
HAL Id: hal-03256021
https://hal.science/hal-03256021

Submitted on 10 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GUI visual aspect migration: a framework agnostic
solution

Benoît Verhaeghe, Nicolas Anquetil, Anne Etien, Stéphane Ducasse,
Abderrahmane Seriai, Mustapha Derras

To cite this version:
Benoît Verhaeghe, Nicolas Anquetil, Anne Etien, Stéphane Ducasse, Abderrahmane Seriai, et al.. GUI
visual aspect migration: a framework agnostic solution. Automated Software Engineering, 2021, 28
(2), �10.1007/s10515-021-00284-z�. �hal-03256021�

https://hal.science/hal-03256021
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

GUI visual aspect migration:

A framework agnostic solution

Benoît Verhaeghe1,2,3 · Nicolas
Anquetil3,2 · Anne Etien3,2 · Stéphane
Ducasse2,3 · Abderrahmane Seriai1 ·
Mustapha Derras1

Received: date / Accepted: date

Abstract With the generalization of mobile devices and Web applications,
GUI frameworks evolve at a fast pace: JavaFX replaced Swing, Angular 8
replaced Angular 1.4 which had replaced GWT (Google Web Toolkit). This
situation forces organizations to migrate their applications to modern frame-
works regularly so they do not become obsolete. There has been research in
the past on automatic GUI migration. However, and concurrently, large or-
ganisations' applications use many di�erent technologies. For example, the
IT company with which we are working, Berger-Levrault, wishes to migrate
applications written in generic programming language (Java/GWT), propri-
etary �4th generation� languages (VisualBasic 6, PowerBuilder), or markup
languages (Silverlight). Furthermore, one must expect that in a few years time,

B. Verhaeghe
E-mail: benoit.verhaeghe@berger-levrault.com

N. Anquetil
E-mail: nicolas.anquetil@inria.fr

A. Etien
E-mail: anne.etien@inria.fr

S. Duscasse
E-mail: stephane.ducasse@inria.fr

A. Seriai
E-mail: abderrahmane.seriai@berger-levrault.com

M. Derras
E-mail: mustapha.derras@berger-levrault.com

1Berger-Levrault, Montpellier, France
2RMod team, INRIA Lille Nord Europe, Villeneuve d'Ascq, France
3Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 � CRIStAL, France

new frameworks will appear and new migrations will be required. Thus, there
is a need for a language-agnostic migration approach allowing one to migrate
various legacy GUI to the latest technologies. None of the existing solutions
allow to deal with such a variety of GUI framework. They also typically focus
on a subpart of the migration (i.e. how to extract a speci�c GUI framework)
ignoring the re-engineering/forward-engineering part of the migration (which
is straightforward for a single technology). This makes it di�cult to adapt
these solutions to other GUI frameworks. We propose an approach to mi-
grate the GUI part of applications. It is based on meta-models to represent
the visual element structure and layout. We detail how to create both the
GUI extractors and generators, with guidelines to support new markup and
programming languages. We evaluate our approach by implementing three ex-
tractors and generators for web-based or desktop-based user interfaces de�ned
with generic programming languages (Java, Pharo, TypeScript) or markup lan-
guages (XML, HTML). We comment case studies on �ve applications, opened
and closed source, of di�erent sizes. The implementations of our generic ap-
proach detect 99% of the widgets and identify (i.e. determine the type of the
widget) 97% of them. We give examples of the migrated GUIs, both successful
and not.

Keywords Graphical User Interface · Visual Part · Model-Driven Engineer-
ing · Migration

1 Introduction

On the one hand, old Graphical User Interface (GUI) frameworks are not
supported anymore: the last major version of GWT was in 2009. On the other
hand, recent GUI frameworks evolve fast: two major versions of Angular1,
three major versions of React.js2, four versions of Vue.js3, and three versions
of Ember.js4 were released in 2018.

Some companies invested massively to create complex applications in old
frameworks. It is the case of Berger-Levrault with applications totaling more
than 500 web pages. It makes it impossible to modernize the application by
re-developing it from scratch. Nowadays, the company needs to migrate appli-
cations written in generic programming languages (Java/GWT), proprietary
�4th generation� languages (VisualBasic 6, PowerBuilder, WebDev), or markup
languages (Silverlight). Thus, we need to provide a generic approach that al-
lows companies to migrate the GUI visual aspect among several GUI frame-
works. It is also clear that, in the near future, new frameworks will appear and
new migrations will be required. So, detailing how to adapt the GUI migration
approach to di�erent GUI frameworks is mandatory.

1 https://angular.io/
2 https://reactjs.org/
3 https://vuejs.org/
4 https://emberjs.com/

2

https://angular.io/
https://reactjs.org/
https://vuejs.org/
https://emberjs.com/

Tools and approaches have been proposed to support GUI migration
(Fleurey et al., 2007; Joorabchi and Mesbah, 2012; Samir et al., 2007; Shah
and Tilevich, 2011; Wªodarski et al., 2019). However, the authors did not ap-
ply their migration approaches on multiple GUI frameworks, and speci�cally
on web-based GUIs. Whereas authors detailed migration high-level steps (e.g.
extraction and generation) or focused on migration speci�c aspects inherited
from their work context, none explained how to adapt their approach and
meta-model to several migration projects.

So, to enable the migration of several GUI using a variety of frameworks,
we need to: (1) de�ne a framework-agnostic approach, (2) design a specializ-
able meta-model to support the di�erences between frameworks (e.g., di�erent
widgets) and (3) detail how to apply the approach and the meta-model on dif-
ferent kind of languages (e.g., markup or programming languages).

In this paper, we present an approach to migrate GUIs of web-based or
desktop-based software systems, de�ned with GUI framework using markup
(e.g. XML, HTML) or programming languages (e.g. Swing, Spec). The ap-
proach comes with meta-models which represent the GUIs structure and lay-
out. We detail the steps to extract GUIs and generate the target applications.
Note that this paper presents an extension of previous work (Dutriez et al.,
2019; Verhaeghe et al., 2019) where only GUI structure, and not the layout,
was considered for two migration projects (from GWT to Angular, and from
Spec to Spec2), without a detailed framework-agnostic approach.

To validate this approach, we developed Casino, a tool that can migrate
several GUI frameworks to others. We detail implementations of our ap-
proach to extract GUIs de�ned with a programming language (Java/GWT,
Pharo/Spec), and with a markup language (Java/GXT) and to generate GUIs
de�ned with a programming language (Pharo/Seaside and Pharo/Spec2), and
with a markup language (TypeScript/Angular). Note that other combinations
are possible, for instance, we also worked on plain HTML, Java Swing, and
Silverlight extractor, and on an Aurelia generator5. We released the source
code of the existing implementations and future ones in GitHub6. Then, we
validate our approach on two industrial and three open-source projects. Our
approach detects 99% of the widgets (i.e. �this element is a widget of the GUI�)
and identi�es 97% (i.e. �this widget is a button�) of them.

Our approach migrates the visual aspect of the original applications. Be-
havioral aspects (treatments occurring when the end-user interacts with the
GUI) are out of the scope of this paper. They will be presented in future
publications.

The contributions of the paper are:

� a detailed approach to migrate application visual parts independently of
the GUI implementation language;

� meta-models to represent GUIs structure and layout;
� a tool that implements our approach; and

5 https://aurelia.io/
6 https://github.com/badetitou/Casino

3

https://aurelia.io/
https://github.com/badetitou/Casino

� implementations of GUI frameworks migration.

In Section 2, we review the literature on GUI migration. In Section 3,
we present our generic migration approach. In Section 4, we detail our GUI
meta-models. In Section 5, we present implementations of our approach for
programming and markup languages. In Section 6, we present the results pro-
duced by applying our approach to �ve real applications. In Section 7, we
discuss our results. In Section 8, we conclude and present future work.

2 State of the art

We will �rst rapidly mention recent work on GUI generation using Arti�cial
Intelligence (from screenshot examples). This is the case of Beltramelli (2017);
Chen et al. (2018); Moran et al. (2018). These approaches rely on a huge
dataset of screenshot examples (14,382 screenshots for (Moran et al., 2018) and
10,804 for (Chen et al., 2018)), to train the model. Thus, Beltramelli (2017)
warns that the approach �is not, in any way, intended, nor able to generate
code in a real-world context� and �both the source code and the datasets are
provided to foster future research [...] and are not designed for end-users�7.
Consequently, we rule out Arti�cial Intelligence as a possible approach given
the current state of the art.

