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 and provide some further precisions.

. The correct statement is the following: Theorem 0.1. Let n ≥ 1 be an integer. Let M = ∪ d>0 M 2d be the union of the moduli spaces M 2d of projective irreducible holomorphic symplectic varieties of K n (A)-type polarized by a line bundle of degree 2d. For all (X, H) ∈ M, outside at most a finite number of connected components determined by the monodromy orbit of H, the linear system |mH|, for some m, contains a uniruled divisor covered by rational curves of primitive class.

Let q be the Beauville-Bogomolov quadratic form on H 2 (X, Z). This induces an embedding H 2 (X, Z) → H 2 (X, Z), H → H ∨ . By abuse of notation we denote again by q the quadratic form on H 2 (X, Z).

Remark 0.2. The statement above insures precisely existence of uniruled divisors covered by primitive rational curves if there exist integers p, g, and such that p ≥ g and = 0 or 1 with (i) the class α := H ∨ div(H) ∈ H 2 (X, Z) can be written as γ + (2g -)η with η in the monodromy orbit of the class of the exceptional curve on a K n (A);

(ii) γ ∈ η ⊥ , q(γ ) = 2p -2 (hence, q(α) = 2p -2 -(2g-) 2 2n+2
).

Remark 0.3.

(i) It follows from Proposition 2.1 that if q(α) > n + 1, then a multiple of H is uniruled by primitive rational curves of class α.

(ii) If ρ(X) ≥ 2 then X always contains an ample uniruled divisor covered by primitive rational curves (cf. Corollary 2.3).

(iii) If n ≤ 5 then the conclusion of the theorem holds for all the connected components of M (cf. Remark 2.3).

(iv) If n + 1 is a power of a prime number, then by [START_REF] Markman | The monodromy of generalized Kummer varieties and algebraic cycles on their intermediate Jacobians[END_REF] and [START_REF] Mongardi | On the monodromy of irreducible symplectic manifolds[END_REF], the monodromy group is maximal. Therefore, it suffices to check that the square q(α) is of the form 2p -2 -(2g-) 2 2n+2 , with p ≥ g. 

p a (H A ) ≥ g ≥ 2.
The construction is also correct, but the examples that we provided cannot yield all the possible primitive polarizations, as we tacitely and erroneously assumed in [START_REF] Mongardi | Polarized parallel transport and uniruled divisors on deformations of generalized Kummer varieties[END_REF]. Even without taking the monodromy orbit into account, this is simply because it may happen that the number 2p -2 -(2g-) 2 2n+2 , = 0, 1 is positive even with p < g, which obviously renders our geometric argument empty. Indeed, the rational curves are constructed as g 1 n on the normalization of a nodal curve of geometric genus g lying in the hyperplane linear system |H A |, which is supposed to have p a (H A ) = p.

We also take the occasion of this note to provide the full proof (Proposition 1.1) of a technical point that we claimed in [START_REF] Mongardi | Polarized parallel transport and uniruled divisors on deformations of generalized Kummer varieties[END_REF]Section 4.2] to follow from a dimension count as Corrigendum and Addendum 3 in [START_REF] Voisin | Remarks and Questions on Coisotropic Subvarieties and 0-cycles of Hyper-Kähler Varieties[END_REF]Example 4.1,[START_REF] Chiantini | Nodal curves on surfaces of general type[END_REF]]. The statement is correct, but the argument cannot be the same as in [START_REF] Voisin | Remarks and Questions on Coisotropic Subvarieties and 0-cycles of Hyper-Kähler Varieties[END_REF]Example 4.1,[START_REF] Chiantini | Nodal curves on surfaces of general type[END_REF]] because we deal here with a locally closed subset (the Severi variety) of a complete linear system and not with the complete linear system.

The K3 [n] -type case, initially treated in [START_REF] Charles | Families of rational curves on holomorphic symplectic varieties[END_REF], is subject to the same considerations and will be treated in [START_REF] Charles | Families of rational curves on holomorphic symplectic varieties of K3 [n] -type[END_REF].

We realized our mistake after the appearance of [START_REF] Oberdieck | Rational curves in the Fano varieties of cubic 4-folds and Gromov-Witten invariants[END_REF], which provides counterexamples in the K3 [n] -case that apply exactly in all cases not covered by the similar geometric constructions for the Hilbert scheme of points on a general projective K3.

Contrary to the K3 [n] -type case as far as we know there are no known counterexamples to the existence of uniruled divisors ruled by a primitive curve class in the K n (A)-type case. Nevertheless, we have no reasons to believe that the K n (A)-type case could be exempt from this type of sporadic pathologies.

