 2|cρ(z)|
1
2

. C|cρ(z)|
1
2 ≤ C2|cρ(z)|

1
2

provided C is big enough.

Since ζ̃ belongs to Pc|ρ(z)|(z) and since the vector wz is tangent to bDρ(z), this implies

that π−1
z

(
πz,1(ζ̃), . . . , πz,n−1(ζ̃), πz,1(ζ̃)ϕz

(
πz,1(ζ̃)

1
kωj , πz,2(ζ̃), . . . , πz,n−1(ζ̃)

))
belongs to

PcC4|ρ(z)|(z) if C is big enough, independently of c, ζ̃ or z.

We want to point out the following remarks which will be important when we will

look for an upper bound of an extension. The two last propositions tell us in terms of

the homogeneous geometry induced by bD, that if z is close from Sing(X), then every

branches of X is near z and if z is far from Sing(X) either a branch is always far from z

or always close from z. Now we define the current in small Koranyi balls.

2.2. A very local definition of the current. Now, for z in a neighborhood U(0) of the

origin, we construct a current Tz supported in Pc|ρ(z)|(z) and such that fTz = 1. Let U(0)

be a neighborhood of the origin such that the Propositions 2.3 and 2.4 and Corollary 2.5

hold true for all z belonging to U(0).

When d(z,Sing(X)) ≥ 10C|cρ(z)|
1
2 , we choose a holomorphic k-th root ξ 7→ ξ

1
k on

D(πz,1(z), C|cρ(z)|
1
2 ). If ζ ′ belongs to πz

(
Pc|ρ(z)|(z)

)
, then, by Proposition 2.4, ζ ′1 belongs
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to D(πz,1(z), C|cρ(z)|
1
2 ), so ζ ′1

1
k is well defined and we can set

Jz =
{
j ∈ {0, . . . , k},∃ζ ′ ∈ πz

(
Pc|ρ(z)|(z)

)
,
∣∣ζ ′1ϕz(ζ ′1 1

kωj , ζ ′2, . . . , ζ
′
n−1)− ζ ′n

∣∣ ≤ 2|cρ(z)|
1
2

}
.

We also denote by #Jz the cardinal of Jz. We use this set Jz in order to pick up the

branches of X which are close to z. According to Corollary 2.5, for all j ∈ Jz and all

ζ = π−1
z (ζ ′) ∈ Pc|ρ(z)|(z), we have

∣∣ζ ′1ϕz(ζ ′1 1
kωj , ζ ′2, . . . , ζ

′
n−1)− ζ ′n

∣∣ . |ρ(z)|
1
2 . If j does not

belong to Jz, then for all ζ ∈ Pc|ρ(z)|(z), we have
∣∣ζ ′1ϕz(ζ ′1 1

kωj , ζ ′2, . . . , ζ
′
n−1)− ζ ′n

∣∣ & |ρ(z)|
1
2

When d(z,Sing(X)) < 10C|cρ(z)|
1
2 , every branch of X is close from z. We put Jz =

{0, . . . , k − 1}. We then define for a smooth (n, n)-form g supported in Pc|ρ(z)|(z) :

〈Tz, g〉

=
1

#Jz!

∫
ζ′∈πz(Pc|ρ(z)|(z))

∏
j∈Jz

(
ζ ′n − ζ ′1ϕz(ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

)
f(π−1

z (ζ ′))

∂#Jz

∂ζ ′n
#Jz

(
π−1
z
∗
g
) (
ζ ′
)
.

We point out that when d(z,Sing(X)) ≤ 10C|cρ(z)|
1
2 , there is no holomorphic root on

Pc|ρ(z)|(z) but Jz = {0, . . . , k − 1} so ζ ′1
1
k simply needs to be any complex number such

that
(
ζ ′1

1
k

)k
= ζ ′1.

Moreover, since
∏
j∈Jz

(
ζ ′n − ζ ′1ϕz

(
ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1

))
is polynomial of degree #Jz in

ζ ′n, integrating #Jz times by parts leads to 〈fTz, g〉 =
∫
Pc|ρ(z)|(z)

g(ζ).

Finally, we also notice that if Jz = ∅, the preceding definition still makes sense. In

particular, if we are given a point z such that X ∩ U(0) = ∅, setting Jz = ∅ for all

z ∈ U(0), the previous definition gives the current

〈Tz, g〉 =

∫
ζ∈Pc|ρ(z)|(z)

1

f(ζ)
g (ζ) .

Now we cover U(0) with Koranyi balls and glue together the currents defined on each ball.

We must define carefully the covering as in [2].

2.3. Koranyi covering. The Koranyi balls give to the boundary of D a structure of

homogeneous space. For z ∈ D, v a unit vector in Cn, and ε a positive real number, we

set τ(z, v, ε) = sup{τ > 0, |ρ(z + λv) − ρ(z)| < ε for all λ ∈ C, |λ| < τ}. The Koranyi

balls have the following homogeneous properties :

Proposition 2.6. There exists a neighborhood U of bD, a sufficiently small c > 0 and a

sufficiently big C > 0 such that

(i) for all ζ ∈ U ∩D, P4c|ρ(ζ)|(ζ) is included in D,

(ii) for all ε > 0, all ζ, z ∈ U , Pε(ζ) ∩ Pε(z) 6= ∅ implies Pε(z) ⊂ PCε(ζ),

(iii) for all ε > 0 sufficiently small, all z ∈ U , all ζ ∈ Pε(z) we have uniformly |ρ(z) −
ρ(ζ)| . ε,

(iv) for all ε > 0, all unit vector v ∈ Cn, all z ∈ U and all ζ ∈ Pε(z), τ(z, v, ε) h τ(ζ, v, ε)

uniformly with respect to ε, z and ζ.

For U given by Proposition 2.6 and z and ζ belonging to U , we set δ(z, ζ) = inf{ε >
0, ζ ∈ Pε(z)}. Proposition 2.6 implies that δ is a pseudo-distance in the following sense:
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Proposition 2.7. For U and C given by Proposition 2.6 and for all z, ζ and ξ belonging

to U we have
1

C
δ(ζ, z) ≤ δ(z, ζ) ≤ Cδ(ζ, z)

and

δ(z, ζ) ≤ C(δ(z, ξ) + δ(ξ, ζ)).

Let U be a subset of Cn and ε0 be a small positive number. We cover U ∩ (D \D−ε0)

with a family of Koranyi balls
(
Pc|ρ(zj)|(zj)

)
j∈N

where c is a small positive real number.

We assume that c is so small that for all z and all ζ ∈ Pc|ρ(z)|(z) we have 1
2 |ρ(z)| < |ρ(ζ)| <

3
2 |ρ(z)|. This construction uses classical ideas of the theory of homogeneous spaces and is

analogous to the construction of the covering of [7].

Let ε0, κ and c be positive real numbers sufficiently small. We construct a sequence of

points of U ∩ (D \D−ε0) as follows.

Let k be a non-negative integer and choose arbitrarily z
(k)
1 in bD−(1−cκ)kε0 .

When z
(k)
1 , . . . , z

(k)
j are chosen, there are two possibilities. Either for all z ∈ bD−(1−cκ)kε0∩

U there exists i ≤ j such that δ(z, z
(k)
i ) < cκ(1 − cκ)kε0 and the process ends here, or

there exists z ∈ bD−(1−cκ)kε0 ∩U such that for all i ≤ j we have δ(z, z
(k)
i ) ≥ cκ(1− cκ)kε0

and we chose z
(k)
j+1 among these points. Since bD−(1−cκ)kε0 ∩ U is bounded, this process

stops at some rank nk.

We thus have constructed a sequence (z
(k)
j )k∈N,j∈{1,...,nk} such that

(i) For all k ∈ N, and all j ∈ {1, . . . , nk}, z
(k)
j belongs to bD−(1−cκ)kε0 ∩ U .

(ii) For all k ∈ N, all i, j ∈ {1, . . . , nk}, i 6= j, we have δ(z
(k)
i , z

(k)
j ) ≥ cκ(1− cκ)kε0.

(iii) For all k ∈ N, all z ∈ bD−(1−cκ)kε0 , there exists j ∈ {1, . . . , nk} such that δ(z, z
(k)
j ) <

cκ(1− cκ)kε0.

For such sequences, we prove the following proposition.

Proposition 2.8. For κ > 0 and c > 0 small enough, let
(
z

(k)
j

)
k∈N,j∈{1,...,nk}

be a sequence

which satisfies (i), (ii) and (iii). Then

(a) D \D−ε0 ∩ U is included in ∪+∞
k=0 ∪

nk
j=1 Pc|ρ(z

(k)
j )|(z

(k)
j ),

(b) there exists M ∈ N such that for all z ∈ D \D−ε0 ∩U , P5cC4|ρ(z)|(z) intersects at most

M Koranyi balls P
5cC4|ρ(z

(k)
j )|(z

(k)
j ).

Proof: We first prove that (a) holds. For z ∈ D \Dε0 , let k ∈ N be such that

(1− cκ)k+1ε0 ≤ |ρ(z)| < (1− cκ)kε0,

and let λ ∈ C be such that ζ = z + ληz belongs to bD−(1−cκ)kε0 . On the one hand,

the assumption (iii) implies that there exists j ∈ {1, . . . , nk} such that δ
(
ζ, z

(k)
j

)
≤

cκ(1− cκ)kε0. On the other hand we have |λ| = δ(z, ζ) ≤ C̃cκ(1− cκ)kε0 where C̃ neither
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depends on z nor on ζ nor on cκ. These two inequalities yield

δ
(
z, z

(k)
j

)
≤ C

(
δ(z, ζ) + δ(ζ, z

(k)
j )
)

≤ κcC(1− cκ)kε0(C̃ + 1)

≤ c
∣∣∣ρ(z(k)

j

)∣∣∣
provided κ is small enough. Therefore z belongs to P

c|ρ(z
(k)
j )|(z

(k)
j ) and (a) holds.

