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Abstract. Maps have been a unique source of knowledge for centuries.
Such historical documents provide invaluable information for analyzing
the complex spatial transformation of landscapes over important time
frames. This is particularly true for urban areas that encompass mul-
tiple interleaved research domains (social sciences, economy, etc.). The
large amount and significant diversity of map sources call for automatic
image processing techniques in order to extract the relevant objects
under a vectorial shape. The complexity of maps (text, noise, digiti-
zation artifacts, etc.) has hindered the capacity of proposing a versa-
tile and efficient raster-to-vector approaches for decades. We propose a
learnable, reproducible, and reusable solution for the automatic trans-
formation of raster maps into vector objects (building blocks, streets,
rivers). It is built upon the complementary strength of mathematical
morphology and convolutional neural networks through efficient edge
filtering. Evenmore, we modify ConnNet and combine with deep edge
filtering architecture to make use of pixel connectivity information and
built an end-to-end system without requiring any post-processing tech-
niques. In this paper, we focus on the comprehensive benchmark on
various architectures on multiple datasets coupled with a novel vec-
torization step. Our experimental results on a new public dataset us-
ing COCO Panoptic metric exhibit very encouraging results confirmed
by a qualitative analysis of the success and failure cases of our ap-
proach. Code, dataset, results and extra illustrations are freely available
at https://github.com/soduco/ICDAR-2021-Vectorization.

Keywords: Image processing · Deep Learning · Maps · Vectorization ·
Semantics · Edge Filtering · Shape extraction.
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Fig. 1: Example (cropped) of a raster map used as input (top) and output of
our vectorization approach (bottom): a set of individual polygons in vector for-
mat ready for further annotation in any GIS software. Some shapes are still
undetected.

1 Introduction

Historical maps are unique and powerful tools for understanding the transfor-
mations of the geographical space over unique time spans. They are invaluable
inputs in historical sciences, architecture, and urban planning. The massive dig-
itization of archival collection resources carried out by heritage institutions dra-
matically increases the amount of geospatial information available for certain
areas of the world. In the Western world, the rapid development of geodesy and
cartography from the 18th century resulted in massive production of topographic
maps at various scales. City maps are of utter interest. They contain rich, de-
tailed, and often geometrically accurate representations of numerous geographi-
cal entities. Maps also document the distribution in space and the topological re-
lationship of the depicted entities, while legends and text labels provide semantic
information, in particular about their functions [22,10]. Recovering spatial and
semantic information represented in old maps requires a so-called vectorization
process.

Vectorizing maps consists in transforming rasterized graphical representa-
tions of geographic entities (often maps) into instanced geographic data (or vec-
tor data), that can be subsequently manipulated (using Geographic Information
Systems, GIS). This is a key challenge today to better preserve, analyze and dis-
seminate content for numerous spatial and spatio-temporal analysis purposes.

From an image processing and a document analysis perspective, vectoriza-
tion can be cast by the following, often interleaved, problems: (i) isolate the
map content on pictures of map sheets (leave out the legend, in particular);
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(ii) detect and separate the various layers of graphical content: points, lines,
and shape objects, as well as symbols and text; (iii) classify / recognize each
graphical object of interest (including text), while ensuring a topologically and
geometrically consistent result (often considered as an instance segmentation
issue); (iv) georeference the extracted elements.

In this paper, we focus on closed shape detection in the 19th and early 20th-
century historical map atlases of Paris (France). Currently, shape detection is
usually manually performed, using GIS software. Such a costly and tedious pro-
cess leads to heterogeneous data quality. The latest methodological developments
in image processing leverage the ability to automatically build a significant num-
ber of geo-historical databases, which eventually benefit to multiple research ar-
eas. Unfortunately, unlike computer-generated maps, roughly following the same
semiotic rules, historical maps steadily vary in terms of legend, level of gener-
alization, type of geographic features, and text fonts. Even more, objects in
historical maps exhibit very limited color and texture information. This creates
ambiguities in interpretation, leading to the failure of main texture-based seman-
tic [24,3,31]/instance segmentation [6,30,4] and raster-to-vector [23] approaches.
Such an issue is exacerbated by the frequent overlap between map objects and
occlusion with the carto-geodetic information (vertical and horizontal lines).
Their instantiation become more complex, with often non continuous boundary
retrieval. Last, ink+paper aging and damage in the historical image such as
erased lines, bad contrast, noisy content, tearing, folding might cause gaps in
the cartographic information and lead to poor object detection. To tackle those
challenges, we are therefore interested in developing a versatile shape detection
approach, loosely coupled with the style of a given map. We aim to accelerate
the detection of core city structures (building blocks, rivers, street networks), as
well as the georeferencing process while keeping both very accurate.