We identi�ed various publications related to GUI migration using meta-
model (Fleurey et al., 2007; Samir et al., 2007). Section 2.1 details existing
related work. Section 2.2 presents the approaches proposed to migrate GUI
application. Section 2.3 describes the user interface meta-models found in the
literature.

2.1 Related work

We are interested in a generic GUI migration approach able to handle multiple
source and target frameworks. Thus we are interested in whether the proposed
solution can (i) import GUI from markup languages (e.g. HTML), (ii) import
GUI from programming languages (e.g. Swing); (iii) import from binary source
(e.g. Oracle form); (iv) handle multiple languages; (v) export GUI to markup
language; (vi) export GUI to programming language. We will not consider the
case of exporting to binary framework as no modern GUI framework use this
approach anymore.

Prior research makes valuable contributions: GUI internal representation
(models, see Section 2.3) and/or migration �process� (see Section 2.2). How-
ever, there are rarely enough details provided to generalize the approaches to
other languages/frameworks.

Table 1 summarizes the related work considered. First line presents our
need for the extraction, exportation, and multi framework support. Note that
extract binary is part of our need but will not be detailed in this article.

7 https://github.com/tonybeltramelli/pix2code#disclaimer

4

https://github.com/tonybeltramelli/pix2code#disclaimer

Table 1: Related work

extract

markup

extract

program-

ming

extract

binary

multiple export

markup

export

program-

ming

language language migration language language

Our needs

Hayakawa et al.
(2012)

Mesbah and van
Deursen (2007)

Bragagnolo et al.
(2020a)

Garcés et al.
(2017)

Sánchez Ramón
et al. (2014)

Fleurey et al.
(2007)

Samir et al.
(2007)

Most of past research considered migrating from markup languages: Gar-
cés et al. (2017) (partial XML to JEE), (Hayakawa et al., 2012) (multiple
markup languages), (Mesbah and van Deursen, 2007) (multi-page web appli-
cation to Single Page Application (SPA) using Ajax). Migrating from markup
languages is easier because the language is simple to parse (e.g. there are nu-
merous parsers for HTML or XML), detecting the GUI elements (widgets) is
straightforward (e.g., a tag <button>), and the structure of the interface is well
described by the DOM.

Sánchez Ramón et al. (2014) and Garcés et al. (2017) considered the case
of Oracle Forms, a framework that we classify as binary source since there
is no textual representation of the GUI (or an incomplete XML representa-
tion Garcés et al. (2017, again)). Bragagnolo et al. (2020a) also worked on
GUI extraction based on binary sources with the migration of Visual Basic
applications. Sánchez Ramón et al. (2014) consider migrating to Java Swing
(programming language), Garcés et al. (2017) to JEE application (markup lan-
guage because the GUI is de�ned in HTML �les), and Bragagnolo et al. (2020a)
to Angular (markup language). The publications focus on the extraction part
of the process since Rapid Application Development frameworks have speci�c
problems to get access to a representation of the GUI. We will come back on
this speci�c issue in Section 7. Their GUI meta-models are valuable (see 2.3)
as well as their generic process (see 2.2), however, there are not enough details
to generalize them to other languages.

Fleurey et al. (2007) and Samir et al. (2007) are the only ones who consider
the extraction of GUI based on programming language. The �rst one from

5

Coolgen generated code 8 and the second one from Java Swing code. Even if
none of the publications detail how to adapt the approach to extract other
programming language GUI, they give hints on the general approach such
as how to map source and target widgets. The two publications migrate to
markup language based GUI: Fleurey et al. (2007) migrate to J2EE, and Samir
et al. (2007) to Ajax Web with XUL9. We note that the XUL format has been
discontinued.

Thus, none of the presented projects deal with the multi-framework mi-
gration de�ned with markup and programming languages. And, only Fleurey
et al. (2007) and Samir et al. (2007) present the extraction of GUI de�ned
using a programming language.

2.2 Migration approach

Fleurey et al. (2007); Garcés et al. (2017) and Sánchez Ramón et al. (2014)
developed tools that semi-automatically migrate GUI. All of them use the
following four steps migration �process�:

1. Generation of a model of the original application.
2. Transformation of this model into a pivot model that includes data struc-

tures, actions, user interface, and navigation.
3. Transformation of the pivot GUI model into a target framework model.
4. Generation of the target source code.

Hayakawa et al. (2012) proposed a similar approach in two steps: (a) reverse
engineering similar to the extraction of a pivot model, and (b) generation of
the new application similar to the generation of target source code. They can
reduce the number of steps in part because they worked only with GUI de�ned
with markup languages that are easier to parse and generate.

In addition to those main steps, Mesbah and van Deursen (2007) added
a behavior extraction step and a behavior generation step. This step allows
them to migrate the navigation �ow and the behavior of the User Interface.

The proposed approaches provide good results in all case studies. The
generic �process� in four steps seems consensual enough and we will base our
solution on it. However, none of the authors had to adapt their respective
approach to multiple sources or target frameworks. As a result they focused
only on parts of the migration problem (Sánchez Ramón et al., 2014) which
makes their approaches di�cult to adapt to other migration projects.

On the other hand, some (e.g. Mesbah and van Deursen (2007)) considered
issues that are out of the scope of this paper. For instance, they also focus
on migrating the behavioral, non GUI related, part of the code. Even if the
behavior is out of the scope of visual aspect migration, it is represented in the
literature GUI meta-models as events to enable future work focused on this
aspect.

8 Coolgen: https://en.wikipedia.org/wiki/CA_Gen
9 https://developer.mozilla.org/en-US/docs/Archive/Mozilla/XUL

6

https://en.wikipedia.org/wiki/CA_Gen
https://developer.mozilla.org/en-US/docs/Archive/Mozilla/XUL

2.3 GUI meta-model

Most approaches use the horseshoe process (Kazman et al., 1998) based on
meta-models. In the following, we discuss some of the proposed GUI meta-
models.

All researchers used a hierarchical representation of the GUI in the form
of a Domain Object Model (DOM)(Brambilla and Fraternali, 2014; Fleurey
et al., 2007; Gotti and Mbarki, 2016; Joorabchi and Mesbah, 2012; Memon
et al., 2003; Mesbah et al., 2012; Samir et al., 2007; Shah and Tilevich, 2011).
Each node in the DOM tree represents a widget of the user interface. Thus,
this representation is not controversial and representing the DOM appears as
a good solution to represent the GUI skeleton.

In addition to the DOM and the widgets, some authors added attributes

(Garcés et al., 2017; Gotti and Mbarki, 2016; Joorabchi and Mesbah, 2012;
Memon et al., 2003; Samir et al., 2007; Shah and Tilevich, 2011) and events

(Fleurey et al., 2007; Garcés et al., 2017; Joorabchi and Mesbah, 2012; Mesbah
et al., 2012; Samir et al., 2007). Attributes are used to customize the visual
aspect of the widgets, and the events enable the representation of the navi-
gation inside the GUI. Thus, attributes and events are important to have a
detailed GUI meta-model.

Gotti and Mbarki (2016) propose an approach to extract a detailed GUI
representation from Java Swing code. To do so, and additionally to the DOM
and the attributes, they identify di�erent kinds of known widgets such as
Button, Label, Panel, etc. With the speci�c widgets concepts, they can better
map each widget of the source code to their GUI model.

Sánchez Ramón et al. (2016) also de�ne kinds of widgets such as Panel,
TextBox, DataGrid. They also de�ne a special kind of widget named �custom�
to support widgets that might not be recognized by their GUI extraction
approach.

To represent correctly the visual aspect of a GUI, a layout representation
is also necessary (Rodríguez-Echeverría et al., 2011; Sánchez Ramón et al.,
2016; Verhaeghe et al., 2019). There are three identi�ed layout managers in
the literature: hardcoded, hierarchical, and constraint-based:

� Hardcoded layout. Sánchez Ramón et al. (2016) de�ne for each widget
its position with absolute coordinates on the screen. It is used in old GUI
frameworks.