We now prove (b). Let z be a point of D \D−ε0 ∩ U(0). For all ζ ∈ P5cC4|ρ(z)|(z), if c is

small enough, proposition 2.6 yields

1

2
|ρ(z)| ≤ |ρ(ζ)| ≤ 2|ρ(z)|.

The same inequalities hold for all z
(k)
j and all ζ ∈ P

5cC4|ρ(z
(k)
j )|(z

(k)
j ). Thus if the intersec-

tion P
5cC4|ρ(z

(k)
j )|(z

(k)
j ) ∩ P5cC4|ρ(z)|(z) is not empty, we have

1

4
|ρ(z)| ≤ (1− cκ)kε0 ≤ 4|ρ(z)|.

Therefore
ln
(
ρ(z)
ε0

)
−ln 4

ln(1−cκ) ≥ k ≥
ln
(
ρ(z)
ε0

)
+ln 4

ln(1−cκ) so k can take only a finite number of values.

For such a k, we set Ik =

{
j ∈ {1, . . . , nk}, P5cC4|ρ(z

(k)
j )|(z

(k)
j ) ∩ P5cC4|ρ(z)|(z) 6= ∅

}
. As-

sertion (b) will be proved provided we show that #Ik, the cardinal of Ik, is bounded

uniformly with respect to k and z.

We denote by σ the area measure on bD−(1−cκ)kε0 . For all i, j ∈ Ik distinct, we have

δ
(
z

(k)
i , z

(k)
j

)
≥ cκ(1− cκ)kε0. So, provided C is big enough, we have

σ

(
∪j∈IkP5cC4

∣∣∣ρ(z(k)j

)∣∣∣(z(k)
j ) ∩ bD−(1−cκ)kε0

)
≥ σ

(
∪j∈IkP cκC (1−cκ)kε0(z

(k)
j ) ∩ bD−(1−cκ)kε0

)
≥ #Ik ·

(cκ
C

(1− cκ)kε0

)n
.

Now we look for an upper bound of σ

(
∪j∈IkP5cC4|ρ(z

(k)
j )|(z

(k)
j ) ∩ bD−(1−cκ)kε0

)
. We fix

j0 ∈ Ik. For all j ∈ Ik, since P
5cC4|ρ(z

(k)
j )|(z

(k)
j ) ∩ P5cC4|ρ(z)|(z) and P

5cC4|ρ(z
(k)
j0

)|(z
(k)
j0

) ∩
P5cC4|ρ(z)|(z) are not empty, we have

δ
(
z

(k)
j0
, z

(k)
j

)
. δ

(
z

(k)
j0
, z
)

+ δ
(
z, z

(k)
j

)
. 5cC4

(∣∣∣ρ(z(k)
j0

)∣∣∣+
∣∣∣ρ(z(k)

j

)∣∣∣)
. 5cC4(1− cκ)kε0
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uniformly with respect to k, j and j0. Thus there exists K neither depending on z, nor

on j, nor on j0 nor on k such that P
5cC4|ρ(z

(k)
j )|(z

(k)
j ) ⊂ P

5cC4K|ρ(z
(k)
j0

)|(z
(k)
j0

). Therefore

σ

(
∪j∈IkP5cC4|ρ(z

(k)
j )|(z

(k)
j ) ∩ bD−(1−cκ)kε0

)
≤ σ

(
P

5cC4K|ρ(z
(k)
j0

)|z
(k)
j0
∩ bD−(1−cκ)kε0

)
.
(
KcC4(1− cκ)kε0

)n
which yields #Ik .

(
C5

κ

)n
.

The covering property (a) allows us to settle the following definition :

Definition 2.9. Let U be any subset of Cn. If the sequence (zj)j∈N can be renumbered such

that (i), (ii) and (iii) hold true, the family
(
Pc|ρ(zj)|(zj)

)
j∈N

will be called a c-covering of

U ∩ (D \D−ε0).

If we are given an open U and a c-covering
(
Pc|ρ(zj)|(zj)

)
j∈N

of U ∩ (D \Dε0), we will

need to know how many Koranyi balls of a given diameter cover it. In this spirit, we prove

the following lemma.

Lemma 2.10. Let U be an open set, let
(
Pc|ρ(zj)|(zj)

)
j∈N

be a c-covering of U ∩ (D \Dε0)

and let z be a point in U ∩ (D \Dε0). Let us renumber the point (zj)j∈N in the following

way :

Let j0 be an integer such that (1− cκ)−j0ε0 ≤ |ρ(z)| ≤ (1− cκ)−j0−1ε0, let zi,j1 , . . . , zi,jmi,j ,

i ∈ N, j ∈ Z, be the points of the covering such that

• ρ(zi,jm ) = −(1− cκ)j−j0ε0,

• δ(zi,jm , z) belongs to [ic(1− cκ)j−j0ε0, (1 + i)c(1− cκ)j−j0ε0[,

• δ(zi,jm , z) ≤ ε0.

For j ≥ j0, let i0(j) be the non-negative integer such that i0(j)κ(1 − cκ)j−j0 < 1 ≤
(1 + i0(j))κ(1− cκ)j−j0.

Then

(i) P ε0
2C

(z) ∩D ⊂ ∪+∞
j=j0
∪i0(j)
i=0 ∪

mi,j
m=1Pc|ρ(zi,jm )|(z

i,j
m ),

(ii) mi,j . in uniformly with respect to z0, z, i and j.

Proof: Point (i) can be shown exactly as lemma 4.2 in [2] because this property relies

only on the homogeneous properties of the Koranyi balls and not on the dimension. For

the second point (ii), the only difference with [2] is that σ(bDε ∩ Pr(z)), the area of

bDε ∩Pr(z), if non empty, is of order r · (
√
r)

2(n−1)
= rn and so we get a power n instead

of 2 in dimension 2.

2.4. The global definition of the current. For any point p of D, we first define locally

currents T (U) supported on a neighborhood U of p and such that fT (U) = 1.

First case : If we are given a point p of bD ∩ X, let U be a neighborhood of p such

that the Propositions 2.3, 2.4 and 2.6 hold true for all z in U . We fix an arbitrary c-

covering
(
Pc|ρ(zj)|(zj)

)
j∈N

of U ∩ D and a partition of unity (ψj)j∈N associated to this

14



c-covering. We mention here that any partition of unity associated with the covering(
Pc|ρ(zj)|(zj)

)
j∈N

will give a current T (U) such that fT (U) = 1 on U∩(D\D−ε0). However,

in order to have a good extension, we must choose a partition of unity such that for all

j, if w1 = ηzj , w2, . . . , wn is an orthonormal basis, then for all multi-index α and β,∣∣∣∂|α|+|β|ψj
∂wα∂wβ

(z)
∣∣∣ . 1

|ρ(zj)|α1+β1+
α2+β2+...+αn+βn

2

. We then set

T (U) =
∑
j∈N

ψjTzj ,

where Tzj is the current defined in Subsection 2.2. Since fTzj = 1 for all j, we trivially

have fT (U) = 1 on U ∩D. Moreover, if the support of a form g does not intersect D, it

intersects none of the Koranyi ball Pc|ρ(zj)|(zj) and we have 〈T (U), g〉 = 0. Therefor the

support of T (U) is included in D.

Second case : If we are given a point p of bD \X, let U be a neighborhood of p such that

U ∩X = ∅. We then define for a smooth (n, n)-form g supported in U :

〈T (U), g〉 =

∫
ζ∈U∩D

1

f(ζ)
g(ζ).

In this case we trivially have fT (U) = 1 on U ∩D and T (U) is trivially supported in D.

By compacity of bD, we get finitely many open U1, . . . ,UN given by the first and second

cases such that bD is included in
⋃N
j=1 Uj . There exists a small real number that we still

denote by ε0 such that D \D−ε0 ⊂
⋃N
j=1 Uj .

Third case : For any point p ∈ D−ε0 , maybe after a linear change of coordinates, there

is a neighborhood U of p included in D, a non vanishing holomorphic function u and a

Weierstrass polynomial PU (z) = zln+a1(z1, . . . , zn−1)zl−1
n + . . .+al(z1, . . . , zn−1) such that

f = uPU on U . Now for a smooth (n, n)-form g supported in U , we put :

〈T (U), g〉 =
1

l!

∫
ζ∈U

PU (ζ)

f(ζ)

∂lg

∂ζn
l
(ζ).

As in the very local definition of the current in Subsection 2.2, after l integrations by

parts, we get fT (U) = 1. Moreover, T (U) is again supported in D.

Finally, we choose a finite covering of D−ε0 and putting it together with the finite

covering of bD, we get a covering of D that we still denote by U1, . . . ,UN and the associated

currents T (U1), . . . , T (UN ). Using a partition of unity (χj)j=1,...,N associated with this

covering, we set

T =
N∑
j=1

χjT
(Uj).

We have here defined a current such that fT = 1 on D. We will need to apply T to

forms which are not necessarily C∞ smooth and with support included in D and not only

in D. We now prove that T can be applied to forms whose support is included in D and

of class Ck+1 where k is the maximal order of the singularities of X.

