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Deformations of singular symplectic varieties and

termination of the log minimal model program

Christian Lehn and Gianluca Pacienza

Abstract

We generalize Huybrechts’ theorem on deformation equivalence of birational irreducible

symplectic manifolds to the singular setting. More precisely, under suitable natural hy-

potheses, we show that two birational symplectic varieties are locally trivial deforma-

tions of one another. As an application we show the termination of any log-minimal

model program for a pair (X,∆) of a projective irreducible symplectic manifold X and

an effective R-divisor ∆. To prove this result we follow Shokurov’s strategy and show

that LSC and ACC for mlds hold for all the models appearing along any log-MMP of

the initial pair.

1. Introduction

In the theory of irreducible symplectic manifolds an important result due to Huybrechts [Hu03,

Theorem 2.5] insures that two birational1 such manifolds X and X ′ are deformation equivalent.

Even more is true, namely there exist smooth proper families π : X −→ S and π′ : X ′ −→ S

over a pointed disk 0 ∈ S and a birational map between X and X ′ which is an isomorphism

over S \ 0 and coincides with the given birational map between X = π−1(0) and X ′ = π′−1(0)

over 0. In particular, X and X ′ have isomorphic Hodge structures. Huybrechts’ result yields a

characterization of non-separated points in the moduli space of marked irreducible symplectic

manifolds. Apart from its theoretical relevance, it has also been successfully applied to solve

concrete problems (see e.g. [Be99, De99, AL14, Le15]).
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Recently, there has been renewed interest in the study of singular symplectic varieties. For in-

stance, there is a very interesting line of research started by Greb, Kebekus and Peternell on

varieties with numerically trivial canonical divisor and singularities that appear in the MMP, see

[GKP]. On the other hand, singular symplectic varieties play an important role also in the study

of smooth symplectic varieties, see e.g. [DV10, OG99, OG03]. Given the importance of Huy-

brechts’ theorem to the theory of irreducible symplectic manifolds it is natural to ask whether a

singular version of this result holds true.

Before stating our result recall that since the work of Beauville [Be00] there is a well-established

notion of singular symplectic variety (see § 2). LetX andX ′ be singular symplectic varieties which

are birational with one another. If they both admit crepant resolutions by irreducible symplectic

manifolds, which is for example the case if X and X ′ show up in the log-MMP of a given

irreducible symplectic manifold (cf. Lemma 4.1), then also their crepant resolutions are birational

and hence deformation equivalent thanks to Huybrechts’ theorem. By work of Namikawa this

implies that also the two birational singular symplectic varieties will be deformation equivalent,

but by construction this deformation does not preserve the singularity type. The question arises

under which circumstances we may find a deformation that connects X and X ′ and preserves

the singularities. Our main result gives precise conditions under which this is possible.

Theorem 1.1. Let X and X ′ be Q-factorial projective symplectic varieties having crepant res-

olutions by irreducible symplectic manifolds and suppose that φ : X 99K X ′ is a birational map

which is an isomorphism in codimension 1. Then there exist proper families X −→ S and X ′ −→ S

of locally trivial deformations of X and X ′ over a pointed disk 0 ∈ S and a birational map be-

tween X and X ′ which is an isomorphism over S \ 0 and coincides with φ over 0. In particular,

X and X ′ are homeomorphic and their local analytic isomorphism type is the same.

The theorem says that just as in the smooth case X and X ′ are non-separated points in the space

of marked symplectic varieties with fixed underlying topological space. Note that we can neither

drop the Q-factoriality hypothesis, as every small contraction on a smooth symplectic manifold

would give a counter-example, nor the hypothesis that φ is an isomorphism in codimension 1,

as every divisorial contraction from a smooth X to a singular X ′ would give a counter-example.

Thus, our result is optimal. To the best of our knowledge, it is the first result giving information

on singularity preserving deformations of birational singular symplectic varieties. Of course one

can still ask whether the conclusion holds for arbitrary symplectic varieties, i.e., not necessarily

possessing irreducible symplectic crepant resolutions. This is likely to be true but for the moment

out of reach for technical reasons.

The proof of Theorem 1.1 heavily relies on Namikawa’s foundational work on deformation theory

of singular symplectic varieties and on his comparison results of these deformations with those of

crepant resolutions, cf. [Na01, Na06, Na10]. Another important tool is Kaledin’s local structure
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theorem of symplectic singularities, see [Kal06, Theorem 2.3]. These are the two pillars for the

main new technical contribution of this work, which is the proof of smoothness of certain defor-

mation spaces (cf. Proposition 2.3). Together with Huybrechts’ original strategy, whose simple

geometric idea guides through the technicalities, this is an essential ingredient in our proof of our

main result, Theorem 1.1. The unobstructedness result is obtained by invoking Ran’s T 1-lifting

principle [Ra92, Ka92, Ka97]. More precisely, given an irreducible symplectic crepant resolution

π : X̃ −→ X of a symplectic variety X, thanks to the T 1-lifting principle we can relate the locally

trivial deformations of X to those deformations of X̃ preserving the irreducible components of

the exceptional locus of π (see Proposition 2.3 for the precise statement).