We recently found that extracting closed shapes from historical maps [8] was
feasible, using a deep learning architecture as an edge filter (rather than trying
to predict instances directly), connected with mathematical morphology tools
to extract closed shapes from an edge map. The current paper improves over
these preliminary findings by exploring more combinations of deep edge filters,
followed by closed shape extraction (Sec. 3), and exploring all these potential
architectures in an extensive benchmark (Sec. 4).

2 Related work

Extracting the content of historical maps is an active topic in Geographic In-
formation Sciences, in an effort to provide tools and methods to build large
spatio-temporal datasets and historical gazetteers. This is a special case of the
broader topic of digital map processing where most challenges are exacerbated
by the higher complexity and heterogeneity of ancient maps compared to the
more homogeneous modern maps [11,9]. Three main categories of extraction
strategies can be distinguished: manual vectorization with GIS tools, automatic
solutions, and hybrid frameworks. They either focus on structured geographical
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entities (roads, buildings) or textual information (named places mainly).
Manually extracting the content of historical maps with GIS tools is still the
main strategy in digital humanities. This solution is conceivable when small-size
datasets are handled, in space and time, for peculiar case studies [26]. Collab-
orative approaches have been proposed to handle larger map corpora, ranging
from a limited number of contributors [27] to large-scale crowdsourcing exper-
iments [34,5]. Although manual extraction creates “data-intimacy” conducive
to reflexive work, the process is tedious, time-consuming, and leads to non-
reproducible results.
Automatic solutions are dedicated either to specific symbols and local features
extraction [14] or to map vectorization, i.e., (semantic) shape retrieval using
raster-to-vector techniques. Many image vectorization solutions exist [18] but
cannot be applied to complex historical maps: design, multiplicity of objects,
noise, limited graphical quality (no color nor texture) hinder their performance.
Approaches dedicated to old maps rely on the following unsupervised workflow:
color-based segmentation of objects, binary (shape) filtering, cleaning, and vec-
torization. They exhibit two main drawbacks: a priori knowledge on color and
object shapes narrow down the versatility power of the methods [21], and no
focus is made on extracting multiple closed shapes, under a learning paradigm.
A suitable trade-off is found with hybrid methods that would target to learn
shape extraction from crowdsourcing data. First attempts have shown their rel-
evance [5] but closer interaction between extraction and annotation is desired to
really benefit from both fields.

In Mathematical Morphology, the watershed transform is a de facto stan-
dard approach for image segmentation, and it has been widely studied in terms
of topological properties [13,29] and computational efficiency [13,12]. While be-
ing efficient on rather clean images, the watershed is hard to apply in real,
complex images. This hinders wider applications related to closed shape ex-
tractions.For natural images, Hanbury et al. [16] use a watershed algorithm to
segment closed shapes from the learned gradient image extracted, while Arbelaez
et al. [2] introduce oriented watershed to extract closed shapes in global prob-
ability boundaries created by several image features and cues. Unfortunately,
there are very few applications that adopt watershed transform in spatial data,
especially cartographic images. To our best knowledge, only one approach uses
watershed transform to extract spatial semantic objects through color and geo-
metrical features in color cartographic images [1]. However, this method is hard
to apply in our historical map image, which has very limited colors and textual
information.