Let U be an open set among the Uj which define T and let g be a (n, n)-form of class

Ck+1 supported in D ∩ U .
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If we are given an open set U as in the second case, then 1
f is bounded and so∣∣∣∣∫

U

1

f(ζ)
g(ζ)

∣∣∣∣ . ‖g‖Ck+1 ,

where ‖g‖Ck+1 is the usual Ck+1 norm of g.

If U is as in the third case, then PU
f is bounded and∣∣∣∣∣

∫
ζ∈U

PU (ζ)

f(ζ)

∂lg

∂ζn
l
(ζ)

∣∣∣∣∣ . ‖g‖Ck+1 .

Now if U is as in the first case, without restriction, we may assume that U is of the form

P ε0
2C

(z). Let
(
Pc|ρ(zj)|(zj)

)
j∈N

be the c-covering and let (ψj)j∈N be the partition of unity

used in the definition of T (U). Then for all j, the quotient

∏
l∈Jzj

(
ζ′n−ζ′1ϕzj (ζ′1

1
k ωl,ζ′2,...,ζ

′
n−1)

)
f(π−1

zj
(ζ′))

is bounded by |ρ(zj)|−
k−#Jzj

2 .

On the other hand, since g vanishes outside of D and since bD is smooth (at least of classe

Ck+1), for all z ∈ D and all linear differential operator ∆l of order l ≤ k, |∆lg(z)| .
|ρ(z)|k+1−l, uniformly with respect to z. Proposition 2.6 implies if c is sufficiently small

that |ρ(z)| h |ρ(zj)| uniformly with respect to z in Pc|ρ(zj)|(zj). Moreover,

∣∣∣∣ ∂lψj∂wlzj
(ζ)

∣∣∣∣ .
|ρ(zj)|−

l
2 for all l. Therefore∣∣∣∣∣∣∣

∫
ζ′∈πzj

(
Pc|ρ(zj)|(zj)

)
∏
l∈Jzj

(
ζ ′n − ζ ′1ϕzj (ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

)
f(π−1

zj (ζ ′))

∂#Jzj

∂ζ ′n
#Jzj

(
π−1
zj

∗
ϕzjg

) (
ζ ′
)∣∣∣∣∣∣∣

.
∫
Pc|ρ(zj)|(zj)

|ρ(zj)|−
k−#Jzj

2 |ρ(zj)|k+1−#Jzj ‖g‖Ck+1dV (ζ)

. |ρ(zj)|n+2‖g‖Ck+1 .
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Now, if we renumber the sequence (zj)j∈N as in Lemma 2.10, we get

+∞∑
j=0

∣∣∣∣∣∣∣
∫
ζ′∈πzj

(
Pc|ρ(zj)|(zj)

)
∏
l∈Jzj

(
ζ ′n − ζ ′1ϕzj (ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

)
f(π−1

zj (ζ ′))

∂#Jzj

∂ζ ′n
#Jzj

(
π−1
zj

∗
ϕzjg

) (
ζ ′
)∣∣∣∣∣∣∣

.
+∞∑
j=j0

i0(j)∑
i=0

mi,j∑
m=1

|ρ(zi,jm )|n+2‖g‖Ck+1

. ‖g‖Ck+1

+∞∑
j=j0

i0(j)∑
i=0

mi,j∑
m=1

(
(1− cκ)j−j0ε0

)n+2

. ‖g‖Ck+1εn+2
0

+∞∑
j=j0

(1− cκ)(j−j0)(n+2)

i0(j)∑
i=0

in

. ‖g‖Ck+1εn+2
0

+∞∑
j=j0

(1− cκ)(j−j0)(n+2)i0(j)n+1

. ‖g‖Ck+1εn+2
0

+∞∑
j=j0

(1− cκ)j−j0

. ‖g‖Ck+1 .

Therefor, we can apply T to forms of class Ck+1, where k is the maximum order of the

singularities of X, and which vanish outside of D.

2.5. Berndtsson-Andersson reproducing kernel in Cn. We now recall the definition

of the Berndtsson-Andersson kernel of D when D is a strictly pseudoconvex domain of

Cn.

We denote by g(1) the support function for strictly pseudoconvex domain, given in

Theorem 16 of [11] and the remarks following it, times −1
2 and by (g

(1)
j )j=1,...,n its Hefer

decomposition. If bD is of class Cr , the functions g(1)(ζ, z) and g
(1)
j (ζ, z) are of class

Cr−1 in a neighborhood of D×D, holomorphic with respect to z when ζ is fixed and g(1)

satisfies

(i) g(1)(ζ, ζ) = 0 for all ζ in a neighborhood of D,

(ii) for all ζ and z in a compact set K of D :

2Re g(1)(ζ, z) ≤ ρ(z)− ρ(ζ)− 2δKd(ζ, z)2,

where d(·, ·) is a distance on a neighborhood of D and δK > 0 depends on K.

We cannot use these functions in order to define our extension operator, because we would

fail to get good estimates of our extension. We need a more explicit support function near

the boundary as the Levi polynomial F . We set for ζ near bD and z in Cn :

F (ζ, z) = −
n∑
j=1

∂ρ

∂ζj
(ζ)(zj − ζj) +

1

2

n∑
j,k=1

∂2ρ

∂ζj∂ζk
(ζ)(ζj − zj)(ζk − zk).
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For all ζ and z in a neighborhood of bD, such that |ζ − z| is sufficiently small, we have

2Re F (ζ, z) ≤ ρ(z)− ρ(ζ)− 2β|ζ − z|2

where β is strictly positive. Since this estimate holds true only for ζ and z close from

each other, we have to use a global version of the Levi polynomial. From the proof of

Proposition VII.3.1 of [22], there exist a neighborhood U(bD) of bD, a neighborhood

U(D) of D, ε > 0, a function g(0) defined on U(bD) × U(D) and a function v defined on

U(D)× U(D) such that

(iii) g(0)(ζ, z) is holomorphic with respect to z in U(D),

(iv) Re g(0)(ζ, z) > 0 for all (ζ, z) ∈ U(bD)× U(D) such that |ζ − z| ≥ ε,
(v) g(0)(ζ, z) = 1

2F (ζ, z) 1
1+F (ζ,z)(v−supU(D) |v|)

and Re g(0)(ζ, z) ≤ Re F (ζ, z) for all (ζ, z) ∈

U(bD)× U(D) such that |ζ − z| ≤ ε.
Let g

(0)
1 , . . . , g

(0)
n be the Hefer decomposition of g(0).

Finally, let χ be a smooth cutoff function such that χ = 1 near bD and χ = 0 outside

of the neighborhood U(bD) where g(0) is defined. Then, we put

g(ζ, z) = χ(ζ)g(0)(ζ, z) + (1− χ(ζ))g(1)(ζ, z),

gj(ζ, z) = χ(ζ)g
(0)
j (ζ, z) + (1− χ(ζ))g

(1)
j (ζ, z),

G(ζ, z) =
1

ρ(ζ)

n∑
j=1

gj(ζ, z)dζj .

Then

• g is defined in a neighborhood of D ×D,
• There exists γ > 0 such that Re G(ζ, z) + 1 ≥ 1

ρ(ζ)

(
ρ(ζ)+ρ(z)

2 − γ|ζ − z|2
)
> 0 for

all (ζ, z) ∈ U(D)× U(D),

•
∑n

j=1 gj(ζ, z)(ζj − zj) = g(ζ, z).

We then can define the Berndtsson-Andersson reproducing kernel by setting for arbitrary

positive integers N and k and all ζ, z ∈ D :

PN,k(ζ, z) = CN,k

(
ρ(ζ)

g(ζ, z) + ρ(ζ)

)N+k (
∂G(ζ, z)

)k
,

where CN,k ∈ C is a constant. We also set PN,k(ζ, z) = 0 for all z ∈ D and all ζ /∈ D. The

following representation formula holds (see [6]):

Theorem 2.11. For all g ∈ O(D) ∩ C∞(D) we have

g(z) =

∫
D
g(ζ)PN,n(ζ, z).

2.6. The extension operator. We now come to the definition of the extension operator.

Let b(ζ, z) =
∑n

j=1 bj(ζ, z)dζj be a holomorphic (1, 0)-form such that
∑n

j=1 bj(ζ, z)(zj −
ζj) = f(z)−f(ζ). As in [2], for a function h holomorphic on X∩D and admitting a smooth

extension h̃ which satisfies the assumptions of Theorem 1.2, we define the extension EN (h)

of h by setting

EN (h)(z) = C1∂T [h̃b(·, z) ∧ PN,n−1(·, z)], ∀z ∈ D,
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where C1 is a suitable constant (see [16]). It was shown in [2] that EN (h) is indeed an

extension of h and does not depend on the choice of the smooth extension h̃, provided it

satisfies the hypothesis of Theorem 1.2. However, we have to make some restriction on

the choice of b in order to have a good extension. We need that b satisfies the following

lemma.

Lemma 2.12. For all positive integer k and all function f , holomorphic in a pseudoconvex

neighborhood of D, there exist functions b1, . . . , bn holomorphic in a neighborhood of D×D
such that

(i)
∑n

j=1 bj(ζ, z)(zj − ζj) = f(z)− f(ζ),

(ii) bj(ζ, z) =
∑
|α|≤k

1
α!(|α|+1)

∂|α|+1f
∂ζα∂ζj

(ζ)(z − ζ)α +O(|ζ − z|k+1).