The second part of the paper is devoted to present our major application of Theorem 1.1; it is

concerned with the minimal model program (MMP)2. Though there has been a lot of progress, its

most important goals, finding good representatives, so-called minimal models, in every birational

equivalence class of algebraic varieties, and connecting a given variety X to one of its minimal

models by elementary birational transformations, have not yet been completely accomplished.

The existence of minimal models as well as the termination of certain special MMPs have been

established in many cases in the seminal paper [BCHM10], see also [CL10]. What is missing in

general is termination of flips.

We show here that irreducible symplectic manifolds behave as good as possible with respect to

the MMP. To put our result into perspective notice that termination of log-flips has been shown

for irreducible symplectic manifolds by Matsushita-Zhang [MZ13] (see also [Ma12]) following

a strategy due to Shokurov [ShoV] (see below). However, the termination of log-flips does not

imply that every MMP on a symplectic manifold terminates, for smoothness plays a crucial role

in Matsushita-Zhang’s argument. For example, if the MMP produces not only flips but also

divisorial contractions, the resulting variety will acquire singularities and then there could still

be an infinite sequence of flips. As an application of Theorem 1.1, we show that this does not

happen.

Theorem 1.2. Let X be a projective irreducible symplectic manifold and let ∆ be an effective

R-Cartier divisor on X, such that the pair (X,∆) is log-canonical. Then every log-MMP for

(X,∆) terminates in a minimal model (X ′,∆′) where X ′ is a symplectic variety with canonical

singularities and ∆′ is an effective, nef R-Cartier divisor.

It is well-known that from the previous result one derives the following (see [Bi12] for the relevant

definitions and further developments).

Corollary 1.3. Let X be a projective irreducible symplectic manifold and let ∆ be an effective

R-Cartier divisor on X. Then birationally ∆ has a Zariski decomposition in the sense of Fujita

2Strictly speaking, rather its logarithmic version (log-MMP). We will however mostly use the term MMP for

simplicity.
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and in the sense of Cutkosky-Kawamata-Moriwaki.

The proof of Theorem 1.2 follows Shokurov’s strategy. Let us go a little more into detail. To

show the termination of flips, Shokurov introduced the so-called minimal log discrepancy (mld

for short), which is a local invariant associated to (X,∆) and which increases under flips. It

is nowadays interpreted as an invariant of the singularity of (X,∆) at a given point. Ambro

and Shokurov have made two strong conjectures about the behaviour of mlds. These are the

lower semi-continuity conjecture (LSC) and the ascending chain condition conjecture (ACC), see

paragraph 3.4. Shokurov proved that these two conjectures imply termination of flips [ShoV]. For

smooth varieties, LSC holds by the fascinating paper [EMY03] and if all varieties in a sequence of

flips are smooth, ACC holds for trivial reasons. However, even if we start with a smooth variety

X, the MMP easily carries us out of the class of smooth varieties. Matsushita-Zhang’s key point

is that a flip of a smooth symplectic variety remains smooth by deep results of Namikawa [Na06],

see section 4 for more details.

The ACC and LSC conjectures seem to be out of reach for arbitrary varieties. Starting with some

variety X and running an MMP might a priori produce a huge variety of different singularities.

Nevertheless, if we can bound the class of singularities of varieties that show up in intermediate

steps of the MMP, then there is hope that Shokurov’s strategy can be used. In our case, as

recalled before, this class of varieties will be the class of proper varieties with symplectic singu-

larities which have a crepant resolution by an irreducible symplectic manifold. We first prove the

following result.

Theorem 3.8. Let Y be a normal projective Q-Gorenstein variety and let ∆ be an effective

R-Cartier divisor on Y such that (Y,∆) is log-canonical. If π : X −→ Y is a crepant morphism

and LSC holds on X, then LSC holds for (Y,∆).

Then we use in a crucial way Theorem 1.1 to show that in a sequence of flips of singular symplectic

varieties the singularities, more precisely, their local analytic isomorphism type does not change.

This allows us to invoke a result of Kawakita [Kaw12] to deduce that ACC holds along any log

MMP of an irreducible symplectic manifold and conclude.

The paper is organised as follows: in § 2 we prove Theorem 1.1. Then we turn to the application

and prove Theorem 3.8 in § 3, after having recalled the basic definitions and results on minimal

log-discrepancies. Finally, we put all the ingredients together and show how to deduce termination

in § 4.
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It is a pleasure to thank Sébastien Boucksom, Stéphane Druel, Masayuki Kawakita, James

McKernan and Yusuke Nakamura for helpful discussions. We thank Florin Ambro and Caucher

4



Deformations and LMMP for symplectic varieties

Birkar for answering questions by e-mail. Furthermore, we would like to thank Vladimir Lazić
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2. Deformations

We work over the field of complex numbers. A deformation of a variety Y is a flat morphism

Y −→ S of complex spaces to a pointed space (S, 0) such that the fiber Y0 over 0 ∈ S is

(isomorphic to) Y . We will mostly work with space germs, i.e., equivalence classes of deformations

where two deformations Y −→ S and Y ′ −→ S′ are equivalent if S and S′ are isomorphic in some

small neighborhoods of their distinguished points and moreover Y and Y ′ are isomorphic in

neighborhoods of Y0 and Y ′0 and in a way which is compatible with the maps to the base. We

will often use representatives of these equivalence classes and shrink them if necessary without

mention. A symplectic variety is a normal projective variety X admitting an everywhere non-

degenerate closed 2-form ω on the regular locus Xreg of X such that, for any resolution f :

X̃ −→ X with f−1(Xreg) ∼= Xreg the 2-form ω extends to a regular 2-form on X̃. An irreducible

symplectic manifold is a simply connected compact Kähler manifold X admitting an everywhere

non-degenerate closed 2-form ω such that H0(X,Ω2
X) = C · ω.