� Hierarchical layout consists of subdividing the available space of the
screen into panels. Then the panels are responsible for placing their chil-
dren in the dedicated space (Hasselknippe and Li, 2017). Sánchez Ramón
et al. (2014) proposed a layout meta-model that supports hierarchical lay-
outs. Zeidler et al. (2012) claims that the grid-bag layout, which is a hier-
archical layout, is the most prominent and that it is supported by almost
all available GUI toolkits.

� Constraint-based layout also uses a hierarchical structure but it uses
constraints to place the widgets, for example: �place this button on the

7

right of this text�. Lutteroth et al. (2008) presented the Auckland Layout
Model which is an implementation of a constraint-based layout.

The literature presents several GUI meta-models composed of a structure
meta-model and a layout meta-model. Authors have also proposed modi�ca-
tions to adapt their meta-model to their speci�c context. Only Sánchez Ramón
et al. (2016) present the concept of custom to deal with unknown widgets of
RAD frameworks. However, to the best of our knowledge, no study presents
how those meta-models can be specialized for other contexts. Thus, we need
to de�ne a specializable GUI meta-model that will be tunable.

3 Framework-agnostic migration approach

The GUI migration problem has already been studied in di�erent migration
projects. However, there is no detailed framework-agnostic approach to mi-
grate GUI visual aspect. In the following, we detail our approach and how to
use it with markup and programming languages. Note that we do not consider
the extraction of GUI de�ned with binary �le and it will be part of our future
work.

In Section 3.1, we give an overview of our approach, then we detail the
extraction step for di�erent kind of GUI frameworks (Section 3.2), and the
generation step (Section 3.3).

3.1 Our Migration Process

We designed a three-step approach for GUI migrations. Each step is divided
into tunable sub-steps to enable multi-framework support. Examples of sub-
step adjustments are illustrated with concrete cases in the following sections.

Migrated
application

Source code model extraction

GUI model
extractionSource code model

Source
application

Pivot GUI model

Generation

Fig. 1: Our GUI migration process

8

The process represented in Figure 1, is divided into the three following
steps:

Source code model extraction. We build a model that represents the source
code of the original application. To do so, one needs a source language
parser and its meta-model. The source language can be a programming
language or any other markup languages like XML or HTML. One can
also extract a model from a binary �le format.

GUI model extraction. We analyze the source code model to identify the Vi-

sual part elements. We build a mapping between the widgets of the source
framework and the widgets of the GUI meta-model. Finally, we create a
GUI model from this mapping.

Generation. We re-create the GUI in the target language. First, we have to
de�ne how the user interface is implemented in the target framework. Then
we have to de�ne a mapping between the widgets of the GUI model and
their implementations in the target framework. We show examples of gen-
erators in Section 5.2.

Our approach is similar to the four steps approach used in the literature.
But, we merged the last two steps considering the generation of the target
model and code more trivial.

In the following, we present a concrete case of migration from Java/GWT
project to Angular. First, we extract a java model from the project source
code. Then, we extract a GUI model from the Java model. It produces a
model of the GUI of the source application, i.e., the widgets and their position.
Finally, we generate the Angular application from the GUI model. It produces
a runnable version of the application including only the GUI elements in the
target language.

3.2 Extraction

For this step, we must extract the widgets, their attributes, and their layout
and link them together. We must also be able to deal with custom widgets
de�ned by the developers and used in their applications. This step depends
on the GUI framework used. There are some �con�guration� sub-steps to be
performed to support a new GUI framework. In the following, we describe �rst
the sub-steps applied (once) for each new GUI framework. Then we describe
the sub-steps applied for each application of an already known framework.

3.2.1 New framework extraction

To support a new source framework (see Table 2) we de�ne the following
sub-steps:

1. Map source framework to pivot model, where we de�ne dictionaries
mapping known widgets, attributes, layouts to their counterpart in our

9

Table 2: Framework agnostic extraction approach - support new framework

source Map source to

pivot

Indentify

contain-

ment rules

Indentify

custom

widgets

rules

Indentify root

widgets rules

Markup
language

Tag to widget con-
cept (Garcés et al.,
2017; Hayakawa
et al., 2012;
Sánchez Ramón
et al., 2014)

Use DOM
(Memon
et al., 2003;
Samir et al.,
2007)

Unknown tag Con�guration �le
(Garcés et al., 2017;
Memon et al., 2003;
Mesbah and van
Deursen, 2007)

Programming
language

Source class and
factory (Samir
et al., 2007)

Method in-
vocation

Unknown
subclasses

Speci�c set of wid-
gets (Memon et al.,
2003; Rodríguez-
Echeverría et al.,
2011)

In parenthesis: related work for the step.

pivot model (presented in Section 4). For programming languages, we map
a widget class to our pivot counterpart. For example, in Swing, JButton
maps to our pivot Button widget. For markup language, we map a tag to
a widget concept. For example, in HTML, the label attribute maps to our
pivot Label attribute

2. Then, we need to identify containment rules in the source code, contain-
ment links between widgets/layout and their children attributes/widgets.
In the case of programming language, such containment links may come
from speci�c method calls as add(. . .) or setWidget(. . .) on a container widget.
For markup language, the containment is already de�ned in the DOM

3. Identify custom widgets rules speci�es how to identify application spe-
ci�c widgets that are not part of the source to pivot dictionary map (�rst
step). For programming languages, it corresponds to unknown subclasses
of the generic widget class. For example, the rule for GWT is to look for
all subclasses of the Widget class; in Angular, one looks for all component.ts
�les. In case of markup language, we look for unknown tags. Such custom
widgets can typically not be translated automatically but need to be iden-
ti�ed. Thus, the generator �ags them in the generated GUI for developers
to take actions (either to migrate them manually, or update the source to

pivot map).
4. Finally, identify root widgets rules speci�es how root widgets will be

recognized. Root widgets are the entry points in the GUI of the application;
they correspond to windows in a desktop application or pages in a web
application. For markup language, roots are de�ned in a con�guration �le,
whereas in programming languages, they are identi�able as a speci�c set
of widget (i.e. JWindow in Java Swing). We will see later that they are
important to create a hierarchical representation (a DOM) of a GUI. Note
that we only care about custom widgets and not custom attributes or

10

layout. We consider that it is not possible to de�ne custom attributes
(that would apply to already known widgets) or custom layouts. Such new
attributes/layouts can only come as part of new custom widgets.

Table 3: Substeps to migrate an application using a known framework

Source Identify

Custom

Widget

Create

widgets

instances

Detect Compo-

sition

Perform layout

additional sub-

step

Markup
language

Apply Custom
widgets
identi�cation
rules

Browse markup
�le and create
widgets when
encounter
recognized tags

Children in the
GUI are children in
the DOM (Memon
et al., 2003; Samir
et al., 2007)

Programming
language

Look for source
class instanti-
ation or call
to factories
(Rodríguez-
Echeverría
et al., 2011;
Silva et al.,
2010)

Look for call to
pre-determined
methods

Use symbolic ex-
ecution to resolve
precise position of
widget (Silva et al.,
2010)

In parenthesis: related work for the step.

3.2.2 New application extraction

Once our approach is �con�gured� to support a GUI framework, migrating an
application for this framework consists in four sub-steps (see Table 3).

1. First, identify custom widgets based on the rules for the framework
(custom widget rules). For both markup and programming languages, it
corresponds to applying the de�ned custom identi�cation rules. The new
widgets are added, on the �y, to the framework source to pivot dictio-
nary and mapped to a special pivot Custom Widget. Each instance of an
unknown widget is mapped to a di�erent instance of Custom Widget. No
e�ort is made to group together various instances of the same unknown
widget.

2. Second, in the create widget instances sub-step, the source to pivot

dictionary for the framework is used to identify all instances of known
widgets, attributes, and layouts. In case of markup language, we visit the
markup source �le and create widgets corresponding to recognized tags.
For programming languages, we look for widget class instantiation. It can
occur by calling the widget constructor (i.e. in java: new) or through a
factory de�ned by developers or the source framework.