Proof: Since f is holomorphic in a pseudoconvex neighborhood of D, there exist n func-

tions b̃1, . . . , b̃n holomorphic in a neighborhood of D × D, such that f(z) − f(ζ) =∑n
j=1 b̃j(ζ, z)(zj − ζj). Therefor, there exists R > 0 such that for all ζ ∈ D and all

u ∈ Cn with |u| < R the following equalities hold :

f(ζ + u)− f(ζ) =

n∑
l=1

b̃l(ζ, ζ + u)uk

=
n∑
l=1

+∞∑
j=1

∑
|α|=j

1

α!

∂j b̃l
∂zα

(ζ, ζ)uαul.

On the other hand, for all u ∈ Cn with |u| < R

f(ζ + u)− f(ζ) =
+∞∑
j=1

∑
|α|=j

1

α!

∂jf

∂ζα
(ζ)uα.

These yields for any multi-index α with |α| > 0 :

1

α!

∂|α|f

∂ζα
(ζ) =

n∑
j=1
αj≥1

1

α1! . . . (αj − 1)! . . . αn!

∂|α|−1b̃j

∂z(α1,...,αj−1,...,αn)
(ζ, ζ)

=
n∑
j=1

αj
α!

∂|α|−1b̃j

∂z(α1,...,αj−1,...,αn)
(ζ, ζ).(3)

We now define bj(ζ, z) = b̃j(ζ, z)−
∑
|α|≤k

1
α!
∂|α|b̃j
∂zα (ζ, ζ)(z−ζ)α+

∑
|α|≤k

1
α!
∂|α|+1f
∂ζα∂ζj

(ζ) (z−ζ)α
|α|+1 .

We have

bj(ζ, z)−
∑
|α|≤k

1

α!

∂|α|+1f

∂ζα∂ζj
(ζ)

(z − ζ)α

|α|+ 1
= b̃j(ζ, z)−

∑
|α|≤k

1

α!

∂|α|b̃j
∂zα

(ζ, ζ)(z − ζ)α

= O(|ζ − z|k+1).
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Now we check that f(z)− f(ζ) =
∑n

j=1 bj(ζ, z)(zj − ζj). The definition of b implies that

n∑
j=1

bj(ζ, z)(zj − ζj) =f(z)− f(ζ)−
n∑
j=1

∑
|α|≤k

1

α!

∂|α|b̃j
∂zα

(ζ, ζ)(z − ζ)α(zj − ζj)

+

n∑
j=1

∑
|α|≤k

1

α!(|α|+ 1)

∂|α|+1f

∂ζα∂ζj
(z − ζ)α(zj − ζj).

Using (3) we compute
n∑
j=1

∑
|α|≤k

1

α!

∂|α|b̃j
∂zα

(ζ, ζ)(z − ζ)α(zj − ζj)

=
n∑
j=1

∑
|α|≤k

αj + 1

α1! . . . (αj + 1)! . . . αn!

∂|α|b̃j
∂zα

(ζ, ζ)(z1 − ζ1)α1 . . . (zj − ζj)αj+1 . . . (zn − ζn)αn

=
n∑
j=1

∑
|α|≤k+1
αj≥1

αj
α!

∂|α|−1b̃j

∂z(α1,...,αj−1,...,αn)
(ζ, ζ)(z − ζ)α

=
∑

0<|α|≤k+1

n∑
j=1

αj
α!

∂|α|−1b̃j

∂z(α1,...,αj−1,...,αn)
(ζ, ζ)(z − ζ)α

=
∑

0<|α|≤k+1

1

α!

∂|α|f

∂ζα
(ζ)(z − ζ)α.

We also compute
n∑
j=1

∑
|α|≤k

1

α!(|α|+ 1)

∂|α|+1f

∂ζα∂ζj
(ζ)(z − ζ)α(zj − ζj)

=

n∑
j=1

∑
|α|≤k

αj + 1

(|α|+ 1)

∂|α|+1f

∂ζ(α1,...,αj+1,...,αn)
(ζ)

(z1 − ζ1)α1 . . . (zj − ζj)αj+1 . . . (zn − ζn)αn

α1! . . . (αj + 1)! . . . αn!

=

n∑
j=1

∑
0<|α|≤k+1

αj
α!|α|

∂|α|f

∂ζα
(ζ)(z − ζ)α

=
∑

0<|α|≤k+1

1

α!

∂|α|f

∂ζα
(ζ)(z − ζ)α

from which we deduce the equality
∑n

j=1 bj(ζ, z)(zj − ζj) = f(z)− f(ζ).

3. Estimates of the extension operator

We prove in this section that the previously defined extension operator satisfies the

conclusion of Theorem 1.2.

3.1. More estimates. In order to prove the BMO-estimates of Theorem 1.2 we apply

the following classical lemma:
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Lemma 3.1. Let h be a function of class C1 on D. If there exists C > 0 such that

dh(ζ) ≤ C|ρ(ζ)|−1 then h belongs to BMO(D) and ‖h‖BMO(D) ≤ C.

Thus we need to estimate the extension operator and its first derivatives. As usually

with Berndtsson-Andersson kernel, problems occur when ζ and z are close from each

other and close from the boundary. Thus, it suffices to consider a point z near bD, i.e.

z ∈ D \D−ε0 , and to integrate only for ζ in P ε0
2C

(z). Moreover, the only interesting case

for us is when z is near a singularity of X.

We use the same notation as in Subsection 2.1 and we assume that z = 0 belongs to

Sing(X)∩ bD, and is a singularity of order k. We set ω = e
2iπ
k and we assume that we are

given a c-covering (Pc|ρ(zj)|(zj))j∈N of a neighborhood U(0) of 0 where Propositions 2.3,

2.4 and 2.6 hold true.

Lemma 3.2. Let p be any of the points among the zj’s, j ∈ N. Then for all ζ ′ ∈
πp(Pc|ρ(p)|(p)), we have uniformly with respect to ζ ′ and p :∣∣∣∣∣∣
∏
j∈Jp

(
ζ ′n − ζ ′1ϕp

(
ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1

))
f(π−1

p (ζ ′))

(
π−1
p

)∗
b(ζ ′, z)

∣∣∣∣∣∣ . |ρ(p)|
#Jp−1

2

k∑
α=0

(
δ(p, z)

|ρ(p)|

)α
2

,

∣∣∣∣∣∣dz
∏
j∈Jp

(
ζ ′n − ζ ′1ϕp

(
ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1

))
f(π−1

p (ζ ′))

(
π−1
p

)∗
b(ζ ′, z)

∣∣∣∣∣∣ . |ρ(p)|
#Jp−1

2
−1

k∑
α=0

(
δ(p, z)

|ρ(p)|

)α
2

.

Proof: We only prove the first inequality, the second can be proved in the same way. Since

for all ζ ′ ∈ πp(Pc|ρ(p)|(p)) we have δ(π−1
p (ζ ′), z) . δ(π−1

p (ζ ′), p) + δ(p, z) . |ρ(p)|+ δ(p, z),

it suffices to prove the inequality with δ(π−1
p (ζ ′), z) instead of δ(p, z).

We have to distinguish two cases.

First case : When d(p,Sing(X)) ≤ 10C|cρ(p)|
1
2 , according do its definition, Jp = {0, . . . , k−

1}, and so we have to prove that∣∣∣(π−1
p

)∗
b(ζ ′, z)

∣∣∣ ≤ |ρ(p)|
k−1
2

k∑
α=0

(
δ(π−1

p (ζ ′), z)

|ρ(p)|

)α
2

.(4)

We prove that for K > 0 and all ζ ∈ B(p,K|ρ(p)|
1
2 ), we have |f(ζ)| . |ρ(p)|

k
2 , uniformly

with respect to p and ζ. We have d(ζ,Sing(X)) ≤ d(p,Sing(X)) + |ζ − p| . |ρ(p)|
1
2 . Since

d(ζ,Sing(X)) = |ζ1| + |ζn|, setting ζ ′ = πp(ζ), it comes |ζ ′1| . |ρ(p)|
1
2 and |ζ ′n| . |ρ(p)|

1
2 .

Now, if we denote by (ζ ′1)
1
k a complex number such that

(
(ζ ′1)

1
k

)k
= ζ ′1, for any j we have∣∣∣ζ ′n − ζ ′1ϕp(ζ ′1 1

kωj , ζ ′2, . . . , ζ
′
n−1)

∣∣∣ . |ρ(p)|
1
2 .

This readily implies that |f(ζ)| . |ρ(p)|
k
2 .

It then comes for all multi-index α and all ζ ∈ B(p,K|ρ(p)|
1
2 ) the inequality

∣∣∣∂|α|f∂ζα (ζ)
∣∣∣ .

|ρ(p)|
k−|α|

2 . Now Inequality (4) then immediately follows from lemma 2.12.
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Second case : When d(p, Sing(X)) ≥ 10C|cρ(p)|
1
2 , we put f∗p = f ◦π−1

p and b∗ =
(
π−1
p

)∗
b =∑n

j=1 b
∗
jdζ
′
j where ζ ′ = πp(ζ). For all l we have

b∗l (ζ
′, z) =

∑
|α|≤k

1

α!(|α|+ 1)

∂|α|+1f∗p
∂ζ ′α∂ζ ′l

(ζ ′)(πp(z)− ζ ′)α +O(|z − π−1
p (ζ ′)|k+1).