Detecting edges from images is a widely studied subject. Firstly, it has been
achieved with handcrafted features such as brightness, color, and textures [25].
After that, those features are efficiently grouped by mono-scale and multi-scale
attributes retrieving micro-structures such as textons and salient examples [37].
This led to methods focusing on combining all existing features [2]. The weights
are learned to efficiently combine the relevant cues such as gradients and tex-
tons in multiscale images [2] to estimate a probability of boundary. Then, an
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ultrametric contour map (UCM) is created by using probability boundary as
input to extract closed shapes to represent image objects, turning soft assign-
ments into hard ones. Recently, Convolutional Neural Networks (CNNs) have
proved their relevance to extract and combine meaningful image features to de-
lineate semantic objects. A large amount of research has focused on semantic
edge detection. The most famous deep edge detector is called holistically edge
detector(HED) [35] which is an end-to-end deep learning multi-scale architec-
ture, built upon a VGG-16 backbone network[33]. The novelty lies in adopting
skip-connections to combine multiple levels of features, while different losses are
measured in the intermediate outputs of VGG-16 to filter out useful edge features
at each stage of the network. It allows to better learn and recover multi-scale
representations of image features. Recently, He et al. [17] proposed a so-called Bi-
directional cascade network (BDCN) by designing a scale-enhancement module
(SEM) and adding to every intermediate output of the HED to learn diver-
sity edge features and enhance spatial contexts: traditional convolution kernels
are substituted by dilated convolution kernels [36]. Most of the deep edge detec-
tors are encoder-decoder structures (U-Net fashion [31]), built based on VGG-16
architecture which can use ImageNet [32] pretrained features for limiting the dis-
crimination task to a transfer learning process: convergence is accelerated and
accuracy is increased.

Very few papers are fully dedicated to historical map processing. Petit-
pierre et al. [28] use U-Net [31] and SegNet [3] architectures to perform semantic
segmentation on historical maps of various kinds and locations. They focus on
few classes and do not propose a vectorization step, required to extract seman-
tized instances. To tackle this issue, we provide a complete, trainable, raster-to-
vector solution to extract closed shapes from historical maps with little to no
texture or color information by combining the power of deep edge detector as
a filtering tool with strong guarantees of closed shape extraction using mathe-
matical morphology. To our best knowledge, to automate this process as far, we
are among the only approaches with a strong commitment to being reproducible
and reusable; all our code and data is open source and public.

3 Raster-to-Vector Pipeline

Our process for the raster-to-vector conversion of historical map images is divided
into 3 main stages, as illustrated by Fig. 2. We introduce several possibilities for
each stage, detailed hereafter. Stage 1 (Deep Edge Filtering) can be composed
of either HED, BDCN, U-Net, or ConnNet standard architectures. It consists
in producing an Edge Probability Map (EPM) from the raster input. Stage 2
(Closed Shape Extraction) can be composed of either a connected component
(CC) labeling or a watershed (WS). We generate a Label Map (LM), which
assigns a shape identifier to each pixel. Stage 3 (Vectorization) is performed
using an off-the-shelf vectorization tool of the GDAL open-source project [15] as
a proof of concept, leading to results like the one illustrated in Fig. 1.
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Fig. 2: Overview of our raster-to-vector pipeline and of the evaluated alternative
techniques for each stage. Stage 1 produces an Edge Probability Map (EPM),
which estimates how likely a pixel belongs to a semantic edge, and Stage 2
produces a Label Map (LM), where each pixel receives the label of the shape it
belongs to.

3.1 Deep edge detectors

HED The Holistically edge detector (HED) is a state-of-the-art deep edge detec-
tion architecture, with a so-called skip-layer network training procedure: differ-
ent levels of intermediate features and merge into the final stage of the output
layer [35]. HED is built based on VGG-16 architecture. Intermediate outputs
are chosen from VGG-16 to select multi-level features from several scales. Those
outputs are upsampled and concatenated, followed by 1 × 1 convolution to fuse
multiple channel outputs into an EPM image. We will consider both a com-
plete training and a fine-tuning from weights pre-trained using natural images
(ImageNet).

BDCN BDCN is another reference network, built on VGG-16, with some mod-
ifications compared to HED. Scale enhancement module (SEM) [17] modules
are added to the intermediate outputs. The SEM modules are created by us-
ing dilated convolution [7], which enlarges the receptive field of kernels without
downgrading the resolution of the feature maps [17]. In the end, all the inter-
mediate output are similarly upsampled, concatenated, and fused into one EPM
image. We will consider both a complete training and a fine-tuning from weights
pre-trained using natural images (ImageNet).