11

3. Third, detect composition, each instance of widget, attribute, and layout
is linked to its parent widget following the identi�ed containment rules of
the framework. In case of markup language, the composition is already
de�ned in the DOM (Document Object Model) so children in the source
DOM are children in the pivot DOM. For programming languages, we
look for call to methods de�ned in the containment rules (i.e. add(...),
setWidget(...)). This results in a DOM that includes the widgets, their
attributes, and also the layouts.

4. Finally, performing a layout additional sub-step is often necessary to
improve the computation of widgets layout (typically with grid layouts).
For example, widgets could be positioned one relative to the other, or
some computation might be required to get the row and column values in
a grid layout. We did not report this sub-step for markup languages since
the DOM building is su�cient to get a good representation of the layout.
However, for programming languages, this sub-step is necessary and might
require symbolic execution to resolve the position of widgets in the GUI.

3.3 Generation

Table 4: Framework agnostic generation approach - support new framework

Identify target framework en-

vironment

Map pivot model to target

framework

Markup Written in one or multiple �les Widget concept to tag

Programming De�ned in one method or multi-
ple methods de�ned by the target
framework

Widget concept to widget instan-
tiation method

There is no study nor detailed explanation on how to export GUI into
the target language. The basic approach consists in visiting the DOM of the
pivot model, generating appropriate code. However, the generated code may
be split into di�erent �les, or one pivot entity may produce several target
entities, or several pivot entities may be grouped in only one target entity. As
for the extraction we �rst present how to �con�gure� our approach for a new
target GUI framework, then we discuss actual generation for an application in
a known framework.

Two sub-steps are needed to support a new framework (see Table 4): iden-
tify target framework environment and map pivot model to target
framework.

1. The �rst sub-step, identify target framework environment, de�nes
where the code will be generated to be supported by the target GUI frame-
work. For instance, for markup languages, the GUI can be fully de�ned in

12

a �le (.html) or in multiple �les (angular component). In the case of pro-
gramming languages, some frameworks force the user to de�ne the GUI in
a speci�c method or the GUI can be de�ned at any place in the code (Java
Swing).

2. In the second sub-step, map pivot model to target framework, we
de�ne a mapping between widgets, attributes, and layouts to their target
framework counterpart. For markup languages, it corresponds to the target
tag, and for programming languages, the way to instantiate the widget or
set the attribute (i.e. calling the constructor or a factory).

Table 5: Framework agnostic generation approach - support new application

Identify target application

environment

Generate Code

Markup

Con�guration information (URL
for web application data access)

Visit the GUI Model DOM
and generate for each wid-
get/attribute/layout/ its tag
counterpart

Programming Generate the GUI code using set-
ter, DOM builder methods, and
constructor

Then, two other sub-steps are needed to support the migration of a new
application (see Table 5): identify target application environment and
generate code.

1. Identify target application environment is identical for programming
and markup languages. It consists of discovering the con�guration needed
by the application. For example, it includes the endpoints URL to access
data.

2. The second sub-step, generate code, de�nes how the code is exported.
This sub-step can be generalized at the �support new framework� level
but must be performed for each application. For instance, for markup lan-
guages, it is possible to visit the GUI model DOM and generate for each
widget its target language counterpart with its attributes. In the case of
programming language, it calls methods that instantiate the widgets (e.g.
call to the constructor, call to a factory, etc) and the methods used to build
the DOM (e.g. add(), setWidget()) to generate the target GUI.

4 Specializable GUI meta-model

Our approach uses a pivot GUI meta-model (Fleurey et al., 2007; Garcés et al.,
2017). This meta-model is de�ned as the composition of several meta-models,
each representing di�erent elements of the visual part. We de�ne three meta-
models: (1) Core (Section 4.1) represents the structure of a user interface,

13

(2) Layout (Section 4.2) represents the visual disposition of user interface's
widgets, and (3) Widgets (Section 4.3) represents the possible widget types.
Finally, in Section 4.4, we present how the meta-model can be specialized and
the importance of custom widgets.

4.1 Core meta-model

Widget

ContainerLeaf

0..*

widgets

container

Attribute
widget

0..*attributes

RootCustom Widget

Fig. 2: Core meta-model

To represent the user interfaces of desktop or web-based applications, we
designed the meta-model presented in Figure 2. The core represents the struc-
ture of a user interface. Developers can then tune the meta-model by adding
new entities to �t their requirements such as a complex parametrizable table
component. It also introduces the concept of custom widget that will be used
in Section 4.4.

Widget is a graphical resource. It can be re�ned as Leaf or Container.
Container is a composite of Widgets.
Leaf is a basic widget that can not contain another widget. For example, a

text input.
Root represents the main container of a graphical interface. It is either a

window of a desktop application or a web page. The Root is a kind of
Container.

Attribute represents a widget property and can change its behavior. For ex-
ample, a button may have a text attribute.

Custom Widgets is a kind of Container that represents an unknown widget
in our meta-models. During the migration process, it represents a detected
but not recognized widget.

14

The DOM, massively used in the literature (see Section 2.3), is represented
with the relation between Container and Widget. To represent the widget
visual disposition, we introduced a layout meta-model (see Section 4.2) that
represents the DOM with additional information such as how children are
visually disposed inside their parent.

4.2 Layout meta-model

To represent the layout of a graphical user interface, we design a dedicated
meta-model. It allows one to have a better representation of the visual dispo-
sition of the graphical components of the user interface.

Widget

Container

Layout

Cell Size Position

container

0..1
layout

0..*
cells

layoutOwner
Absolute

Size
Relative

Size
Absolute
Position

Relative
Position

Alignment

widget

0..1

0..1

position

0..10..1
size

widget

Grid
Layout

Horizontal
Layout

Vertical
Layout

0..1

0..1

widget

cellOwner

Border
Layout

Fig. 3: Layout meta-model (grey concepts are shared with the core meta-
model)

Figure 3 represents our layout meta-model. The entities Widget and Container
are part of the core meta-model presented in Section 4.1. The layout meta-
model adds four main entities to the core meta-model.

Size describes the height and width of a widget. The size of a widget can
be absolute or relative. The AbsoluteSize is expressed in pixels. The
RelativeSize is expressed as a percentage of its container.

Position describes the position of a widget in the user interface. It can be ab-
solute, relative, or de�ned by alignment properties. The AbsolutePosition
represents the coordinates of a widget in the user interface. The
RelativePosition represents the coordinates of a widget in its container.
The Alignment de�nes how to position a widget inside its container. It can
be in the top, bottom, right, left or center of its container or a combination
of them.

15

Layout represents rules to position the children of one container. Any
Container of the core meta-model can have one layout. A Layout can
be re�ned as a Grid Layout; a Border Layout; a Horizontal Layout and
a Vertical Layout. We currently support these layouts because they are
most frequently used in our context. However, many other hierarchical lay-
out managers exist (Lutteroth et al., 2008; Sánchez Ramón et al., 2016;
Zeidler et al., 2012) and one can extend the layout meta-model to support
them.

Cell A Layout can contain multiple Cells. Then, each Cell contains one
widget. Thus, the layout dispose the widgets using the Cell. It allows one
to have �ne control of the �nal GUI layout.

A hardcoded layout can be modeled as is with the AbsolutePosition
entity. But it is best to migrate it to a hierarchical layout as proposed by
Sánchez Ramón et al. (2016).

Note that some Containers do not have a Layout. For instance, a <select>
in HTML has multiple <option>, thus, it is considered as a Container but does
not have Layout.

4.3 Widget meta-model

The core meta-model presented in Section 4.1 allows one to represent the GUI
structure. However, to migrate a GUI we map widgets of the source framework
to widgets of the pivot meta-model. This mapping is made through the widget
meta-model.

The widget meta-model describes the most common user interface widgets.
It currently contains all the entities described in the W3School website10 such
as Button, Label, and OrderedList. However, the website only presents the
widgets of the HTML standard. Our widget meta-model is composed of 61
widgets and 31 attributes. An excerpt of the widget meta-model is presented
in Figure 4.

This meta-model can be extended with other widgets to �t the needs
of a speci�c migration. It was the case for the GUI extraction of Berger-
Levrault applications where developers have developed a few speci�c widgets.
In fact, the widget meta-model includes the already known widgets, whereas
the Custom widget represents the unknown widgets.