Again, we have to control the derivatives of f . Proposition 2.2 gives

f∗p (ζ ′) = up(π
−1
p (ζ ′))

k−1∏
j=0

(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

)
(5)

where ξ 7→ ξ
1
k is a holomorphic k-root defined on D(πp,1(p), C|cρ(p)|

1
2 ).

For simplicity sake, we will assume that up is in fact constant because, since up and its

derivatives are uniformly bounded, up won’t play any role.

We deduce from equality (5) that for all l,

∣∣∣∣∂|α|+1f∗p
∂ζ′α∂ζ′l

(ζ ′)

∣∣∣∣ is smaller than a sum over all sets

F ⊂ {0, . . . , k − 1} such that #F ≥ k − |α| − 1 of the following terms

∏
j∈F

∣∣∣ζ ′n − ζ ′1ϕp(ζ ′1 1
kωj , ζ ′2, . . . , ζ

′
n−1)

∣∣∣ ∏
j∈{0,...,k−1}\F

∂|βj |
(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

)
∂ζ ′βj

.

where the βj ’s, j ∈ {0, . . . , k−1}\F , are multi-index such that
∑

j βj = α+(0, . . . , 1, . . . , 0),

the 1 being at l-th position.

For all ζ ′ ∈ πp(Pc|ρ(p)|(p)), from Proposition 2.4, ζ ′1 belongs to D(πp,1(p), C|cρ(p)|
1
2 ) and

since |πp,1(p)| ≥ 2C|cρ(p)|
1
2 , we have |ζ ′1| & |ρ(p)|

1
2 . Since from Lemma 2.1, the derivatives

of ϕp are bounded, we get∣∣∣∣∣∣
∂|βj |

(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

)
∂ζ ′βj

∣∣∣∣∣∣ . |ρ(p)|−
|βj |−1

2

and then, denoting by Ac the complement of the set A in {0, . . . , k − 1}, we have :∣∣∣∣∣∣
∏
j∈Jp

(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

)
f∗p (ζ ′)

∂|α|+1f∗p
∂ζ ′α∂ζ ′l

(ζ ′)

∣∣∣∣∣∣
.

∑
F⊂{0,...,k−1}
#F≤k−|α|−1

∏
j∈F

(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

)
∏
Jcp

(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

) |ρ(p)|−
1+|α|−k+#F

2 δ(π−1
p (ζ ′), z)

|α|
2

.
∑

F⊂{0,...,k−1}
#F≤k−|α|−1

∏
j∈F∩Jp

(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

)
∏
Jcp∩F c

(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

) |ρ(p)|−
1+|α|−k+#F

2 δ(π−1
p (ζ ′), z)

|α|
2 .

The definition of Jp implies that
∣∣∣ζ ′n − ζ ′1ϕp(ζ ′1 1

kωj , ζ ′2, . . . , ζ
′
n−1)

∣∣∣ & |ρ(p)|
1
2 for all ζ ′ ∈

πp(Pc|ρ(p)|(p)) and all j /∈ Jp. From Corollary 2.5 comes
∣∣∣ζ ′n − ζ ′1ϕp(ζ ′1 1

kωj , ζ ′2, . . . , ζ
′
n−1)

∣∣∣ .
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|ρ(p)|
1
2 for all ζ ′ ∈ πp(Pc|ρ(p)|(p)) and all j ∈ Jp. Therefore∣∣∣∣∣∣

∏
j∈Jp

(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

)
f∗p (ζ ′)

∂|α|+1f∗p
∂ζ ′α∂ζ ′l

(ζ ′)

∣∣∣∣∣∣
.

∑
F⊂{0,...,k−1}
#F≤k−|α|−1

|ρ(p)|
#(F∩Jp)−#(Jcp∩F

c)−1−|α|+k−#F

2 δ(π−1
p (ζ ′), z)

|α|
2 .

Since #(F ∩ Jp) + #F c = #Jp + #(Jcp ∩ F c), this leads to∣∣∣∣∣∣
∏
j∈Jp

(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1)

)
f∗p (ζ ′)

∂|α|+1f∗p
∂ζ ′α∂ζ ′l

(ζ ′)

∣∣∣∣∣∣ . |ρ(p)|
#Jp−1

2

(
δ(π−1

p (ζ ′), z)

|ρ(p)|

) |α|
2

,

which was to be shown.

Lemma 3.3. There exists a neighborhood U(bD) of bD such that for all p ∈ U(bD) ∩D,

all ζ ∈ Pc|ρ(p)|(p) ∩D and all z ∈ D, we have

|1 +G(ζ, z)| & 1

|ρ(ζ)|
(|ρ(z)|+ |ρ(ζ)|+ δ(ζ, z)).

Proof: For all p, ζ ∈ Pc|ρ(p)|(p) we have δ(p, ζ) ≤ c|ρ(p)| and |ρ(ζ)| ≥ 1
2 |ρ(p)|. Choosing c

such that c < 1
4 , it comes :

|ρ(ζ)|+ δ(z, ζ) ≥ 1

2
|ρ(p)|+ 1

C
δ(z, p)− δ(ζ, p)

≥ 1

2
|ρ(p)|+ 1

C
δ(p, z)− c|ρ(p)|

& |ρ(p)|+ δ(p, z)

and therefor it suffices to prove that |ρ(ζ)+g(0)(ζ, z)| & |ρ(z)|+ |ρ(ζ)|+δ(ζ, z). Moreover,

it suffices to consider the case |ζ− z| < ε for some arbitrary small ε > 0. From Subsection

2.5 we have

g(0) =
(F + |F |2(v − supU(D)2 |v|)
2|1 + F (v − supU(D)2 |v|)|2

and so

Re g(0) =
(ReF + |F |2Re(v − supU(D)2 |v|)

2|1 + F (v − supU(D)2 |v|)|2
.

If |ζ − z| is sufficient small, |1 + F (v − supU(D)2 |v|)|2 ≥
1
2 and so

ρ(ζ) + Re g(0)(ζ, z) ≤ ρ(ζ) + Re F (ζ, z)

≤ ρ(z) + ρ(ζ)

2
− β|ζ − z|2.

This implies that

|ρ(ζ) + Re g(0)(ζ, z)| ≥ |ρ(z)|+ |ρ(ζ)|
2

+ β|ζ − z|2.(6)
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We also have δ(ζ, z) h |ζ − z|2 + |〈ηζ , z − ζ〉|. So if |〈ηζ , z − ζ〉| ≤ γ|ζ − z|2 for some

arbitrarily big γ > 0, (6) gives |ρ(ζ) + Re g(0)(ζ, z)| & |ρ(z)|+ |ρ(ζ)|+ δ(ζ, z).

If |〈ηζ , z − ζ〉| ≥ γ|ζ − z|2

|g(0)(ζ, z)| & |Re g(0)(ζ, z)|+ |Im g(0)(ζ, z)|

≥ |F (ζ, z)| −O(|ζ − z|2)

& |〈ηζ , z − ζ〉| −O(|ζ − z|2)

& δ(ζ, z)

provided γ is big enough. With (6), we are done in this case too.

We denote by ψp the smooth cutoff function of the partition of unity related to Pc|ρ(p)|(p).

The following corollary then immediately follows :

Corollary 3.4. There exists a neighborhood U(bD) of bD such that for all p ∈ U(bD)∩D,

all ζ ∈ Pc|ρ(p)|(p) ∩D and all z ∈ D :∣∣∣∣∂ ∂#Jp

∂ζ ′n
#Jp

(
π−1
p
∗ (
ψpP

N,n−1
)

(ζ ′, z)
)∣∣∣∣ . ( |ρ(p)|

|ρ(p)|+ δ(p, z)

)N 1

|ρ(p)|n+ 1
2

+
#Jp
2

,

∣∣∣∣dz∂ ∂#Jp

∂ζ ′n
#Jp

(
π−1
p
∗ (
ψpP

N,n−1
)

(ζ ′, z)
)∣∣∣∣ . ( |ρ(p)|

|ρ(p)|+ δ(p, z)

)N 1

|ρ(p)|n+ 3
2

+
#Jp
2

.

3.2. BMO-extension. Let h̃ be a smooth extension of h as in the hypothesis of Theorem

1.2. We set γ∞ = sup ζ∈D
|α|≤k

∣∣∣ ∂αh̃
∂ε1α1 ...∂εnαn

(ζ)
∣∣∣ |ρ(ζ)|α1+

α2+...+αn
2 . In order to prove Theorem

1.2 when q = +∞, we have to prove that EN (g) is in BMO(D) and ‖EN (g)‖BMO(D) . γ∞.