In this section we are going to prove Theorem 1.1, which should be interpreted as an analogue of

the well-known result of Huybrechts [Hu03, Theorem 2.5]. This is the only section where we make

use of the complex numbers, which however does not seem to be essential and results as well as

proofs should carry over mutatis mutandis to any algebraically closed field of characteristic zero.

The proof relies on Ran’s T 1-lifting principle [Ra92, Ka92, Ka97]. Essentially it says that a

given deformation problem is unobstructed if the tangent space T 1
X to the deformation space is

“deformation invariant” in the sense that for every small deformation X −→ S of X its relative

versions T 1
X/S are free OS-modules. We refer to [GHJ, § 14] for a concise account. Recall e.g. from

[Se06, 1.2] that the tangent space to the deformation functor Def lt
X of locally trivial deformations

of an algebraic variety X is H1(TX), opposed to arbitrary deformations, where the tangent space

is Ext1(ΩX ,OX). An obstruction space for Def lt
X is given by H2(TX).

Let us recall the following well-known result on the local structure of singular symplectic varieties.

For convenience we sketch the proof which is due to Kaledin and Namikawa, see [Na10]. Note

that by convention we consider the singular locus as a subscheme (or complex subspace) with

the induced reduced structure.

Proposition 2.1. Let X be a symplectic variety and let Σ ⊂ X be the singular locus of Xsing.

Then codimX Σ > 4 and every x ∈ U := X \ Σ has a neighbourhood which is locally analytically

isomorphic to (C2n−2, 0)× (S, p) where 2n = dimX and (S, p) is the germ of a smooth point or

a rational double point on a surface. This isomorphism can be chosen to preserve the symplectic
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structure.

Proof. Kaledin’s result [Kal06, Theorem 2.3] implies that Σ has codimension > 4 and that

every point of U admits the sought for product decomposition in the formal category. By [Ar69,

Corollary 2.6] the decomposition exists analytically. The last statement is [Na10, Lemma 1.3].

Proposition 2.2. Let X be a Q-factorial compact symplectic variety, let π : X̃ −→ X be a

crepant resolution by a compact Kähler manifold X̃ and let U ⊂ X be as in Proposition 2.1.

Then the restriction H1(X,TX) −→ H1(U, TU ) is an isomorphism and h1(TX) = h1(TX̃) − m
where m is the number of irreducible components of the exceptional divisor of π.

Proof. The exceptional set of π is a divisor by the Q-factoriality hypothesis and each of its

irreducible components meets π−1(U) by the semi-smallness property of symplectic resolution,

cf. [Kal06, Lemma 2.11]. Let us consider the diagram

0 // H1(TX) //

��

Ext1(ΩX ,OX) //

φ
��

H0(T 1
X)

��
0 // H1(TU ) // Ext1(ΩU ,OU ) // H0(T 1

U )

with exact lines, where φ is an isomorphism by [Na01, Proposition 2.1]. As T 1
X = Ext1(ΩX ,OX),

the space H1(TX) consists of extensions that are locally split. Analyzing the construction of the

map φ described in [KM92, (12.5.6) Lemma] we see that an extension on X is locally split if and

only if its restriction to U is and thus H1(TX) −→ H1(TU ) is an isomorphism.

Put Ũ := π−1(U) ⊂ X̃ and consider the following sequence

0 // H1(π∗TŨ ) // H1(TŨ ) // H0(R1π∗TŨ ) // 0 (2.1)

It is exact and we have h1(TU ) = h1(TŨ )−m as was shown in (ii) of the proof of [Na01, Theorem

2.2]. As h1(TŨ ) = h1(TX̃) by [Na01, Proposition 2.1], the claim follows.

In the situation of Theorem 1.1, let π : X̃ −→ X be a crepant resolution and let D =
∑m

i=1Di

be the exceptional divisor with its decomposition into irreducible components Di. We put Li :=

OX̃(Di) and denote by X̃ −→ Def(X̃) the universal deformation of X̃. This is the germ of a

smooth space of dimension h1,1(X̃) by the Bogomolov-Tian-Todorov theorem. We consider the

following subspaces of Def(X̃):

– Def(X̃, L) ⊂ Def(X̃) is the base of the universal deformation of (X̃, L1, . . . , Lm), see [Hu99,

(1.14)]. As the Di define linearly independent classes in H2(X̃,C), Def(X̃, L) is smooth and

of codimension m in Def(X̃) by loc. cit.

– Def(X̃,D) ⊂ Def(X̃) is the image of the components containing allDi of the relative Douady

space D(X̃ /Def(X̃)) −→ Def(X̃). This is the space where all components Di deform along

with X̃.
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We clearly have Def(X̃,D) ⊂ Def(X̃, L) Consequently, dim Def(X̃,D) 6 h1,1(X̃)−m.