4.4 Custom widget and specialization

One of the major problem when considering multi GUI framework migration
is the ability to handle widgets that might not be present in the GUI pivot
model. Indeed, the mapping of widgets between frameworks is not one to one
(Gerdes Jr, 2009; Sánchez Ramón et al., 2014; Sánchez Ramón et al., 2016;

10 https://www.w3schools.com/html/default.asp

16

https://www.w3schools.com/html/default.asp

...

Widget

ContainerLeaf

0..*

Attribute
0..*

Link

List

Input

Button

Checkbox Table

LabelPlaceholder

NameSrc

Panel Tree

...

...

Fig. 4: Excerpt of the widget meta-model (grey concepts are shared with the
core meta-model)

Shah and Tilevich, 2011) and third-party libraries may o�er new widgets. For
example, AWT is an old GUI framework and some of its widgets do not have a
counterpart in Angular. Note that in the case of migration between standard
web-application (such as applied by (Hayakawa et al., 2012)), the problem is
less important because most of the widgets are also standard (i.e. div, span,
input, etc.).

To tackle such a problem, we use the concept of Custom Widget
(Sánchez Ramón et al., 2014; Sánchez Ramón et al., 2016). During the extrac-
tion step, when an unknown widget type is encountered, the extractor creates
a Custom Widget. Then, it tries to extract the DOM of the Custom Widget as
a simple container. During the generation, Custom Widgets are generated as
containers with a comment in the generated code to warn developers and give
them additional information: name of the source widget, attributes (if iden-
ti�ed), possible children widgets (if identi�ed), location in the source code.
With this information, one can add a new widget to the pivot meta-model
and update the mapping of the known widgets (mapping source to pivot).

Indeed, we designed our approach and meta-model to be specializable.
Thus, better than using Custom Widget, one can create speci�c widgets and
use them with our approach. It is the choice we made for the framework of
Berger-Levrault (see Section 6.1). It also enables our approach to be iterative:
one performs the migration, our tool identi�es Custom Widgets, then the de-
velopers extend our meta-model, and iterates. Note that, for better migration
results such a widget should also be created (programmed) in the target frame-
work. If the developers felt the need to create them in the source framework,
there is a good chance that the same need applies to the target framework.

17

5 Implementation

To validate our approach we implemented extractors and generators for GUI
frameworks that use programming and markup languages. In Section 5.1, we
detail the implementation of the steps to extract the GUI part of an appli-
cation. In Section 5.2, we detail the implementations to generate the target
GUI.

5.1 Extractors

We implemented three extractors for three di�erent frameworks: The �rst,
BLCore, Java-based GWT, is web-based and the interface is de�ned in the
programming language Java; the second, XML-based GXT11 is web-based and
the interface is de�ned in a markup language (XML); and the third, Pharo-
based Spec (Fabry and Ducasse, 2017), is desktop-based and the interface is
de�ned in another programming language (Pharo). In this section, we discuss
separately the four sub-steps to support a new framework (see Section 3.2.1)
and the four sub-steps to support a new application (see Section 3.2.2) with
concrete examples from the extractors.

5.1.1 Handling a new Framework

As presented in Section 3.2.1, to support a new framework one needs to:

� map the source framework to the pivot model,
� identify the containment rules,
� identify the custom widgets rules,
� and identify the root widgets rules.

1 <gxt :Window ui : f i e l d="window">
2 <conta ine r : Vert ica lLayoutConta iner>
3 <form : F ie ldLabe l t ex t="{i18n . user}">
4 <form : widget>
5 <form : TextFie ld u i : f i e l d="l o g i n "/>
6 </form : widget>
7 </form : Fie ldLabe l>
8 </conta ine r : Vert ica lLayoutConta iner>
9 <gxt : button>

10 <button : TextButton text="{i18n . l o g i n }"/>
11 </gxt : button>
12 </gxt :Window>

Fig. 5: Snippet of an GXT login view in XML

11 GXT, https://www.sencha.com/products/gxt/, is an extension of GWT

18

https://www.sencha.com/products/gxt/

Map source framework to pivot model. The basic approach to de�ne a
mapping between source and pivot meta-model is simply to create a dictionary.
For GXT extractor, we map an XML tag or attribute (source meta-model)
to its corresponding pivot widget, attribute, or layout. For example line 2
of Figure 5, the container:VerticalLayoutContainer source tag maps to the pivot
widget Panel containing a Vertical pivot layout. Note that, line 5, the ui:field
source attribute does not map to anything in the pivot meta-model by itself
but is used to map the textField with its counterpart in the Java source code
where the behavior of the GUI is described.

For the frameworks based on programming languages (GWT and Spec), we
map a source class or method to a pivot widget, attribute, or layout. We need
to consider also methods because some widgets may be constructed through
factories. Also, an attribute of a source widget might be assigned with a setter
method, in this case, the source method (setter) maps to a pivot attribute.
For the GUI extraction, we do not consider getters because they do not tell
us anything on the value to assign to the attributes and therefore they do not
point to anything that we could generate to get the same rendering.

There are other possible mappings, for example a GWT source widget Dy-
namicFieldSetPanel maps to a pivot widget FieldSet and its boolean attribute
dynamicFieldSet. The presence of an attribute may also be conditioned to the
instantiation of a widget. For example, instantiating a Button widget with a
string parameter (new Button("OK")), will set its text attribute. Another case is
that of a source attribute mapping to two pivot attributes. For example the
width source attribute maps to either the absoluteWidth or relativeWidth pivot at-
tributes depending on whether the value assigned to it is in pixel (e.g. "250px")
or in percentage (e.g. "50%"). This requires symbolic execution and cannot
always be achieved (see Section 5.1.2).
Identify containment link. This might be very simple. For example in GXT,
we just use the DOM of the XML �le describing the interface since it is al-
ready structured as a containment tree. For frameworks based on programming
languages, the links between a widget and its attributes are easily set when
the attributes are identi�ed. The containment links between widgets and sub-
widgets, or widgets and layouts, are identi�ed through the use of a small set of
speci�c methods: ownerWidget.add(<widget>) for Spec and GWT, and also owner-
Widget.setWidget(. . . , . . . , <widget>) for GWT. For these methods, we specify that
the parent widget is the receiver, and the child widget the argument.
Identify custom widget. In programming language based frameworks, we
typically look for new classes inheriting from the most abstract widget12 in the
source meta-model: Widget class for GWT, and ComposablePresenter for Spec.

In GXT, custom widgets are either unknown tags in a GUI description
�le (named xxx.ui.xml), or a GUI description �le not listed as an application
root page in the con�guration �le. For example, in the snippet of Figure 5, we
expect to know all tags within <gxt:Window>. Other tags may appear outside

12 We remind the reader that we consider there can be no custom attribute or layout, see
Section 3.2

19

it, but they are used for con�guration and do not impact the visual aspect of
the GUI.
Identify root widget. In GWT and GXT, we browse the model of the XML
con�guration �le describing the application where all root pages are listed.
Note that this is the same �le in both cases as GXT is just an extension of
GWT.

In Spec, the notion of root widget is fuzzier, it relies on the idea that any
widget, however simple or complex, can be opened as a window or included in
another widget. Therefore, in this case, we have to treat each root widget of
the application separately which means we rely on the user to tell us what a
root widget is.

5.1.2 Handling a new Application

As presented in Section 3.2, to support a new application in a known framework
one needs to:

� actually identify the custom widget types,
� create all widget instances,
� detect the composition of widgets, and
� perform an optional additional sub-step for layout.

Identify custom widget types. We apply the identi�cation rule de�ned for
the given framework. For example, as described above, in GWT we look for
all new class descendants of Widget.
Create widget instances. In GXT identifying source widgets instances, at-
tributes and layout is achieved by browsing the model of the XML �le from
top to bottom, creating pivot widgets, attributes, or layouts as we encounter
tags (these tags were identi�ed in the Mapping De�nition sub-step in the pre-
vious section). The composition of the widgets and/or their attributes is easily
extracted from the DOM of the source XML �le. The same goes for layouts.

BLCore GUI creation code

 BLButton button;
 ...
 button = new BLButton();
 ...
 panel.add(button);

...

Widget

ContainerLeaf

0..*

InputButton

Fig. 6: Example of Widgets Identi�cation

Identifying widgets, attributes, layout instances for the two frameworks
based on a programming language is more complex.