U-Net The U-Net architecture [31] is a U-shape architecture inspired by Fully
convolution networks [24]. It contains two different paths to combine image fea-
tures. The first path is called the contracting path, which is using downsampling
to get deep and semantic features. The other one is the expansive path, which
concatenates high resolution features with spatial information from downsam-
pling, using the outputs of the up-convolution features. U-Net has a symmetrical
architecture that can retain well spatial information of pixels leading to very ac-
curate localizations. This is an advantage on boundary detection task.
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ConnNet ConnNet [19] architecture is invented by using pixel connectivity in-
formation to predict salient objects. In this paper, we decided to encode and
predict pixel connectivity information for every pixel in the output. It is a learn-
able way to binarize EPM, making use of pixel-based spatial information at
training time. The original ConnNet exhibits a significant amount of parameters
and may not be efficient in our data. We modify the original ConnNet architec-
ture by simply concatenating two networks, a deep edge detector (BDCN in this
paper but any deep edge detector can be replaced here) with an encoder-decoder
architecture (U-Net, but, again any full convolution architecture is relevant). The
output of ConnNet is a 4- or 8-channel probability map which predicts for each
pixel its 4- or 8-connectivity with each of its neighbors.

3.2 Training HED, BDCN and U-Net

Our input image is x ∈ RH·W and the ground truth label us y ∈ 0, 1H·W . The
output of the predicted image is ŷ = f(x,w) ∈ 0, 1H·W and every element of ŷ is
interpreted as the probability of pixel i having label 1: ŷ ≡ p(Yi = 1|x,w). Binary
cross entropy loss is used as loss function, measuring the difference between edge
predictions and labels. Due to the highly imbalanced nature between non-edge
(97.5% in training and validation sets) and edge pixels (only 2.5%), α, β are used
to re-balance the binary cross entropy loss. It is formulated as:

LBCE = −α
∑
j∈Y−

log(1− ŷj)− β
∑
j∈Y+

log(ŷj), (1)

where Y+ is the set of indices of edge pixels, Y− is the set of indices of non-edge
pixels, α = (λ · |Y−|/(|Y+|+ |Y−|)) is the percentage of edge pixels in each batch
of the historical map image, and β = (|Y+|/(|Y+|+ |Y−|))) is percentage of non-
edge pixels. An extra λ = 1.1 factor is used to enhance the percentage of edge
pixels in order to give extra weights for edge responses.

3.3 Training ConnNet

We do detail the ConnNet training procedure. Please refer to [19]. Here we
only mention the process of measuring the loss function of ConnNet, which is a
combination of an edge loss and a connectivity loss:

LConnnet = Ledge + Lpixcon. (2)

Ledge is the binary cross entropy loss from Equ. 1 for edge detection, and Lpixcon

is the pixel connectivity loss. Lpixcon is measured by the binary cross-entropy
loss between connectivity labels and predictions [19]. The connectivity label yc

is created by encoding surrounding location information of the pixel. It results
in eight channels, every channel represents the connectivity information in a
specific direction. Then, the pixel connectivity loss Lpixcon is measured in Equ. 3
by using the binary cross entropy loss (Equ. 1) between connectivity labels and
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predictions [19]. In Equ. 3, ŷc is the probability of the predicted connectivity, yc

represents the connectivity labels, N is the number of pixels in images, and C
is the number of connected pixels, respectively. 1

(N×C) is the normalizing term

for the loss.

Lpixcon =
1

N × C

C∑
c=1

N∑
i=1

LBCE(ŷci , y
c
i ). (3)

3.4 Closed Shape Extraction

Closed shapes can be extracted from EPMs either through connected component
labeling or watershed transform.

Connected component labeling requires a binarized edge map as input and
subsequently a binarization threshold θ in order to provide a label map.

The watershed transform directly necessitates the EPM as input and returns
1-pixel thin edges and a label map. It offers a strong guarantee of closed shape
extraction with efficient implementation. The strength of the watershed is to
recover the boundaries of objects even on weak edge responses that would be
lost by EPM thresholding. The filtering parameters (dynamic δ and minimum
area σ) are important to control the trade-off between the fact we want to recover
small/leaking regions (somewhat related to the recall) and the false-detection of
boundaries (somewhat related to the precision). The h-minima characterize the
importance of each local minimum through their dynamic. When flooding a
basin, it refers to the water elevation required to merge with another basin. The
calibration of this parameter depends on the intensity of the edges detected by
the deep edge detector, and needs to be tuned accordingly. The other parameter
is the minimum area of the components which can be easily known as prior
knowledge in our historical maps, for example, objects with a size that below
100 m2 do not appear in our map. Even if the edge response is low (i.e., weak
gradient), the watershed can consider this weak response and closes the contour
of the region.