The key step will be to prove the smoothness of the space of locally trivial deformations of

the singular variety X. Recall from [FK87] that the universal locally trivial deformation of X

exists and that it is just the restriction of the universal deformation to the locally trivial locus

Def lt(X) ⊂ Def(X) in the Kuranishi space which is a closed subspace.

Proposition 2.3. Let π : X̃ −→ X be as above. Let X̃ −→ Def(X̃,D) and X −→ Def lt(X) be

the universal deformations. Then there is a diagram

X̃

��

Π //X

��
Def(X̃,D)

π∗ // Def lt(X)

(2.2)

with the following properties:

(i) Def lt(X) is smooth of dimension h1,1(X̃)−m.

(ii) π∗ is the restriction of the natural finite morphism Def(X̃) −→ Def(X) and π∗ is an isomor-

phism.

(iii) dim Def(X̃,D) = h1,1(X̃)−m, in particular Def(X̃,D) = Def(X̃, L).

Proof. We will first show that Def lt(X) is smooth. Let U ⊂ X be as in Proposition 2.1. The

restriction H1(TX) −→ H1(TU ) is an isomorphism by Proposition 2.2, in other words, deforma-

tions and their local triviality are determined on U . Let j : Xreg −→ U denote the inclusion. As

TU is reflexive, we have that TU ∼= j∗TXreg . Hence, H1(TX) = H1(U, j∗ΩXreg) = H2(U, j∗Ω
>1
Xreg)

which is deformation invariant, as we will show next. Consider the exact sequence of complexes

0 −→ j∗Ω
>1
Xreg −→ j∗Ω

•
Xreg −→ OU −→ 0. (2.3)

By Grothendieck’s theorem for V-manifolds Hk(j∗Ω
•
Xreg) = Hk(U,C), see for example the foot-

note in the proof of [Na06, Proposition (1.11)]. Moreover, we have

H1(OU ) = H1(OX) = H1(OX̃) = 0,

where the first equality holds because X is Cohen-Macaulay and codimX(X \ U) > 4 and the

second because X has rational singularities. In the same way, one finds

H2(OU ) = H2(OX) = H2(OX̃) ∼= C.

so that (2.3) gives an exact sequence

0 −→ H1(j∗ΩXreg) −→ H2(U,C) −→ H2(OU ) −→ 0,

where the last map is surjective because the compositionH2(X̃,C) −→ H2(OX̃)
∼=−−−→ H2(OU ) is.

The same line of arguments works identically in a relative situation and shows that H1(TX/S) =

H1(j∗Ω(X/S)reg) is a free OS-module for any small deformation X −→ S over a local artinian
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scheme S. In other words, the tangent space to the deformation functor H1(TX) is deformation

invariant, hence by the T 1-lifting argument Def lt(X) is smooth. In particular, dim Def lt(X) =

dimH1(TX) which is equal to h1,1(X̃)−m by Proposition 2.2.

As explained in [Na06, § 3] there is a diagram as (2.2) for arbitrary instead of locally trivial

deformations. In particular, there is a finite map π∗ : Def(X̃) −→ Def(X) and for each t ∈
Def lt(X) and every s ∈ Def(X̃) mapping to t the morphism X̃s −→ Xt is a crepant resolution.

By abuse of notation we will denote by X −→ Def lt(X) also the restriction of the universal family

to the locally trivial locus Def lt(X). Let S ⊂ X be the singular locus of the singular locus of

the morphism X −→ Def lt(X), i.e., the relative version of the subvariety Σ ⊂ X introduced in

Proposition 2.1, and denote U its complement in X . By the local triviality property, S is a

locally trivial hence flat deformation of Σ, in particular, it is fiberwise of codimension > 4 in X .

If we denote Ũ := Π−1(U ), then Ũs −→ Ut is a crepant resolution of singularities for t = π∗(s).

Note that by choice of U its singular locus is a locally trivial deformation of an ADE-surface

singularity, thus Ũ −→ U is (fiberwise) the unique minimal relative resolution. In particular, Ũ is

a locally trivial deformation of its central fiber and the exceptional divisors of Ũ −→ U are locally

trivial deformations of those of its central fiber Ũ −→ U . As S is fiberwise of codimension > 4, by

taking closures in X̃ we obtain deformations of the Di over π−1
∗ (Def lt(X)) with irreducible fibers.

Therefore, the inclusion π−1
∗ (Def lt(X)) ⊂ Def(X̃,D) holds. As dim Def(X̃,D) 6 h1,1(X̃) −m,

this inclusion is an equality and the restriction of π∗ to Def(X̃,D) gives the desired morphism.

Also (iii) follows from this.