Existence of Uniruled Divisors on K n (A)

In [9, Section 4.2 "Examples"] we claimed that "the natural map from C 1 g+1 → A [g+1] is finite onto its image" invoking a dimension count made in [START_REF] Voisin | Remarks and Questions on Coisotropic Subvarieties and 0-cycles of Hyper-Kähler Varieties[END_REF]Example 4.1,[START_REF] Chiantini | Nodal curves on surfaces of general type[END_REF]]. However, the same argument cannot work because we do not work with the full continuous system but with a locally closed subset (the Severi variety). Hence, we take the occasion to provide a full proof of that statement in the following. Proposition 1.1. Let g be an integer ≥ 2 and (A, H A ) be a general polarized abelian surface with p a (H A ) =: p ≥ g. Then A [g+1] contains a uniruled divisor covered by the g 1 g+1 on nodal genus g curves in the continuous system {H A }.

Proof.

To prove the statement we can actually work over a very general polarized abelian surface, so let us suppose that NS(A) = ZH A . We will prove this statement by induction on g. It is sufficient to show it on the symmetric product of A.

Observe that, by [4, Theorem. 1.1], for all 2 ≤ g ≤ p a (H A ), that the Severi variety parametrizing nodal genus g curves inside {H A } is non-empty of the expected dimension g.

It is sufficient to show the claim on the symmetric product A (g+1) of A. More precisely, we will prove the following statement: there exists an irreducible component V of the (Zariski closure of the) Severi variety parametrizing nodal genus g curves inside

{H A } such that, if C V → V denotes the universal curve and C (g+1) V → V the relative symmetric product, the natural morphism C (g+1) V → A (g+1)
is generically finite onto its image. Note that this is equivalent to saying that (g + 1)

generic points on a generic curve of the family lie only on a finite number of curves of the family.

Indeed as dim C (g+1) V = reldim(C (g+1) V ) + dim V = (g + 1) + g = 2g + 1
it follows that the image is a divisor inside A (g+1) . Since the k-th symmetric product of a curve is uniruled for k greater than the genus of the curve, as a by-product we have that such divisor is uniruled.

Note also that positive dimensional fibers of the morphism

C (g+1) V → A (g+1)
cannot lie in a fiber of

C (g+1) V → V, as C (g+1) t injects into A (g+1) for every t ∈ V.
We start with the case g = 2. Let C be one of the (finitely many) nodal curves of geometric genus 2 inside the linear system |H A |. In this case the points of the component V of the Severi variety containing C are given by all the translates of C.

The 3rd symmetric product C (3) injects as a three-dimensional subvariety inside A (3) .

The action of A on C (3) by translation has no positive-dimensional stabilizer (as A is general, hence simple). Therefore the orbit of C (3) under this action is a divisor. Using the notation above such divisor is the image of

C (2+1) V
in A (3) . We claim that by the inductive hypothesis D W has codimension 2, or, equivalenty, that the morphism C (g+1) W → A (g+1) is generically finite onto its image. Indeed if ξ = x 1 + . . . + x g+1 is a generic point of the image, then, say, x 1 + . . . + x g is a generic point of the image of the morphism C (g) W → A (g) . By the inductive hypothesis the points x 1 , . . . , x g lie on finitely many curves of the family W, a fortiori that will be true for x 1 , . . . , x g , x g+1

By inductive hypothesis

and the claim follows.

We want to prove that D contains D W strictly. If this were not the case, by be a point in U. Let C be a nodal genus g curve in V containing these points. Let us fix the 1st g points p 1 , . . . , p g . By induction these points are contained inside a finite number of curves of genus g -1 belonging to W. Let B 1 , . . . , B m be all such curves. Let U C ⊂ C be an open subset such that for all q ∈ U C we have p 1 + . . . + p g + q ∈ U. As we have seen above p 1 , . . . , p g , q lie on finitely many curves of genus g -1 belonging to W, and these curves must be B 1 , . . . , B m . Therefore, as q varies in U C , we deduce that U C is a subset of a finite union of genus (g -1) curves. As C is irreducible, there is an i such that C = B i , which is clearly a contradiction. Therefore, D must strictly contain D W and be a divisor, which is necessarily uniruled.

The rest of the proof remains the same and we refer the reader to [START_REF] Mongardi | Polarized parallel transport and uniruled divisors on deformations of generalized Kummer varieties[END_REF] for the details.

Where It Does Not Work

In this section we prove that, for every dimension, there is at most a finite number of components of the moduli space of polarized manifolds (X, H) of K n (A)-type where the strategy of the previous section does not work. The uniruled divisors we constructed have a cohomology class that is a multiple of

H A -(2g)τ (or H A -(2g-1)τ ) where 2p-2 = H 2
A and H A is the primitive polarization on the abelian surface. We have the following: Proposition 2.1. Let X be a projective irreducible holomorphic symplectic variety of

K n (A)-type. Let C ∈ H 2 (X, Z) ∩ N 1 (X)
be a primitive class such that its square q(C) with respect to the Beauville-Bogomolov form is > n + 1. Then, the class C is deformation equivalent to the class of one of the curves constructed in the previous section.