20

If a source widget is identi�ed by a class, we just look for instantiations
(new) of this class (see Figure 6). If a source widget is identi�ed by a method
(e.g. in a Factory), we look for calls to this method. In both cases, we need to
retain the instance created for later analysis. Typically the instance is assigned
to a variable, and we retain this variable. For example in Figure 6 the Button
instance is assigned to the variable button. Since we are working on a model of
the source code and not the source code as a textual artifact, this means we
have the variable as an entity in the source model and we can easily �nd every
place where it is accessed. In Figure 7, there are two widget instantiations:
LinkLabel (which is a known widget in this case), line 4; and Label (another
known widget), line 6. The �rst instance is assigned to the lblPg variable,
line 4.

1 c l a s s SPMetier1 extends AbstractSimplePageMetier {
2 @Override
3 pub l i c void bui ldPageUi (Object ob j e c t) {
4 LinkLabel lb lPg = new LinkLabel ("Next ") ;
5 lb lPg . setEnabled (methodCall ()) ;
6 content . add (new Label ("<Bus iness content >")) ;
7 content . add (lb lPg) ;
8 super . s e tBu i ld (t rue) ;
9 }

10 }

Fig. 7: User interface creation in Java GWT

When looking for attributes in the source model, we search for known set-
ter messages sent to variables containing widget instances. Again these setter
messages were identi�ed for the framework as indicators of attributes. In Fig-
ure 7, on line 5, the lblPg variable receives the setEnabled message that maps
to the disable pivot attribute. Note that, again, the value of setEnabled must
be interpreted to give the correct value to the pivot attribute. In the example,
we have to execute the method methodCall to resolve the boolean value. This is
one of the most di�cult and least reliable computations we perform as will be
seen in the results of experiments given in Section 6.3. But we still achieved a
worst-case of 67% of attributes correctly detected.
Detect widget composition. For the DOM building, there are two examples
of calls to the add(<widget>) in Figure 7, on line 6 and 7. In each case, we
already identi�ed the variable to which these messages are sent (content) and
the children widgets that are passed as argument.

Note that the line 8 of Figure 7 is not used as it does not involve any known
variable or method. It actually does not impact the interface built.

In Spec, the process is similar except that widget creation and containment
links are de�ned in di�erent places. Still, they also rely on the use of variables
containing the widgets created and used later to establish the containment
links. The work may be a little easier as the creation of the containment

21

links is separated in a well-de�ned method which makes it a bit similar to a
declarative speci�cation.

Note that children widgets are rarely added directly in their parent widget.
Because our DOM also contains the layout, widgets are added to cells that
are put in layouts, themselves children of the parent widget.

Perfom additional layout computation. To get an accurate representation
of the layout, one needs to compute the position of each cell inside its parent
layout. The basic case is to be able to recover the order in which widgets are
added into their parent layout. As an example, in a VerticalFlowLayout or Hori-
zontalFlowLayout, the order in which widgets are added controls their position
one relative to the other, see for example Figure 7 (lines 6 and 7) where two
widgets are added consecutively to their parent.

Spec having a limited number of simple layouts (VerticalFlowLayout and Hor-
izontalFlowLayout), it falls within this easy case.

1 i n t row = 0 ;
2 Grid g r id = new Grid () ;
3 g r id . setWidget (0 , 0 , new Label ("name : ")) ;
4 g r id . setWidget (row++, 1 , new Button ()) ;
5 g r id . setWidget(++row , 1 , new Label ("")) ;
6 g r id . setWidget (g r id . getRowCount () , 0 , new Label ()) ;
7 g r id . getF lexCe l lFormatter () . setWidth (0 , 1 , "50%") ;

Fig. 8: Complex layout creation in Java GWT

More complex layouts, like the Grid layout, allow cells to occupy (span)
several positions in the grid or to be inserted in any position of the grid. For
GUI based on markup languages (e.g. GXT, HTML), position computation
is still relatively easy as the information is hardcoded in the source. For GUI
based on programming languages (e.g. Java GWT), the position or span might
be the result of computations at execution time and therefore more di�cult
to extract. For example see lines 3 to 6 in Figure 8.

We try to solve some of these cases by resorting to symbolic computation.
The same ideas were used in other GUI extraction tools (Silva et al., 2010).
Symbolic execution involves identifying the semantics of all functions/opera-
tors that can be used in the source code. Here, in the example of Figure 8,
one needs to know the Pre/Post Increment/Decrement operators (line 4 and
5) as well as the getRowCount, getColumnCount, getCellCount methods, and the
assignment operation (line 1). Concretely for our examples, we only need to
implement the pre and post-increment operators (x++ ; ++x), and the getRow-
Count and getCellCount methods. Using symbolic computation, we can resolve
the successive values of �row� in Figure 8.

22

5.2 Generators

Once we have a GUI model, it is possible to generate the GUI in the target
framework. As for the extractors, we implemented three generators for three
di�erent frameworks: The �rst, Angular, is web-based and the interface is
de�ned in a markup language (HTML), the second, Seaside, is web-based and
the interface is de�ned in a programming language (Pharo), and the third,
Spec2, is desktop-based and the interface is de�ned in a programming language
(Pharo).

In this section, we discuss the steps to generate the target code with con-
crete examples from the generators:
Identify target framework environment. Before working on the concrete
code generation, it is essential to discover the architecture required by the
target GUI framework. The simplest solution is to read the documentation of
the target framework to understand the good practices when developing an
application. We also de�ne how GUI dependencies are imported. In Angular,
the GUI code is de�ned inside an HTML �le. However, it is also necessary
to create several con�guration �les (e.g. module, CSS, route). All those �les
are taken under consideration at this sub-step and are necessary to create the
target GUI. In Spec2 and Seaside, the GUI de�nition code has to be written
in a speci�c method.
Map pivot model to target framework. Building the dictionary that
maps pivot model concepts to target framework is similar to the one used for
the extraction. In the case of Angular, we map pivot widgets to Angular tags
(i.e. a Button corresponds to <input type="button"/>). In the case of Spec2,
we had to determine the method used to instantiate a widget. For instance,
the main widgets (i.e. button, label) should be instantiated using a factory
pattern whereas the traditional call to a constructor method is favored for
less frequent or more complex widgets. Finally, the Seaside framework uses
invocations to factory methods to build the widgets. Note that, as for the
extraction, a concept in our pivot model can correspond to multiple widgets
in the target framework.
Identify target application environment. This sub-step must be done for
each application. It consists in determining the environment in which the target
application will be executed. It con�gures information such as data access
endpoint URL, or for web application, local URL that might be necessary
to get images (e.g.). The generator must use
the information to create a runnable application in the target environment.
For all our generators, the approach will complete the target GUI code with
con�guration �les (or annotations For programming languages).
Generate code. The code generation consists of creating the target GUI.
The main approach is to visit the pivot DOM and for each widget create its
counterparts in the target application. In the case of Angular, the generation
is eased by the fact that both the generated HTML �le and the pivot DOM
have the same structure. For Spec2 and Seaside, our generator creates into
speci�c methods the widgets and their composition using constructors and a

23

pre-de�ned set of methods. For Spec2 speci�cally, the DOM must be de�ned
in a method and the widget instantiated in another method.

6 Result

We perform the migration using our extractors and generators on �ve real
projects. In Section 6.1, we present the case studies. Then, we discuss our
validation metrics (Section 6.2) and present the result for the extraction step
(Section 6.3) and the generation step (Section 6.4).

6.1 Case studies

To validate our approach, we migrated �ve applications.
Two migration cases, Kitchensink and PostO�ce, use BLCore as a source

framework and Angular as a target framework. BLCore is the custom GUI
framework of Berger-Levrault that extends the GWT GUI framework with
speci�c widgets. This framework consists of 763 classes in 169 packages. It
also encourages some coding conventions. Angular is a modern GUI framework
supported by Google based on TypeScript.

Core meta-model

Layout meta-model
Widgets meta-model

BLCore meta-model

<<uses>>
<<uses>>

<<uses>>

Fig. 9: BLCore - GUI meta-model

The GUI meta-model used for BLCore GUIs extraction, presented in Fig-
ure 9, is composed of: the layout meta-model uses core meta-model (Section 4,
Figure 2), the widget (Figure 4) extends the core meta-model, and a BLCore
meta-model extends the widget meta-model with all components created by
Berger-Levrault.