To see that π∗ : Def(X̃,D) −→ Def lt(X) is an isomorphism, it suffices to show that its differential

TDef(X̃,D),0 −→ TDeflt(X),0 = H1(TX) is so. We have just seen that Def(X̃,D) = Def(X̃, L) and by

invoking [Hu99, (1.14)] once more, we see that TDef(X̃,D),0 = ker
(

c1(L) : H1(TX̃)
φ−−→ H2(OX̃)m

)
where φ is given by cup product with c1(Li) and contraction in the i-th component. As explained

before, for dimension reasons we may replace X by U and X̃ by Ũ := π−1(U) in all cohomolgies

involved. The differential of π∗ : Def(X̃) −→ Def(X) is thus a map H1(TŨ ) −→ Ext1(ΩU ,OU )

whose restriction to the subspace H1(π∗TŨ ) ⊂ H1(TŨ ) identifies the latter with H1(TU ) ⊂
Ext1(ΩU ,OU ). Thus, it remains to show that H1(π∗TŨ ) = kerφ|Ũ . We have already seen that

under the symplectic form H1(TŨ ) ∼= H1(j∗ΩXreg) ⊂ H2(U,C) and on the other side kerφ is

identified with the subspace of those α ∈ H1,1(X̃) which satisfy qX̃(α, c1(Li)) = 0 for i = 1, . . . ,m

where qX̃ is the Bogomolov-Beauville-Fujiki form by [Hu99, (1.8)]. Certainly, classes which are

pullback from X are among them, for dimension reasons we have equality, which completes the

proof.

The following lemma is probably well-known, we include its proof for convenience.

Lemma 2.4. Let X̃ be an irreducible symplectic manifold and let π : X̃ −→ X be a proper

birational morphism to a Kähler complex space X. If X carries a line bundle L such that

8
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qX̃(π∗L) > 0, then X is projective.

Proof. It follows from Huybrechts’ projectivity criterion [Hu97, Theorem 3.11] that in such a

situation X̃ is projective. Then X is Kähler, Moishezon and has rational singularities, hence is

projective by [Na02, Theorem 1.6].

Proposition 2.5. Let X 99K X ′ be as in Theorem 1.1 and let X −→ Def lt(X) and X ′ −→
Def lt(X ′) be the universal locally trivial deformations of X respectively X ′ and let π : X̃ −→
X, π′ : X̃ ′ −→ X ′ be crepant resolutions of singularities. Then there is an isomorphism γ :

Def lt(X) −→ Def lt(X ′) fitting into a commutative diagram

Def(X̃,D)
γ̃ //

π∗
��

Def(X̃ ′, D′)

π′∗
��

Def lt(X)
γ // Def lt(X ′)

of isomorphisms such that for each t ∈ Def lt(X) we have a birational map φt : Xt 99K X ′
γ(t). For

very general t, the map φt is an isomorphism.

Proof. As X̃ 99K X̃ ′ is an isomorphism in codimension 1, the local Torelli theorem gives an iso-

morphism γ̃ : Def(X̃,D) −→ Def(X̃ ′, D). The isomorphism γ is obtained from composition with

the isomorphisms Def(X̃,D)
π∗−−−→ Def lt(X) and Def(X̃ ′, D)

π′∗−−−→ Def lt(X ′) from Proposition 2.3

as γ = π′∗ ◦ γ̃ ◦ (π∗)
−1. As X̃ and X̃ ′ are birational by assumption, they are deformation equiv-

alent by Huybrechts’ result [Hu03, Theorem 2.5]. So for s ∈ Def(X̃,D) the fibers X̃s and X̃ ′
s′

with s′ = γ̃(s) are deformation equivalent and have the same periods, hence they are birational

by Verbitsky’s global Torelli theorem [Ve13, Theorem 1.17]. If we denote t = π∗(s) ∈ Def lt(X),

t′ = π′∗(s
′) = γ(t) ∈ Def lt(X ′), the morphisms πs : X̃s −→ Xt and π′s′ : X̃ ′

s′ −→ X ′
t′ contract the

same divisors and we obtain a birational map Xt 99K X ′
t′ , which is isomorphic in codimension

one. If t is close enough to 0 ∈ Def lt(X), then Xt and X ′
t are Kähler by [Na02, Proposition 5].

The last statement follows as the general projective deformation of X has Picard number one

and birational maps between Q-factorial K-trivial varieties of Picard number 1 are isomorphisms.

Note that the subspace of H2(X̃,R) spanned by the classes [D1], . . . , [Dm] is negative definite

with respect to the Bogomolov-Beauville form qX . This follows for example from [Bo04, Thm

4.5], see also [Dr11, Thm 1.3]. We can thus indeed always deform to projective varieties by [GHJ,

Proposition 26.6] and Lemma 2.4.

Proof of Theorem 1.1. The proof of [Hu99, Theorem 4.6] works with minor modifications to give

a proof of Theorem 1.1. For convenience we sketch Huybrechts’ argument with emphasis on

where we have to argue differently. Let L′ be an ample line bundle on X ′ and denote by L

the Q-line bundle on X obtained from L′ by taking pullback to a resolution of indeterminacies,

pushforward to X and double dual. Here we use Q-factoriality. Replacing L′ and L by multiples,

9
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we may assume that L is a line bundle. Let us denote by π : X̃ −→ X a resolution of singularities

where X̃ is an irreducible symplectic manifold and by D as before the exceptional divisor of

π. Recall from Proposition 2.3 that Def lt(X) ∼= Def(X̃,D). Then points in the Kuranishi space

Def lt(X,L) ∼= Def(X̃, π∗L,D) of the pair (X,L) parametrize deformations of X together with a

line bundle whose pullback to a resolution of singularities by an irreducible symplectic manifold

has positive Beauville-Bogomolov square; in particular, these are projective deformations by

Lemma 2.4. We take a one-dimensional disk S ⊂ Def lt(X,L) which passes through the origin

and which is very general in the sense that the fibers of the (restriction to S of the) universal

family ψ : X −→ S for a very general s ∈ S have Picard number one. Denote by L the universal

line bundle restricted to X , which is a deformation of L. Then as in [Hu99, Theorem 4.6] one

shows that Ls is ample for very general s ∈ S and that h0(Xt,Lm
t ) is independent of t in a

neighborhood of 0 ∈ S where we have to replace the Kodaira vanishing theorem by the one of

Kawamata-Viehweg. Note that H i(X,L) = H i(X̃, π∗L) for all i as X has rational singularities.