We keep the notations of the previous section. If p is any point among the points zj of the

covering, we get from Lemma 3.2 and Corollary 3.4 for ζ ′ ∈ π−1
p (Pc|ρ(p)|(p)) and z ∈ D :∣∣∣∣∣∣dz

∏j∈Jp

(
ζ ′n − ζ ′1ϕp

(
ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1

))
f(π−1

p (ζ ′))
∂
∂#Jp

∂ζ ′n
#Jp

(
π−1
p
∗ (
ψphb ∧ PN,n−1

)
(ζ ′, z)

)∣∣∣∣∣∣
. γ∞

(
|ρ(p)|

|ρ(p)|+ δ(p, z)

)N ′ 1

|ρ(p)|n+2
.

for some integer N ′ ≥ 2. Therefor, when we integrate over Pc|ρ(p)|(p), we get∣∣∣∣∣dz
∫
ζ′∈πp(Pc|ρ(p)|(p))

∏
j∈Jp

(
ζ ′n − ζ ′1ϕp

(
ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1

))
f(π−1

p (ζ ′))

∂
∂#Jp

∂ζ ′n
#Jp

(
π−1
p
∗ (
ψphb ∧ PN,n−1

)
(ζ ′, z)

) ∣∣∣∣∣
. γ∞

|ρ(p)|N ′−1

(|ρ(p)|+ δ(p, z))N
′

Now, we renumber the covering
(
Pc|ρ(zj)|(zj)

)
j∈N

of U(0) as in Lemma 2.10. In order

to apply Lemma 3.1, we show that
∑∞

j=j0

∑i0(j)
i=0

∑mi,j
m=1

|ρ(zi,jm )|N′−1

((i+1)|ρ(zi,jm )|+|ρ(z)|)
N′ is uniformly
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bounded by 1
|ρ(z)| . We have:

∞∑
j=j0

i0(j)∑
i=0

mi,j∑
m=1

|ρ(zi,jm )|N ′−1(
(i+ 1)|ρ(zi,jm )|+ |ρ(z)|

)N ′
≤

∞∑
j=j0

i0(j)∑
i=0

mi,j∑
m=1

(
(1− cκ)j

(i+ 1)(1− cκ)j + 1

)N ′−1

· 1

((i+ 1)(1− cκ)j + 1)|ρ(z)|

≤ 1

|ρ(z)|

 ∞∑
j=0

∞∑
i=0

(1− cκ)j

(i+ 1)N ′−2−n +

−1∑
j=j0

∞∑
i=0

1

(i+ 1)N ′−n(1− cκ)j


.

1

|ρ(z)|
.

So EN (g) belongs to BMO(D) and ‖EN (g)‖BMO(D), up to a multiplicative uniform con-

stant, is lower than sup ζ∈D
|α|≤k

∣∣∣ ∂αh̃
∂ε1α1 ...∂ε1αn

(ζ)
∣∣∣ |ρ(ζ)|α1+

α2+...+αn
2 .

3.3. Lq extension. The Lq-estimates of Theorem 1.2 are left to be shown. For q ∈]1,+∞[

we will apply the following lemma (see [21]):

Lemma 3.5. Suppose the kernel k(ζ, z) is defined on D×D and the operator K is defined

by Kf(z) =
∫
ζ∈D k(ζ, z)f(ζ)dλ(ζ). If for every ε ∈]0, 1[, there exists a constant cε such

that ∫
ζ∈D
|ρ(ζ)|−ε|k(ζ, z)|dλ(ζ) ≤ cε|ρ(z)|−ε, ∀z ∈ D,

and ∫
z∈D
|ρ(z)|−ε|k(ζ, z)|dλ(z) ≤ cε|ρ(ζ)|−ε, ∀ζ ∈ D,

then for all q ∈]1,+∞[, there exists cq > 0 such that ‖Kf‖Lq(D) ≤ ‖f‖Lq(D).

Proof of Theorem 1.2 for q ∈]1,+∞[ : Applying Lemma 3.2 and 3.5 and Corollary 3.4,

it suffices to prove that for all ε ∈]0, 1[ there exists cε > 0 such that∫
ζ∈D

|ρ(ζ)|N ′−ε

(|ρ(ζ)|+ |ρ(z)|+ δ(ζ, z))N
′+n+1

dλ(ζ) ≤ cε|ρ(z)|−ε, ∀z ∈ D,(7) ∫
z∈D

|ρ(ζ)|N ′ |ρ(z)|−ε

(|ρ(ζ)|+ |ρ(z)|+ δ(ζ, z))N
′+n+1

dλ(z) ≤ cε|ρ(ζ)|−ε, ∀ζ ∈ D.(8)

The inequality (7) can be shown as in the proof of Theorem 1.2 for q =∞.

In order to prove that the inequality (8) holds true, we cover D with the Koranyi balls

Pc|ρ(ζ)|(ζ) and
(
P2j+1c|ρ(ζ)|(ζ) \ P2jc|ρ(ζ)|(ζ)

)
, j ∈ N.

For z ∈ Pc|ρ(ζ)|(ζ), |ρ(z)| h |ρ(ζ)| and thus∫
z∈Pc|ρ(ζ)|(ζ)

|ρ(ζ)|N ′ |ρ(z)|−ε

(|ρ(ζ)|+ |ρ(z)|+ δ(ζ, z))N
′+n+1

dλ(z) . |ρ(ζ)|−ε.(9)
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When we integrate on P2j+1c|ρ(ζ)|(ζ) \ P2jc|ρ(ζ)|(ζ) we get∫
P
2j+1c|ρ(ζ)|(ζ)\P2jc|ρ(ζ)|(ζ)

|ρ(ζ)|N ′ |ρ(z)|−ε

(|ρ(ζ)|+ |ρ(z)|+ δ(ζ, z))N
′+n+1

dλ(z)

.
∫

|x1|,|y1|≤2j+1c|ρ(ζ)|
|x2|,|y2|,...,|xn|,|yn|≤

√
2j+1c|ρ(ζ)|

|ρ(ζ)|N ′x−ε1

(|ρ(ζ)|+ 2jc|ρ(ζ)|)N
′+n+1

dλ(z)

. (2j+1c|ρ(ζ)|)−ε+n+1 |ρ(ζ)|N ′

(|ρ(ζ)|+ 2jc|ρ(ζ)|)N
′+n+1

. |ρ(ζ)|−ε2−j(N ′+ε).(10)

Summing (9) and (10) for all non-negative integer j we prove inequality (9). Theorem 1.2

is therefore proved for q ∈]1,+∞[.

Proof of Theorem 1.2 for q = 1 : We prove directly that EN (g) belongs to L1(D). Lemma

3.2 and Corollary 3.4 yield∫
D
|ENg(z)|dλ(z).

∞∑
j=0

∑
|α|≤#Jzj+1

∫
Pc|ρ(zj)|(zj)

|ρ(zj)|α1+
α2+...+αn

2

∣∣∣∣∣ ∂|α|h̃

∂ε1(zj)
α1
. . . ∂εn(zj)

αn (ζ)

∣∣∣∣∣
·

(∫
D

|ρ(ζ)|N ′

(|ρ(ζ)|+ |ρ(z)|+ δ(ζ, z))N
′+n+1

dλ(z)

)
dλ(ζ).

We may show that
∫
D

|ρ(ζ)|N′

(|ρ(ζ)|+|ρ(z)|+δ(ζ,z))N′+n+1dλ(z) is bounded exactly as (8) and we don’t

repeat it here. We then get∫
D
|ENg(z)|dλ(z)

.
∞∑
j=0

∑
|α|≤#Jzj+1

∫
Pc|ρ(zj)|(zj)

|ρ(zj)|α1+
α2+...+αn

2

∣∣∣∣∣ ∂|α|h̃

∂ε1(zj)
α1
. . . ∂εn(zj)

αn (ζ)

∣∣∣∣∣ dλ(ζ)

.
∑

0≤|α|≤k+1

∥∥∥∥∥ζ 7→ |ρ(ζ)|α1+
α2+...+αn

2
∂αh̃

∂ε1α1 . . . ∂εnαn
(ζ)

∥∥∥∥∥
L1(D)

.

4. Smooth Lq extension

4.1. Case q = +∞. In this subsection, we finish the proof of Theorem 1.1. We want to

apply Theorem 1.2 and so we need to construct a smooth extension which satisfies the

assumptions of this theorem.

We choose c > 0 sufficiently small so that Pc|ρ(z)|(z) is included in D ρ(z)
2

for every z

sufficiently close to bD, and we prove the following lemma.

Lemma 4.1. Let h ∈ O(X ∩ D) be such that for all z0 sufficiently close to bD, there

exists an extension h0 ∈ O(Pc|ρ(z0)|(z0)) of h satisfying supPc|ρ(z0)|(z0) |h0| . 1, uniformly

with respect to z0.
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Then there exists an extension h̃ ∈ C∞(D) of h which satisfies hypothesis (i-iii) of Theorem

1.2 for q = +∞.

Proof: We choose a c
2 -covering

(
P c

2
|ρ(zj)|(zj)

)
j∈N∗

of D \D−ε0 where ε0 > 0 is sufficiently

small. Let ε1(zj) = ηzj , . . . , εn(zj) be an orthonormal basis of Cn. We denote by ζ∗ =

(ζ∗1 , . . . , ζ
∗
n) the coordinates system centered at zj and of basis ε1(zj), . . . , εn(zj). We now

choose a partition of unity (ψj)j∈N relative to the covering
(
P c

2
|ρ(zj)|(zj)

)
j∈N∗
∪D−ε0 of D

such that for all j > 0, for all multi-indexes α and β,

∣∣∣∣∂|α|+|β|ψj∂ζ∗α∂ζ∗
β (ζ)

∣∣∣∣ . 1

|ρ(zj)|α1+β1+
∑n
l=2

αl+βl
2

.

Now, we put h̃ =
∑+∞

j=0 ψjhj where h0 is a holomorphic extension of h given by Cartan B

theorem and where, for j > 0, hj is the holomorphic extension of h on Pc|ρ(zj)|(zj) given

by the hypothesis of the lemma.