4 Benchmark

Here, we conduct an extensive comparison of the performance of the different
modules for Stages 1 (6 variants) and 2 (2 variants) of our pipeline.

4.1 Datasets and training data generation

The dataset used for training and testing the networks is one of the collections
of Paris atlases. Two particular sheets in the years 1898 and 1925 are selected,
focusing on the central area of the city, which exhibits high landscape diversity.
These large maps were digitized with high resolution resulting in also large im-
age sizes. Those two sheets share similar graphical content but have content,
contrast, and preservation differences.
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We annotated all objects in the map image by creating line vector information
for each boundary to represent and label every object of interest in the map.
From this vector information, we created the target outputs for each of our
processing stages. We rasterized the borders of the polygons to produce a binary
edge image used as the target for the Edge Probability Map deep edge filters
of Stage 1 must produce. Borders were dilated to 3 pixels to match the average
border thickness in the original images. Then, we created a raster label map
where an integer label is assigned to every pixel of the image depending on the
shapes it falls into. We assigned a special zero label to the parts of the image
which did not contain map content (borders and titles); this was used to filter
the outputs of Stages 1 and 2 to ensure only relevant areas were processed.

Finally, the 1925 map sheet was split into two distinct parts and used as a
training and validation set, and the 1898 map sheet was used as a test set. The
resulting training image has a 4,500×9,000 pixel size, with 3,343 objects, while
the validation image has a size of 3,000×9,000 pixels with 2,183 shapes, and the
test image has a size of 6,000×5,500 pixels with 2,836 shapes.

4.2 Protocol

Our evaluation protocol aims to identify the best deep edge detector for Stage 1
(first experiment), as well as to validate the relevance of the watershed for
Stage 2 under optimal parameters settings (second experiment). The final poly-
gon vectorization step is not used in this quantitative analysis; it was used as
a pre-defined post-processing step to demonstrate that our approach effectively
provides a suitable solution in the challenging sections of the raster-to-vector
conversion of historical maps. The first experiment consists in comparing the
performance of each deep edge detector, either trained from scratch or fine-tuned
from pre-trained weights. For each of them, we check their performance on the
validation set using the final metric for each training epoch. To this end, for each
epoch of each detector, we compute the set of detected shapes using a connected
component labeling computed on a binarized edge probability map (EPM) with
a fixed threshold of 0.5. This creates a small bias in favor of our baseline for
the second stage (CC labeling module). For each deep edge filter, we retain the
model with the highest metric value to produce the EPMs for the second ex-
periment. The second experiment consists in comparing the performance of the
watershed module against a simpler baseline (connected component extraction)
under the best set of parameters of each of them, given the best possible input
from the previous stage. Using the EPMs produced by the best performing model
for each variant in the first stage, we proceed in two steps. First, we calibrate
the parameters for each closed shape extractor using the performance measured
on the validation set. Secondly, we evaluate on the test set the performance of
each combination of the best model for Stage 1 with the best calibration for each
variant of Stage 2. The qualitative results illustrated in Fig. 1 are produced by
vectorizing the output of the best performing combination on the test image.
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Deep edge filtering variants and parameters. We consider six network vari-
ants: HED trained from scratch (HED-scratch), and fine-tuned using ImageNet
pre-trained weights (HED-pretrain), BDCN trained from scratch (BDCN-
scratch) and fine-tuned using ImageNet pre-trained weights (BDCN-pretrain),
U-Net trained from scratch (U-Net scratch), and ConnNet trained from scratch
(ConnNet scratch). As historical maps are scanned documents that have dif-
ferent image features compared to natural images, assessing the benefits of trans-
fer learning is an important question. This explains why we test both HED and
BDCN with and without a pre-training model on natural images. Such a pre-
training was not available for U-Net and ConnNet and was discarded. During
the training phase, we use the same settings for all variants: ADAM optimizer
with an initial learning rate of 5e−5, a momentum of 0.9, and a weight decay of
0.002. We use an early-stopping scheme that limits the number of total epochs
to consider, setting an upper limit to 60 epochs for each network.