We may now apply [Hu99, Proposition 4.5] which produces a deformation X ′ −→ S (maybe after

shrinking S) together with a line bundle L ′ on X ′ on such that (X ′
0 ,L

′
0) = (X ′, L′) and an

S-birational map X 99K X ′ which is an isomorphism outside the central fiber and the birational

map φ : X 99K X ′ we started with. Let us admit this result for a moment and let us see how to

complete the proof. It remains to show that the deformation X ′ −→ S is locally trivial. For this

we recall that the universal locally trivial deformation of X ′ is nothing else than the restriction of

the universal deformation of X ′ to the locally trivial locus Def lt(X ′) ⊂ Def(X ′) in the Kuranishi

space. But the locally trivial locus is a Hodge locus by Proposition 2.3 and so we may deduce

local triviality from comparison of the periods of X and X ′.

Let us now comment on the proof of [Hu99, Proposition 4.5]. It is contained in [Hu97, Proposition

4.2] and works roughly like this. By the hypothesis that h0(Xt,Lt) be independent of t we obtain

that the coherent sheaf ψ∗L is locally free and its fiber at t ∈ S is exactly H0(Lt), at least after

shrinking S. One considers the rational map ϕL : X 99K PS((π∗L )∗) and defines ψ′ : X ′ −→ S

to be its image. One easily shows that the general fiber of X ′ −→ S is irreducible and that

X ′ ⊂ X ′
0 . This inclusion is then shown to be an equality by comparing the number of sections

of the tautological bundle (which is just L′ when restricted to X ′). Birationality is shown by a

similar argument and all these steps carry over without changes for singular varieties.

3. Minimal log discrepancies

A log pair (X,∆) consists of a normal variety X and a R-Weil divisor ∆ > 0 such that KX +∆ is

R-Cartier. A log resolution of a log pair (X,∆) is a projective birational morphism π : X̃ −→ X

such that X̃ is smooth and π∗∆ + Exc(π) has simple normal crossing support. A birational

morphism f : X̃ −→ X between varieties for which KX and KX̃ are well-defined is called crepant

if π∗KX = KX̃ . A crepant resolution is a resolution of singularities which is also a crepant

10
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morphism.

3.1 Elementary properties of mlds

If (X,∆) is a log pair and π : X̃ −→ X is a log-resolution of (X,∆), then we define the log

discrepancy a(E,X,∆) for a divisor E over X by the formula

KX̃ + ∆̃ = π∗(KX + ∆) +
∑
E⊂X̃

(a(E,X,∆)− 1)E,

where ∆̃ is the strict transform of ∆.

Let cX(E) ∈ X be the center of a divisor over X. This is a not necessarily closed point of X.

The minimal log discrepancy at x ∈ X is

mld(x,X,∆) := inf
cX(E)=x

a(E,X,∆)

and the minimal log discrepancy along a subvariety Z ⊂ X is

mld(Z,X,∆) := inf
x∈Z

mld(x,X,∆).

Notice that from the definition we have that

Z ⊂ Z ′ ⇒ mld(Z,X,∆) > mld(Z ′, X,∆). (3.1)

Frequently we will write mld(x) and mld(Z) if there is no danger of confusion. We refer to [Am99,

§ 1] for more details.

We collect some basic facts about mlds.

Lemma 3.2. Let f : X −→ Y be a proper birational morphism with X normal and Q-Gorenstein.

Then

mld(W,Y,D) = mld(π−1(W ), X, π∗D −KX/Y ).

Proof. This is [EMY03, Proposition 1.3 (iv)].

For k ∈ N let us denote by X(k) ⊂ X the subset of points of dimension k endowed with the

subspace topology. The dimension of a point x ∈ X is defined to be the dimension of the Zariski

closure of x.

Lemma 3.3. The function mld := mld(X,∆) : X(k) −→ R∪{−∞} takes only finitely many values.

Proof. This is [Am99, Theorem 2.3].

3.4 Conjectures about mlds

Ambro and Shokurov have made the two following conjectures about mlds in [Am99, ShoV]. The

importance of these conjectures is that if they are fulfilled, then log-flips terminate by the main

theorem of [ShoV].

11



Christian Lehn and Gianluca Pacienza

Conjecture 3.5. (ACC) Let Γ ⊂ [0, 1] be a DCC-set, i.e., all decreasing sequences in Γ become

eventually constant. For a fixed integer k the set

Ωk :=

mld(Z,X,∆)

∣∣∣∣∣∣∣∣∣∣
dimX = k,

(X,∆) log pair

Z ⊂ X closed subvariety

coeff(∆) ∈ Γ


is an ACC-set, that is, every increasing sequence α1 6 α2 6 . . . in Ωk eventually becomes

stationary.