Table 6 summarizes the di�erent migrations, the language and framework
source, and the target language and target framework.

Kitchensink is a closed-source application of Berger-Levrault. This soft-
ware system, targetting developers, gathers inside a single application all the
components available for building a user interface. It contains 470 Java classes

24

Table 6: Case study Description

Source GUI de�nition Target GUI de�nition
Project Framework Type Framework Type
Kitchensink BLCore programming Angular markup
PostO�ce BLCore programming Angular markup
Traccar GXT markup Seaside programming
DBManager Spec programming Spec2 programming
SpecDB Spec programming Spec2 programming

and 56 web pages. PostO�ce is a software system used in French adminis-
tration for the dispatch and digitalization of mails. It contains 3227 classes
and 98 pages. Both are written using BLCore, a web-based GUI de�ned using
programming language, and migrated to Angular, a web-based GUI de�ned
using a markup language.

Two migration cases, DBManager and SpecDB, use Spec as a source frame-
work and Spec2 as a target framework. SpecDB is part of the Spec widgets
presentation package. It is used to show the di�erent con�gurations of a Spec
button. DBManager13 provides a GUI to manage the connections between
Pharo and databases. Its user interface is divided into multiple pages. Note
that even if Spec2 is the next version of Spec, the framework has been com-
pletely re-written and so the migration corresponds to a full framework mi-
gration and not a GUI framework update.

The last one, Traccar14, uses the GXT framework (a GWT extension) as a
source framework and Seaside as a target framework Traccar is an open-source
server and web client for various GPS tracking devices. It contains 649 classes
and 28 pages.

Table 7: Application descriptions

Source framework Project Widgets Attributes Roots

BLCore
Kitchensink 238 156 6 (out of 56)1

PostO�ce 724 1065 10 (out of 98)1

GXT Traccar 125 104 3 (out of 28)1

Spec
DBManager 38 27 3
SpecDB 15 21 1

1 10% sample

Table 7 summarizes the information about the di�erent projects. For the
Kitchensink, PostO�ce, and Traccar projects, we take a sample of the root

13 https://github.com/juliendelplanque/DBConnectionsManager
14 https://github.com/traccar/traccar-web

25

https://github.com/juliendelplanque/DBConnectionsManager
https://github.com/traccar/traccar-web

pages for the validation. So we present the number of widgets, attributes, and
roots of the sample. This choice is explained in the next section (Section 6.2).

6.2 Validation set-up

We divided the migration validation into two parts: the extraction validation
and generation validation. The extraction validation consists of checking that
our model includes the elements of the original application. It compares the
DOM and the attributes of the GUI without considering the �nal visual aspect.
The generation validation consists of visually comparing each original page
with the exported one.

For the extraction validation, our solution validates that the GUI hier-
archy is identi�ed. For the GUI hierarchy, we check that all the widgets and
attributes are detected and correctly identi�ed. This validation consists of the
following three metrics (Hayakawa et al., 2012; Joorabchi and Mesbah, 2012;
Sánchez Ramón et al., 2014):

� The percentage of widgets correctly detected and created in our pivot
model. It checks that the number of widgets in the source application is
the same as in our pivot model.

� The percentage of widgets correctly identi�ed, i.e. a button in the original
framework corresponds to a button in the pivot model. For instance, a
widget not identi�ed is mapped to a Custom Widget or another widget
(e.g. a button mapped to a panel).

� The percentage of widgets assigned to the correct container. It validates
the DOM building.

Finally, the same metrics are used for the attributes.
We rely on manual validation to check all these metrics. Because the man-

ual validation is tedious and error-prone for large applications, we take a sam-
ple of the pages of the Kitchensink, PostO�ce, and Traccar applications. For
each case, we consider a sample representing at least 10% of the application.
So we randomly selected 6 pages out of 56 for Kitchensink, 10 pages out of 98
for PostO�ce and 3 pages out of 28 for Traccar.

Table 8: Extraction from previous work

Framework Project Widget Widget Attribute Attribute
source detected well

assigned
detected well

assigned
BLCore Kitchensink 100% (238) 89% (211) NA1 NA1

Spec
DBManager 100% (38) 100% (38) 92% (25) 100% (25)
SpecDB 100% (15) 100% (15) 67% (14) 100% (14)

average 100% 96% 80% 100%
1 Value not given in previous work

26

The migration of the Kitchensink, DBManager, and SpecDB projects were
also presented in previous work (Dutriez et al., 2019; Verhaeghe et al., 2019).
However, those experiments did not consider the migration of the layout. Thus,
their result might di�er from the ones reported here. The results of the previous
experiments are reported in Table 8 and discussed in the next section.

For the generation validation, work has been proposed to compare im-
ages (Cao et al., 2010; Moran et al., 2018). However, none is directly applicable
to our migration cases. Indeed, to apply this strategy one must before deal with
several challenges (Bragagnolo et al., 2020b):

� Ajax-based architecture: one should be able to browse the pages of an Ajax
application for web application.

� successive shifting : we must deal with successive shifting of widget compo-
nents when a target one is not perfectly visually equivalent to an original
one.

� dynamic content support : for instance, some widgets, as a table, display
information coming from an external server. The same data must be pre-
sented in the original and generated application.

Validation by image comparison is further discussed in Section 7.4.
We rely on a manual visual comparison of the pages. First, we check that

the generated application is runnable. Then, we visually compare the applica-
tion with the original one.

One could also think of using tests for the validation. However, this is not
applicable, in our cases, because the applications we are migrating do not have
such tests.

6.3 Extraction result

Table 9: Extraction results

Framework Project Widget Widget Widget Attribute Attribute Attribute
source detected identi�ed well as-

signed
detected identi�ed well as-

signed

BLCore

Kitchensink100%
(238)

94%
(224)

99%
(236)

77%
(118)

95%
(112)

100%
(118)

PostO�ce 99%
(718)

99%
(712)

96%
(695)

88%
(940)

98%
(923)

99%
(937)

GXT Traccar
100%
(125)

99%
(124)

100%
(125)

81%
(84)

100%
(84)

100%
(84)

Spec

DBManager100%
(38)

94%
(36)

100%
(38)

92%
(25)

100%
(25)

100%
(25)

SpecDB 100%
(15)

100%
(15)

100%
(15)

67%
(14)

100%
(14)

100%
(14)

Average 99% 98% 99% 87% 98% 100%

Table 9 summarizes the extraction results.

27

The tool detects 99% of all the widget instantiations for all the applica-
tions. It shows we have good heuristics to identify the widgets in the source
applications.

The tool identi�es correctly 97% of the widgets type. For the Traccar and
DBManager, the tool misses widgets used in toolbars. This kind of widget is
mainly used in desktop application and since our widgets meta-model comes
from W3School which describes basic web components, we did not have them.
For Kitchensink and PostO�ce, the tool identi�es 94% and 99% of the wid-
gets. All the unidenti�ed are widgets created by the company for its business.
So they are mapped to Custom Widget. To solve this problem, one can extend
our meta-model with the missing widgets. We also report that our implemen-
tation bene�ted from the detailed approach steps since it better extracts the
GUI than the previous approaches. For instance, our new approach correctly
assigned 99% of the widgets whereas the previous approaches dealt with only
96% of the widgets.

Except for the BLCore framework, all the widgets are well assigned to their
container. With BLCore, the problem comes from the variety of ways to de�ne
widget containment.

Attributes are correctly detected at 87%. The best result appears in the
DBManager application with 92%. Our approach reports better result than
the 80% of attributes detected in previous experiments.

Attributes are harder to detect for two reasons: (1) GUI frameworks de�ne
default attributes for widgets, so we have to manually analyze those attributes
and add them in our extractors, and (2) in programming languages, attributes
can be declared in multiple ways: using a setter; a parameter in a constructor.
This diversity forces us to analyze all the possibilities since we did not �nd a
heuristic that will select all attributes de�nitions.

Finally, nearly all the detected attributes are well assigned to their con-
tainer.