Closed shape extraction variants and parameters. We consider two vari-
ants for the second stage of our pipeline: A connected component labeling (CC
labeling) module used as a baseline, and a watershed (Watershed) module.
As the CC labeling requires a binary image as input, it is necessary to binarize
the Edge Probability Map produced beforehand, except in the case of ConnNet
which already generates a binary image. We perform a grid search on 10 different
thresholds ranging from 0.1 to 0.9 on the EPM prior to the labeling procedure.
The watershed module is tuned through two parameters: a threshold on the
EPM dynamic (δ) and a minimum area threshold (σ). We perform a grid search
on 10 different thresholds for δ ranging from 0 to 0.04 (based on a study of the
distribution of predicted edge probabilities) and with the following minimum
areas for σ: 50, 100, 200, 300, 400, 500 pixels (roughly corresponding to objects
with a real surface between 25 and 250 square meters — this could be set man-
ually). The watershed does not bring any advantage over connected component
labeling in the case of a binary EPM. Therefore, we do not report results for the
ConnNet scratch + Watershed combination. Finally, large-image processing
both for validation and test sets requires a tilling step: we first reconstruct the
global images before running closed shape extraction to preserve the topological
properties of the image and leverage a much larger spatial context than the one
used by the deep edge detectors.

4.3 Metrics

To assess the performance of our system, we report the Panoptic Quality (PQ)
values for each variant under test. The PQ metric [20] was introduced to si-
multaneously measure the detection, segmentation, and classification (hence the
panoptic term) performance of a set of systems and rank them in the context
COCO Panoptic challenge. In this work, we consider only one class of object.
Wee do not make use of the multi-class capabilities of the metric and focus the
joint detection and segmentation evaluation. The COCO Panoptic PQ indica-
tor is computed as follows. First, for each pair of shapes (ti, pj) in the target
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Fig. 3: COCO-PQ score of the networks under test for Stage 1 (Deep Edge Fil-
tering), computed on the validation set, for each training epoch. The red vertical
bar indicates the best model we retained to compute the results on the test set.

and in the predicted segmentation, the Jaccard index (or IoU ) is computed as
IoU(ti, pj) =

ti∩pj

ti∪pj
. Then, the set of uniquely matching pairs (or true positives)

TP is defined as the set all pairs (ti, pj) such as IoU(ti, pj) > 0.5, leading to the
definition of PQ:

PQ =

∑
(ti,pj)∈TP IoU(ti, pj)

|TP |+ 1
2 |FP |+

1
2 |FN |

, (4)

where FP is the set of false positives (the set of predicted shapes which do
not belong to any pair TP ), and FN is the set of false negatives (the set of
target shapes which do not belong to any pair in TP ). While this measure
summarizes the segmentation and the detection quality into a single indicator,
two additional metrics provide additional insights: the Segmentation Quality
(SQ) and the Recognition Quality (RQ) defined such as PQ = SQ×RQ where:

SQ =

∑
(ti,pj)∈TP IoU(ti, pj)

|TP |
, RQ =

|TP |
|TP |+ 1

2 |FP |+
1
2 |FN |

. (5)

4.4 Results and Discussion

The validation of the performance of each deep edge filter using the shape de-
tection metric on the validation set enables the selection of the best model for
each of the variants. Indeed, instead of selected the best model based on the
validation loss used for the training, we adopt a more complex evaluation proce-
dure, more representative of the final goal. We report in Fig. 3 the profile of the
COCO PQ indicator during the training for each variant, and identify the best
model retained. It is worth noting that BDCN and ConnNet seem to plateau
quite rapidly (best model obtained around epoch 40), while HED and U-Net
keep progressing (best model obtained close to the limit of 60 epochs).
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Stage 2: Connected Component Labeling