Conjecture 3.6. (LSC) LetX be a normal Q-Gorenstein variety and let ∆ be an R-Weil divisor

on X such that KX +∆ is R-Cartier. Then for each d the function mld(X,∆) : X(d) −→ R∪{−∞}
is lower semi-continuous.

Remark 3.7. If LSC holds on X, then for each a ∈ R and d ∈ N the set

X
(d)
6a := {x ∈ X(d) | mld(x) 6 a} (3.2)

is closed, that is, there is, X
(d)
6a = X6a ∩X(d) where X6a is the closure of X

(d)
6a in X. Moreover,

X
(d)
a := {x ∈ X(d) | mld(x) = a} is open in X

(d)
6a . All this follows directly from Lemma 3.3 which

together with the lower semi-continuity implies that for x ∈ X(d) there is an open neighbourhood

U ⊂ X(d) of x such that

∀x′ ∈ U : mld(x) 6 mld(x′).

It is well-known and an easy consequence of [Am99, Prop. 2.5] that lower semi-continuity is

equivalent to mld : X(0) −→ R ∪ {−∞} being lower semi-continuous. Moreover, by loc. cit. one

also sees that ACC holds, as soon as

Ω
(0)
k :=

mld(x,X,∆)

∣∣∣∣∣∣∣∣∣∣
dimX = k,

KX + ∆ Q-Cartier,

x ∈ X closed point

coeff(∆) ∈ Γ


is an ACC set.

Next we show that LSC descends along crepant morphisms.

Theorem 3.8. Let Y be a normal projective Q-Gorenstein variety and let ∆ be an effective

R-Cartier divisor on Y such that (Y,∆) is log-canonical. If π : X −→ Y is a proper, crepant

morphism and LSC holds on X, then

mld : Y (0) −→ R ∪ {∞}

is lower semi-continuous.

Proof. Let us fix a closed point y ∈ Y and denote W := π−1(y). By Lemma 3.2 we have

mld(y, Y,D) = mld(π−1(y), X, π∗D). (3.3)
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We have to show that there is an open neighbourhood U ⊂ Y of y such that

mld(y′) > mld(y) ∀y′ ∈ U.

To this end we spot the “bad” subsets of Y . By Lemma 3.3 the function mld takes only finitely

many values. If a := mld(y) is the smallest mld on Y (0), then there is nothing to prove. Otherwise,

let us denote by b the maximal mld on Y with b < a. In view of (3.3), the search for mlds smaller

than a can be carried out on X, but at the price of having to take into account not only closed

points. Consider for each 0 6 d 6 n := dimX the set

Cd := {x ∈ X(d) | dimπ(x) = 0,mld(x) 6 b}.

Let Cd denote the Zariski closure of Cd in X. By assumption, (LSC) holds on X and hence all

x ∈ Cd with dimx = d satisfy mld(x) 6 b. Now we set

U := Y \
n⋃
d=0

π(Cd),

where n = dim(X). As π is proper, U is open. We will consecutively prove the following claims.

(i) Every irreducible component of Cd has relative dimension at least d over its image.

(ii) y ∈ U .

(iii) mld(y′) > mld(y) for all y′ ∈ U .

Let Σ denote an irreducible component of Cd for some d. As Cd is the closure of Cd, the set

Cd∩Σ is not empty. Thus, the set Σ>d := {x ∈ Σ | dimπ−1π(x) > d} is not empty. By the upper

semi-continuity of the fiber dimension [Gr66, Corollaire 13.1.5], Σ>d is closed and by definition

we have Σ>d ⊃ Σ ∩ Cd. Therefore, as Σ is a component of the closure of Cd we have Σ>d = Σ

and the first claim follows.

Suppose that y 6∈ U . Then we would have a point x ∈ Cd for some d with π(x) = y. By the

previous statement, we have dim(W ∩Cd) > d, where, we recall, W = π−1(y). This implies that

there is x′ ∈ W ∩ Cd with dimx′ = d and hence mld(x′) 6 b by the definition of Bd. But then,

by (3.1)

a = mld(y) 6 mld(x′) 6 b

contradicting the choice of b < a. Thus, y ∈ U .

Now if there were some y′ ∈ U with mld(y′) < mld(y) = a it would also be 6 b by the maximality

of b. Let x ∈ π−1(y′) be a point with mld(x) = mld(y′) and denote d := dim(x). This would imply

x ∈ Cd ⊂ Cd contrarily to the assumption y′ ∈ U . This concludes the proof of the theorem.

By [EMY03, Thm. 0.3], LSC holds on smooth varieties. This immediately yields the

Corollary 3.9. Let Y be a normal projective Q-Gorenstein variety possessing a crepant reso-

lution of singularities. Let ∆ be an R-Weil divisor on Y such that KY + ∆ is R-Cartier. Then

the function mld(Y,∆) is lower semi-continuous.