Cauchy’s inequalities imply that for all j, all ζ ∈ P c
2
|ρ(zj)|(zj) and all multi-index α,∣∣∣∂|α|hj∂ζ∗α (ζ)

∣∣∣ . 1

|ρ(zj)|α1+
α2+...+αn

2

uniformly with respect to ζ and j. Therefore, for all multi-

indexes α and β,

∣∣∣∣∂|α|+|β|ψjhj∂ζ∗α∂ζ∗
β (ζ)

∣∣∣∣ . 1

|ρ(zj)|α1+β1+
∑n
l=2

αl+βl
2

. It follows immediately that for

all N ∈ N∗, ρN h̃ vanishes to order N on bD. Since |ρ(ζ)| h |ρ(zj)| on P c
2
|ρ(zj)|(zj), for all

multi-index α also comes the uniform boundedness of |ρ(ζ)|α1+
∑n
l=2 αl
2

∂|α|ψjhj
∂ζ∗

α (ζ) and so

of
∣∣∣ ∂αh̃
∂ε1α1 ...∂εnαn

∣∣∣ |ρ|α1+
α2+...+αn

2 . Finally, since for all j the functions hj are holomorphic,

∂αh̃
∂ε1α1 ...∂εnαn

= 0 on X ∩D for all multi-index α.

Therefor, in order to prove Theorem 1.1, it suffices to extend locally and uniformly h.

We will achieve this goal with divided differences. If ϕ is a function defined on an open

set U of C and if t1, . . . , tj are j pairwise distinct points in U , we set

ϕ[tl] = ϕ(tl), l = 1, . . . , j,

ϕ[t1, . . . , tj ] =
ϕ[t2, . . . , tj ]− ϕ[t1, . . . , tj−1]

tj − t1
.

Proof of Theorem 1.1 : according to Lemma 4.1, it suffices to extend h holomorphically

and boundedly on any Koranyi ball Pc|ρ(p)|(p) where p ∈ D is close to bD. Without

restriction, we assume that Pc|ρ(p)|(p) intersects X and that p belongs to a neighborhood

U(0) of the point 0 which belongs to bD∩Sing(X). We adopt the notations of Subsection

2.1. Let k denotes the order of the singularity 0.

If d(p,Sing(X)) ≤ 10C|cρ(p)|
1
2 , we set Jp = {0, . . . , k − 1} and for any ξ, we choose an

arbitrary complex number ξ
1
k such that ξ = (ξ

1
k )k.

If d(p,Sing(X)) ≥ 10C|cρ(p)|
1
2 , we set as in Subsection 2.1 :

Jp =
{
j ∈ {0, . . . , k}/ ∃ζ ′ ∈ πp

(
Pc|ρ(p)|(p)

)
,
∣∣ζ ′1ϕp(ζ ′1 1

kωj , ζ ′2, . . . , ζ
′
n−1)− ζ ′n

∣∣ ≤ 2|cρ(p)|
1
2

}
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where ξ 7→ ξ
1
k is a k-root defined on D(πp,1(p), C|cρ(p)|

1
2 ) and ω = e

2iπ
k . We then define

hp by setting hp = Hp ◦ π−1
p and

Hp(ζ
′) =

∑
j∈Jz

∏
l∈Jp
l 6=j

(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωl, ζ ′2, . . . , ζ

′
n−1)

ζ ′1ϕp(ζ
′
1

1
kωj , ζ ′2, . . . , ζ

′
n−1)− ζ ′1ϕp(ζ ′1

1
kωl, ζ ′2, . . . , ζ

′
n−1)

)

· h
(
π−1
p

(
ζ ′1, . . . , ζ

′
n−1, ζ

′
1ϕp(ζ

′
1

1
kωl, ζ ′2, . . . , ζ

′
n−1)

)) .

Thus Hp(ζ
′) is well defined provided that π−1

p

(
ζ ′1, . . . , ζ

′
n−1, ζ

′
1ϕp(ζ

′
1

1
kωl, ζ ′2, . . . , ζ

′
n−1)) be-

longs to X ∩D for all l ∈ Jp, and provided that for all j 6= l, ζ ′1ϕp(ζ
′
1

1
kωl, ζ ′2, . . . , ζ

′
n−1) 6=

ζ ′1ϕp(ζ
′
1

1
kωj , ζ ′2, . . . , ζ

′
n−1).

For all ζ ′ ∈ π−1
p (Pc|ρ(p)|(p)) and all j ∈ Jp, Corollary 2.5 and Proposition 2.3 give that

π−1
p

(
ζ ′1, . . . , ζ

′
n−1, ζ

′
1ϕp(ζ

′
1

1
kωl, ζ ′2, . . . , ζ

′
n−1) belongs to X ∩ PcC4|ρ(z)|(z) which is included

in X ∩D provided c is small enough.

Now if we have ζ ′1ϕp(ζ
′
1

1
kωl, ζ ′2, . . . , ζ

′
n−1) = ζ ′1ϕp(ζ

′
1

1
kωj , ζ ′2, . . . , ζ

′
n−1) for j 6= l, then

π−1
p

(
ζ ′1, ζ

′
2, . . . , ζ

′
n−1, ζ

′
1ϕp(ζ

′
1

1
kωl, ζ ′2, . . . , ζ

′
n−1)

)
belongs to Sing(X) and so ζ ′1 = 0. There-

for, it suffices to prove that Hp is bounded when ζ ′1 6= 0 in order to prove that Hp is

holomorphic everywhere.

The function Hp is a polynomial in ζ ′n with coefficients depending on ζ ′1, . . . , ζ
′
n−1 which

interpolate h ◦ π−1
p at the points

(
ζ ′1, . . . , ζ

′
n−1, ζ

′
1ϕp(ζ

′
1

1
kωl, ζ ′2, . . . , ζ

′
n−1)

)
, l ∈ Jp. It can

therefor be rewritten using divided differences. We set for ζ ′1 6= 0 and j1, . . . , jl ∈ Jp
pairwise distinct:

aj1(ζ ′1, . . . , ζ
′
n−1) = h ◦ π−1

p (ζ ′1, . . . , ζ
′
n−1, ζ

′
1ϕp(ζ

′
1

1
kωj1 , ζ ′2, . . . , ζ

′
n−1)),

aj1,...,jl(ζ
′
1, . . . , ζ

′
n−1) =

aj1,...,jl−1
(ζ ′1, . . . , ζ

′
n−1)− aj2,...,jl(ζ ′1, . . . , ζ ′n−1)

ζ ′1ϕp(ζ
′
1

1
kωj1 , ζ ′2, . . . , ζ

′
n−1)− ζ ′1ϕp(ζ ′1

1
kωjl , ζ ′2, . . . , ζ

′
n−1)

.

Writing Jp as Jp = {j1, . . . , jl}, where l = #Jp, we thus have

Hp(ζ
′
1, . . . , ζ

′
n)

= aj1(ζ ′1, . . . , ζ
′
n−1) + . . .+ aj1,...,jl(ζ

′
1, . . . , ζ

′
n−1)

l−1∏
m=1

(
ζ ′n − ϕp(ζ ′1

1
kωjm , ζ ′2, . . . , ζ

′
n−1)

)
.

We show that for all j1, . . . , jm ∈ Jp pairwise distinct and all ζ ′ ∈ π−1
p (Pc|ρ(p)|(p)), ζ

′
1 6= 0,

we have |aj1,...,jm(ζ ′1, . . . , ζ
′
n−1)| . |ρ(p)|−

m−1
2 . Since for all j ∈ Jp and ζ ∈ Pc|ρ(p)|(p) we

have by Proposition 2.3 and Corollary 2.5
∣∣∣ζ ′n − ϕp(ζ ′1 1

kωj , ζ ′2, . . . , ζ
′
n−1)

∣∣∣ ≤ C2|cρ(p)|
1
2 , we

will have proved that Hp is bounded.

Let ζ ′ be a point in π−1
p (Pc|ρ(p)|(p)). We consider the disc γ : t 7→ π−1

p (ζ ′1, . . . , ζ
′
n−1, ζ

′
n+t)

for t ∈ D(0, 2C2|cρ(p)|
1
2 ). For all such t, γ(t) = π−1

p (ζ ′) + twp and since wp is tangent,

γ(t) belongs to P5C4|cρ(p)|(p) which is included in D provided c is small enough. Therefor,
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by hypothesis, h◦γ admits an holomorphic extension hγ to D(0, 2C2|cρ(p)|
1
2 ) bounded by

some constant which does not depend on γ.

We set for j ∈ Jp, tj = ζ ′1ϕp(ζ
′
1

1
kωj , ζ ′2, . . . , ζ

′
n−1) − ζ ′n. We then have |tj | ≤ C2|cρ(p)|

1
2

and

aj1,...,jm(ζ ′1, . . . , ζ
′
n−1) = hγ [tj1 , . . . , tjm ].

We then get from [17] :

aj1,...,jm(ζ ′1, . . . , ζ
′
n−1) =

1

2iπ

∫
|t|= 3

2
C2|cρ(p)|

1
2

hγ(t)

(t− tj1) . . . (t− tjm)
dt

from which we deduce∣∣aj1,...,jm(ζ ′1, . . . , ζ
′
n−1)

∣∣ . |ρ(p)|−
m−1

2 sup

D(0,2cC2|ρ(p)|
1
2 )

|hγ |

. |ρ(p)|−
m−1

2 .