Parameters Validation Test

Stage 1 θ PQ SQ RQ PQ SQ RQ

HED pretrain 0.7 27.6 77.6 35.6 16.2 76.1 21.3
HED scratch 0.3 23.2 76.5 30.3 14.0 74.8 18.8
BDCN pretrain 0.8 27.6 82.1 33.7 8.9 82.8 10.7
BDCN scratch 0.9 27.7 80.6 34.4 10.2 80.4 12.7
U-Net scratch 0.9 34.8 80.5 43.3 8.1 78.2 10.4
ConNet scratch none 14.2 73.6 19.3

Stage 2: Watershed

Parameters Validation Test

Stage 1 δ σ PQ SQ RQ PQ SQ RQ

HED pretrain 0.031 300 52.8 87.6 60.3 38.4 85.5 44.9
HED scratch 0.040 200 50.5 87.2 57.9 35.6 84.6 42.0
BDCN pretrain 0.027 300 53.0 88.1 60.1 37.8 86.4 43.8
BDCN scratch 0.031 200 52.5 87.8 59.8 34.9 85.8 40.6
U-Net scratch 0.000 50 56.6 87.7 64.5 18.3 85.2 21.4

Table 1: Global COCO Panoptic results (in %) of our evaluation, for each com-
bination of deep edge detector (Stage 1) and closed shape extractor (Stage 2).
Best results on validation and test sets are indicated in bold.

Then, using those best models for deep edge filtering, we are able to perform
a grid search on the set of parameters for the baseline (CC labeling) and our
proposed watershed module for closed shape extraction. The best parameters
obtained are then used to compute the final performance of each combination of
a deep edge filter with a closed shape extractor on the test set. Table 1 reports
these results and the value of the best set of parameters for each combination.
From these results we can draw several observations.

The first observation is that the watershed constantly improves shape
detection. The joint ability of the watershed to filter out small noisy shapes, to
recover weak edges, and to produce thin edges of one pixel explain the systematic
gain obtained, no matter which deep edge filter is used. This very simple, yet
effective technique, is a great complement to convolutional neural network and a
key enabler in our application. This confirms the potential of the global pipeline
we propose, i.e., combining a deep edge filter with a shape extraction using
Mathematical Morphology tools.

The second observation is that pre-trained HED is the best deep edge
filter. The Holistically Edge Detector outperforms the other architectures both
when used with a naive closed shape extraction or with a more advanced one such
as our watershed module. This seems to be mainly due to the lower complexity
of this model compared to BDCN, U-Net and ConnNet; given a limited training
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set, it generalizes better, and produces less strict edges (as seen in Fig. 4), which
are easier to recover in the second stage.

This is highly related to the observation that deep edge filters tend to
overfit. This is rather obvious that deep networks can easily overfit, but in
our application, where annotation comes with a great cost (annotation took
approximately 200 hours here), the resilience of HED is very valuable.

A further observation is that transfer learning can improve results:
HED and BDCN benefit from features learned on natural images (ImageNet),
when used with the watershed. Surprisingly, the performance is degraded for
BDCN with plain component labeling for the pre-trained version.

This is unfortunate that no pre-training is available in the case of U-Net
which seems prone to overfit. Despite reaching the best performance on
the validation set, this filter performs poorly on the test set. The study of the
output Edge Probability Map reveals very strong edges and equally strong cuts
in them, as illustrated in Fig. 4: edges too clear and many gaps prevent a proper
shape detection. Such edges cannot be recovered by the watershed, even with a
dynamic threshold set to zero.

Finally, it should be noted that the ConnNet architecture we intro-
duced here for deep edge detection produces encouraging results. De-
spite its heavier architecture, it reaches the second rank for the baseline shape
detection while integrating the threshold calibration directly in its training pro-
cess. Further work will be needed to enable its compatibility with the watershed.

5 Conclusion

We presented a learnable framework which enables the automatic vectorization
of closed shaped from challenging historical maps. To our knowledge, this is the
first approach which can accelerate manual annotation on such data. We leverage
powerful convolutional neural networks as deep edge filters combined with water-
shed to effectively and efficiently detect closed shapes. We performed an extensive
comparison on large images of several deep architectures which revealed the su-
periority of HED, and the relevance of the watershed transform we designed. The
introduction of ConnNet architecture as a deep edge detector also opens some
promising directions. Finally, our code, dataset, results and extra illustrations
are freely available at https://github.com/soduco/ICDAR-2021-Vectorization.
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