13



Christian Lehn and Gianluca Pacienza

4. Termination

In this section we prove our main application, namely Theorem 1.2. Notice that in its statement

we could also drop the lc-assumption on (X,∆), as thanks to KX = 0 we can rescale ∆ at any

time. The proof of the theorem will occupy the rest of the section. Let (X,∆) be a log pair on a

projective irreducible symplectic manifold. By [BCHM10, Corollary 1.4.1], (KX + ∆)-flips exist

and so we may run a (KX + ∆)-MMP. This produces a sequence

X = X0
φ0
99KX1

φ1
99KX2 99K . . . (4.1)

where the φi are either divisorial contractions or flips. Let us denote ∆0 := ∆ and ∆i = (φi)∗∆i−1.

Note that at each step KXi will be trivial and therefore we can rescale ∆i such that (Xi,∆i)

will be klt, hence the above result applies. We want to show that (4.1) terminates after a finite

number of steps. First we notice:

Lemma 4.1. Each Xi is a symplectic variety and admits a crepant resolution.

Proof. By induction we may assume thatXi−1 is a symplectic variety and has a crepant resolution

π̃ : X̃i−1 −→ Xi−1. Symplecticity of Xi is clear, as the exceptional locus of Xi−1 99K Xi on Xi

has codimension > 2 and thus the symplectic form from Xi−1 extends. By [BCHM10, Corollary

1.4.3] there exists a proper birational morphism π : X̃i −→ Xi such that X̃i has only Q-factorial

terminal singularities and π is crepant. Let Xi−1 −→ Z ← Xi be the flipping contraction. Then

the compositions X̃i −→ Xi −→ Z and X̃i−1 −→ Xi−1 −→ Z are crepant morphisms and X̃i−1 is

smooth, hence by [Na06, Corollary 1, p. 98] also X̃i is smooth.

Proof of Theorem 1.2. In the course of the MMP, only a finite number of divisorial contractions

can occur so that by the preceding lemma we can reduce to the following situation: X = X0 is

a symplectic variety having a crepant resolution, ∆ = ∆0 is an effective R-divisor on X and we

are given a sequence

X = X0
φ0
99KX1

φ1
99KX2 99K . . . (4.2)

where φi is a log-flip for the pair (Xi,∆i). We will show that such a sequence is finite by using

Shokurov’s criterion, see [ShoV, Theorem]. In fact, by [ShoV, Addendum 2], we only need LSC

for the pairs (Xi,∆i) and ACC for the set

Ω(X) := {mld(Ei, Xi,∆i)|i ∈ N}

where Ei ⊂ Xi denotes the exceptional locus of φi : Xi −→ Xi+1, see also [HM10, § 3]. Recalling

that LSC holds by Corollary 3.9 and Lemma 4.1 above, we are left with ACC. By a theorem of

Kawakita [Kaw12], the set of all mlds for a fixed finite set of coefficients on a fixed projective

variety is finite. More precisely, let Z be a projective variety, let Γ ⊂ [0, 1] be a finite set and

consider

MΓ(Z) := {mld(Z,∆)(x) | coeff(∆) ∈ Γ, (Z,∆) lc at x ∈ Z(0)}
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Then by [Kaw12, Thm. 1.2], the set MΓ(Z) is finite. By loc. cit. also the bigger set

M loc
Γ (Z) := {mld(U,∆)(x) | coeff(∆) ∈ Γ, (U,∆) lc at x, U ⊂ Z open}

is finite. Note that U ⊂ Z is supposed to be open in the Euclidean topology and that ∆ is not

supposed to be the restriction of a divisor on Z. By Theorem 1.1 all Xi in the sequence (4.2)

are locally trivial deformations of one another (notice that the Q-factoriality is insured by [KM,

Propositions 3.36 and 3.37]). Hence, M loc
Γ (Xi) is independent of i, as mlds are local invariants.

Consequently, Ω(X0) ⊂
⋃∞
i=0MΓ(Xi) ⊂ M loc

Γ (X0). In particular, Ω(X0) is finite and thus an

ACC set and we may conclude the proof.

Remark 4.2. The observation that equivalence by locally trivial deformations implies ACC has

already been made by Nakamura in [Nak13, Corollary 1.4], where he considered the case of

terminal quotient singularities.

Remark 4.3. It is tempting to try to deduce the termination of the MMP, proved here, from the

termination of flips for irreducible symplectic manifolds. The proof of the latter by [MZ13] is

much quicker and, notably, does not require any control at all on the local structure of symplectic

singularities that appear along a log-MMP, as in the framework of [MZ13] every variety is smooth.

Using the notation above, if we start from a Q-factorial symplectic variety X := X0 and a

boundary divisor ∆ := ∆0 and if X admits a crepant resolution f : Y −→ X together with

the natural boundary divisor Γ := f∗∆, then the idea would be the following: given a log-

flip X0 99K X1 one could try to run a MMP for (Y,Γ) in such away that flips and divisorial

contractions are interchanged, that is, the MMP is supposed to produce a sequence of flips

(Yi,Γi) for i = 0, . . . , N and a divisorial contraction YN −→ X1. Then by [MZ13] the sequence

of flips for (Y,Γ) would be necessarily finite, however it seems very plausible that the MMP on

(Y,Γ) might produce divisorial contractions right away which would disallow the use of [MZ13]

and make this strategy useless.
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