4.2. Case q < +∞.

Lemma 4.2. Let
(
P c

2
|ρ(zj)|(zj)

)
j∈N

be a c
2 -covering of X ∩D ∩ U(bD) where U(bD) is a

neighborhood of bD. Let h ∈ O(X ∩D) be such that for all j, there exists an holomorphic

extension hj ∈ O(Pc|ρ(zj)|(zj) ∩ Lq(Pc|ρ(zj)|(zj)) of h such that
∑+∞

j=0 ‖hj‖
q
Lq(Pc|ρ(zj)|(zj))

is

finite.

Then there exists an extension h̃ ∈ C∞(D) of h which satisfies hypothesis (i-iii) of Theorem

1.2.

Proof: We define h̃ as in Lemma 4.1 using our given c
2 -covering and we use the notation

of Lemma 4.1. Thus the Hypothesis (iii) of Theorem 1.2 is immediately satisfied.

Cauchy’s inequalities then give∣∣∣∣∣∂|α|hj∂ζ∗α
(ζ)

∣∣∣∣∣ . 1

|ρ(zj)|α1+
α2+...+αn

2
+n+1

q

‖hj‖Lq(Pc|ρ(zj)|(zj))

uniformly for all j, all multi-indexes α and all ζ ∈ P c
2
|ρ(zj)|(zj).

Therefore, for all multi-indexes α and β,

∣∣∣∣∂|α|+|β|ψjhj∂ζ∗α∂ζ∗
β (ζ)

∣∣∣∣ . ‖hj‖
Lq
(
Pc|ρ(zj)|

(zj)

)

|ρ(zj)|
α1+β1+

∑n
l=2

αl+βl
2 +n+1

q

.

It follows immediately that for all N ∈ N, ρN+n+2h̃ vanishes to order N on bD.

It also comes∫
P c

2 |ρ(zj)|
(zj)

(
|ρ(ζ)|α1+

∑n
l=2 αl
2

∂|α|ψjhj

∂ζ∗
α (ζ)

)q
dλ(ζ) . ‖hj‖qLq(Pc|ρ(zj)|(zj))

.

Since
∑+∞

j=1 ‖hj‖
q
Lq(Pc|ρ(zj)|(zj))

is finite, this implies that h̃ satisfies hypothesis (ii) of The-

orem 1.2.

Theorem 4.3. Let
(
P c

2
|ρ(zj)|(zj)

)
be a c

2 -covering of X ∩ D ∩ U(bD) where U(bD) is a

neighborhood of bD and let h belongs to O(X ∩D) such that for all j, there exists cj > 0
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such that for all holomorphic disc γ : ∆→ D with γ(∆) included in P5cC4|ρ(zj)|(zj), there

exists hγ ∈ O(∆) which satisfies

(1) hγ(t) = h ◦ γ(t) for all t ∈ γ−1(X),

(2) |hγ(t)|q . 1
Vol(Pc|ρ(zj)|(zj))

cj , for all t,

(3)
∑+∞

j=0 cj is finite.

Then there exists an extension H of h in O(D) ∩ Lq(D).

Remark 1. As for Theorem 1.1, not all disc have to be tested but only regular disc, i.e.

disc γ such that γ′ does not vanish. In fact, as we shall see in the proof of Theorem 4.3,

the discs that we use are in fact linear discs.

The conditions of Theorem 4.3 are in fact necessary and sufficient. Indeed, if the

function h belongs to O(D)∩Lq(D), then for any covering
(
P c

2
|ρ(zj)|(zj)

)
and any disc γ

included in P5cC4|ρ(zj)|(zj) for some j, we can set hγ = h ◦ γ. Then Cauchy’s inequalities

will give |hγ(t)|q . 1
Vol(Pc|ρ(zj)|(zj))

cj , with cj = ‖h‖qLq(P5cC4|ρ(zj)|
(zj))

. Since any point z ∈ D
belongs to a finite number M of Koranyi balls of a given covering, M which does not

depend on z, the sum
∑+∞

j=0 ‖h‖
q
Lq(P5cC4|ρ(zj)|

(zj))
is bounded up to a multiplicative constant

by ‖h‖qLq(D).

If X is a manifold, we know from the work of Ohsawa that a function h ∈ L2(X ∩
D) ∩ O(X ∩D) as a holomorphic extension in L2(D) and thus satisfies the hypothesis of

Theorem 4.3. This can also be checked directly by extending trivially h over a holomorphic

disc and by using Cauchy’s inequalities in order to prove that this extension satisfies the

required estimates.

Proof of Theorem 4.3 : In order to apply Lemma 4.2, we proceed as in the proof of

Theorem 1.1 from which we use the notations. For j ∈ N, we exhibit a holomorphic

extension hj ∈ O(Pc|ρ(zj)|(zj)) ∩ Lq(Pc|ρ(zj)|(zj)) of h such that ‖hj‖qLq(Pc|ρ(zj)|(zj))
. cj ,

uniformly with respect to j.

We put p = zj and c(p) = cj . If d(p,Sing(X)) ≤ 10C|cρ(p)|
1
2 , we set Jp = {0, . . . , k−1}

and for any ξ, we choose an arbitrary complex number ξ
1
k such that ξ = (ξ

1
k )k.

If d(p,Sing(X)) ≥ 10C|cρ(p)|
1
2 , we set as in Subsection 2.1 :

Jp =
{
j ∈ {0, . . . , k}/ ∃ζ ′ ∈ πp

(
Pc|ρ(p)|(p)

)
,
∣∣ζ ′1ϕp(ζ ′1 1

kωj , ζ ′2, . . . , ζ
′
n−1)− ζ ′n

∣∣ ≤ 2|cρ(p)|
1
2

}
where ξ 7→ ξ

1
k is a k-root defined on D(πp,1(p), C|cρ(p)|

1
2 ) and ω = e

2iπ
k . We then define

hp by setting hp = Hp ◦ π−1
p and

Hp(ζ
′) =

∑
j∈Jz

∏
l∈Jp
l 6=j

(
ζ ′n − ζ ′1ϕp(ζ ′1

1
kωl, ζ ′2, . . . , ζ

′
n−1)

ζ ′1ϕp(ζ
′
1

1
kωj , ζ ′2, . . . , ζ

′
n−1)− ζ ′1ϕp(ζ ′1

1
kωl, ζ ′2, . . . , ζ

′
n−1)

)

· h
(
π−1
p

(
ζ ′1, . . . , ζ

′
n−1, ζ

′
1ϕp(ζ

′
1

1
kωl, ζ ′2, . . . , ζ

′
n−1)

))
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for ζ ′ ∈ π−1
p (Pc|ρ(p)|(p)). We rewrite Hp as in the proof of Theorem 1.1. We consider

the disc γ : t 7→ π−1
p (ζ ′1, . . . , ζ

′
n−1, ζ

′
n + t) for t ∈ D(0, 2C2|cρ(p)|

1
2 ). For all such t,

γ(t) = π−1
p (ζ ′)+twp and since wp is tangent, γ(t) belongs to P5cC2|ρ(p)|(p) which is included

in D provided c is small enough. Therefor, by hypothesis, h ◦ γ admits an holomorphic

extension hγ to D(0, 2C2|cρ(p)|
1
2 ) such that |hγ |q . 1

Vol(Pc|ρ(p)|(p))
c(p).

As in proof of Theorem 1.1, we write Jp as Jp = {j1, . . . , jl} and set for j ∈ Jp,

tj = ζ ′1ϕp(ζ
′
1

1
kωj , ζ ′2, . . . , ζ

′
n−1)− ζ ′n. We then have |tj | ≤ C2|cρ(p)|

1
2 and we get from [17] :

aj1,...,jm(ζ ′1, . . . , ζ
′
n−1) =

1

2iπ

∫
|t|= 3

2
C2|cρ(p)|

1
2

hγ(t)

(t− tj1) . . . (t− tjm)
dt

for all ζ ′ ∈ πp(Pc|ρ(p)|(p)). It then comes∣∣aj1,...,jm(ζ ′1, . . . , ζ
′
n−1)

∣∣ . 1

2π|ρ(p)|
m−1

2

∫ 2π

0
|hγ(

3

2
C2|cρ(p)|eiθ)|dθ.

Using Jensen’s inequality, we get for all ζ ′ ∈ πp(Pc|ρ(p)|(p))∣∣∣∣∣∣aj1,...,jm(ζ ′1, . . . , ζ
′
n−1)

∏
j=j1,...,jm−1

(
ζ ′n − ζ ′1ϕp

(
ζ ′1

1
kωj , ζ ′2, . . . , ζ

′
n−1

))∣∣∣∣∣∣
q

.
1

2π

∫ 2π

0

∣∣∣∣hγ(
3

2
cC2|ρ(p)|eiθ)

∣∣∣∣q dθ
.

1

Vol(Pc|ρ(p)|(p))
c(p).

Therefor Hp is bounded in {ζ ′ ∈ πp
(
Pc|ρ(p)|(p)

)
/ ζ ′1 6= 0} and can be extended holomor-

phically in πp
(
Pc|ρ(p)|(p)

)
. Moreover, we have∫
πp(Pc|ρ(p)|(p))

|Hp(ζ
′)|qdλ(ζ) . c(p).

Remark 2. In the proof of Theorems 1.1 and 4.3, we have use divided differences in order

to construct a holomorphic extension of h ∈ O(X ∩D) and we proved that these divided

differences are bounded in a certain sense using the existence of good extensions of h in

holomorphic discs. But when we look at finding those good extensions in holomorphic

discs, a good way (only way ?) is to use divided differences. And in fact, the existence of

good extensions in holomorphic discs is equivalent to the control of the divided differences

that we used.
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