Proof. We know by [ 

:= U 3 ⊕ (-2n -2) ∼ = H 2 (X, Z); see [11, Theorem 2.8].
For a fixed square of H, there is a finite number of orbits (computed again in [11, Theorem 2.8]), so it follows that if X has a uniruled divisor when q(H) is big enough, our claim will hold. The dual curve to H is given by H/div(H), where div(H) is the divisibility of H, which is the positive generator of the ideal q(H, H 2 (X, Z)). The divisibility is at most 2n + 2; therefore, if q(H) ≥ (2n + 2) 2 (n + 1) the dual curve has square at least n + 1, so that Proposition 2.1 applies and our claim follows.

Corollary 2.3. Let X be a projective manifold of K n (A)-type with Picard rank at least two. Then X has an ample divisor ruled by primitive rational curves.

Proof. Since X is projective and has Picard rank at least two, its Picard lattice is indefinite and contains primitive elements of positive arbitrary Beauville-Bogomolov square and so does the ample cone. Let H be an ample divisor such that q(H) ≥ (2n +

2) 2 (n + 1). Let C be its dual curve in H 2 (X, Z). As the divisibility of H is at most 2n + 2 it follows that q(C) ≥ n + 1, and Proposition 2.1 yields our claim.

Remark 2.4

The estimate of Proposition 2.1 is definitely not sharp; indeed, all primitive curves of positive square on manifolds of K n (A)-type with n ≤ 5 are deformation equivalent to the curves we construct in Proposition 1.1. Indeed, by [9, Theorem 4.2] we can suppose that our pair (X, C) with q(C) > 0 is (K n (A), H Aμτ ) with 0 ≤ μ ≤ n + 1 and A is an abelian surface of genus p. The class H Aμτ is given by the class of the rational curves constructed in Proposition 1.1, which have class H A -2gτ , with the eventual addition of a tail of class τ , so that 2g ≤ n + 2. By contradiction let us suppose that g > p and n ≤ 5. We have q(H A -2gτ 2 6 . However, the last value is never positive; hence, q(H A -2gτ ) cannot be positive and we reach a contradiction. Analogously, for C = H A -(2g -1)τ , we have q(C) ≤ 20p-25-4p 2 12 with g ≥ p + 1 and 2g ≤ n + 2, which is again not positive.

) = 2p -2 -2 g 2 n+1 ≤ 2p -2 -2 (p+1) 2 n+1 ≤ 2p -2 -2 (p+1)

  The original proof was based on three ingredients: the 1st was a deformation theoretic statement, saying that rational curves whose deformations cover a divisor in irreducible holomorphic symplectic manifolds are non-obstructed [1, Corollary 3.5]. The 2nd is the characterization of polarized parallel transport operators on polarized irreducible holomorphic symplectic varieties (X, H) of K n (A)-type [9, Theorem 1.1] that allows to obtain an explicit description of the polarized deformation equivalence [9, Theorem 4.2]. These two ingredients are true. The 3rd argument consists in the construction of explicit examples of uniruled divisors on the generalized Kummer variety associated with a polarized abelian surface (A, H A ) with NS(A) = ZH A such that

  , there exists an irreducible component W of the (Zariski closure of the) Severi variety parametrizing nodal genus g -1 curves inside {H A } such that, if C W → W denotes the universal curve and C (g) W → W the relative symmetric product, the natural morphism C (g) W → A (g) is generically finite onto its image. Now let V be (the Zariski closure of) an irreducible component of the Severi variety of nodal genus g curves in {H A } obtained by smoothing one node of the curves in W (which can be done by the regularity of the Severi variety, [3, Example 1.3]). By construction W ⊂ V. Let C V → V be the universal curve. Its restriction over W yields a map C W → W. Let D be the image of the morphism C (g+1) V → A (g+1) . Observe that D contains the image D W of C (g+1) W → A (g+1) . Corrigendum and Addendum 5

  irreducibility, we would have D = D W . Let U ⊂ D be an open subset over which the morphisms C (g+1) W → A (g+1) and C (g+1) V → A (g+1) are smooth, and let p 1 + p 2 + • • • + p g+1

  9, Theorem 4.2] that C is deformation equivalent to either HA -2gτ or H A -(2g -1)τ , with g ≤ n + 1. If q(C) > n + 1, the square of H A -(2n + 2)τ is positive, that is, H 2 A = 2p -2 with p > n + 1.Thus, p > n + 1 ≥ g, which means that H A -2gτ can be represented by the class of a g 1 g+1 on a nodal curve in {H A }. Let M n be the moduli space of all polarized manifolds of K n (A)-type with n fixed. Then, the number of components of M n whose general points (X, H) do not have a uniruled divisor ruled by a rational curve of primitive class is at most finite.Proof. The components of M n are in bijective correspondence with the monodromy orbits of a given class of positive square in L n

	Corollary 2.2.
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