6.4 Generation result

We visually compared the visual aspect of the pages where the widgets are well
identi�ed. In the following, we present a comparison for three of the case stud-
ies presented in Section 6.1. Note that other comparisons for the Kitchensink
migration are available in the documentation page of our project15.

Figure 10 presents the visual di�erences for the page Input box of the
Kitchensink application. On the left-hand side there is the original page and
on the right-hand side the page after the migration. We can see that there are
no di�erences between the two versions.

Figure 11 presents the visual di�erences for the User Setting page of Trac-
car. On the left-hand side, there is the original page, and on the right-hand
side, the page after the migration to Seaside. There are more di�erences in

15 https://badetitou.github.io/projects/Casino/Casino/#current-results

28

https://badetitou.github.io/projects/Casino/Casino/#current-results

(a) GWT original (b) Angular migration

Fig. 10: Visual comparison of a Page migration (Kitchensink)

(a) User Setting original (b) User Setting migrated

Fig. 11: Visual comparison of the User Setting page (Traccar)

this example. The sizes of the input boxes are di�erent, the text of the labels
is replaced by the i18n notation, the �overlay� table has a complete di�erent
visual aspect, the checkbox is not centered, and the buttons at the bottom are
not well placed. The table is not correctly migrated because the table with
selection is a custom widget for the tool and we did not take the time to in-
troduce it. It was then migrated from component it contains, here a simple
table. The other di�erences come from application-speci�c CSS. Despite all
these imprecisions, the structure and the layout of the page are respected.

Figure 12 presents the visual di�erences for the DBManager application.
Again on the left-hand side, there is the original page, and on the right-hand
side, the page after the migration. There are some di�erences in this example.
The text of the buttons on the left of the image is not present, the buttons on
the right of the image are enabled but are disabled in the original application
and are not correctly placed. Apart from the last di�erence that comes from
a developer hack, all the di�erences are due to attribute extraction problems.

29

(a) DBManager original (b) DBManager migrated

Fig. 12: Visual comparison (DBManager)

Those problems come from missing attributes identi�cation rules in our tool.
Finally, the drop-box input has visual di�erences between the original and the
generated application. It is due to di�erent widget implementations.

The migration does not create the same visual aspect. We saw that there
are few di�erences and the layouts are respected. Most of the imprecisions
come from missing attributes or incorrect values. Those problems are easy to
�x manually by developers.

We do not report major di�erences in the visual aspect of pages of the
validation. Part of the success of the migration is due to the manual work we
performed to map the GUI frameworks to our meta-models. We detail this
manual e�ort requirement in Section 7.

7 Discussion

In this section, we discuss our approach and the validation set-up. In Sec-
tion 7.1 we discuss the similar visual aspect constraint and animation migra-
tion. In Section 7.2, we present the case of none �le-based GUI migration.
In Section 7.3, we discuss the number of selected pages and how the selec-
tion has been made for the validation. In Section 7.4, we detail the di�culties
encountered to perform an image comparison validation. In Section 7.5, we
discuss the manual work required to implement our approach.

7.1 Similar visual aspect and Animations

Our approach allows one to migrate the visual aspect of its GUI among di�er-
ent GUI frameworks. As validation, we proposed to compare the visual aspect
of the former GUI to the generated one. However, widgets do not have the
same visual aspect in di�erent GUI frameworks. For instance, an AWT button
does not look like an AngularJS button.

It is possible to perform an expensive manual step to tune the visual aspect
of all target framework widgets to mimic the former visual. Because of its cost,
performing this step is not always desirable.

One the one hand, as depicted by Moore et al. (1994), �The resulting user
interface should have the true look and feel of the new environment�. On the

30

other hand, for commercial software, keeping the same visual aspect increases
the acceptance rate of client users (Sánchez Ramón et al., 2014).

Note that the same limitation exists for GUI animations. Animations are
represented as attributes of the widgets. These GUI animations attributes ex-
ist in several GUI frameworks and it is possible to reproduce them in others.
However, this task is expensive and one should rely on its migration context
to determine if animation migration is mandatory. We did not work on an-
imations migration because our source applications did not use animations.
We believe that extra research work should be done on attributes to enable a
good animations representation and migration.

7.2 Migrating none-�le or binary �le-based GUI

In this paper, we deal with the migration of GUI de�ned in programming
languages or markup languages. However, some GUIs are de�ned using other
formats. It is the case of GUIs that are de�ned in binary �les.

For instance, GUI de�ned with RAD requires another approach. Bragag-
nolo et al. (2020a) have studied the extraction of the GUI for Access projects.
In their case study, they had to perform the extraction of the GUI through
the Access IDE which limited the extraction capabilities.

Thus, to migrate binary �le-based GUI, the extraction part of the migration
is di�erent. The mapping to the GUI meta-model is similar to our approach
once one has gained access to the source GUI representation.

Migration of binary �le-based GUI is part of our industrial partner projects
with a WebDeb to Angular migration project.

7.3 Sample selection

As depicted in the previous sections, we had to perform a manual valida-
tion. However, performing a manual validation on the 186 pages is too time-
consuming.

Thus, we decided to perform the validation of a subset. To do so, we de-
cided to selected 10% of the pages of the applications. This selection is crucial
because it must not introduce bias in the validation. So, to avoid introducing
bias, we decided to perform a random selection of the pages. However, it could
still not fully represent the application.

So, to ensure the good representativity of the selected pages, we compare
the total number of widgets and attributes in the application to the number
of widgets and attributes of the selected pages. The selected pages include 9%
of the total number of widgets and 13% of the total number of attributes.
Thus, it appears that the 10% pages randomly selected are representative of
the total application in terms of the number of elements.

Additionally to comparing the number of elements, we check that selected
pages are of di�erent sizes. As result, the pages have from one to hundreds of

31

widgets. Thus, the randomly selected page are of di�erent sizes, and this helps
ensure no bias in the validation.

7.4 Image comparison validation

To validate the proper generation of target GUI, we rely on a manual com-
parison of the pages visual aspect. We acknowledge the existence of projects
that compare the visual aspect of two screenshots (Cao et al., 2010; Moran
et al., 2018). Cao et al. (2010) classi�ed pages by comparing their GUI, e.g.
determined if a page come from a newspaper website or another one. Moran
et al. (2018) detected di�erences between two versions of the same GUI af-
ter modi�cation made by developers. Since the modi�cations are minimal and
the GUI developed with the same framework, one can expect few di�erences
between screenshots.

We performed a preliminary work (Bragagnolo et al., 2020b) to adapt
image comparison to the validation of GUI migration. In this work, we reported
several challenges that must be �rst solved.

First, for Ajax-based applications such as GWT and Angular, one should
be able to browse the pages of the web application. Indeed, to automatically
take screenshots of the pages, one must crawl all pages. However, pages are
not directly accessible with their URL in some Ajax-based applications such
as the applications using GWT in our context.

Second, we must deal with the successive shifting challenge. When migrat-
ing a widget from a source framework to a target framework, it might not
have the same visual aspect. However, if a target widget has a size di�erent
than the original widget, it introduces a shift in the screenshot of a few pixels.
Repeating this shift on several widgets in a page can lead to two completely
di�erent source and target pages, and so prevent the screenshot comparison.

Finally, to enable the image comparison in the migration context, one must
before deal with dynamic content. Indeed, a table �lled with data will not take
the same space in a GUI as an empty table. However, in our context, we do
not support the migration of backend connections. Thus, migrated tables are
always empty and visual comparison can not be used.

Thus, automatic validation through visual comparison of page screenshots
is not applicable in the current state of GUI visual aspect among multiple
technologies.

7.5 Manual work

The migration of BLCore, GXT, and Spec requires two manual tasks (1) to
map their widgets with the ones of our meta-model and (2) to identify how
the DOM is built in each GUI framework.

Mapping the widget consists of analyzing the documentation of each GUI
framework, retrieving the widgets and their attributes, and mapping them

32

to our meta-model. Whereas the second task is easy for markup languages,
it requires more knowledge for programming languages analysis. Indeed, in
programming languages based GUI, developers can de�ne the DOM in several
ways. So, we had to enumerate all the DOM building possibilities and integrate
them into our extractors.

To reduce the required manual e�ort, one can perform a renovation of its
software system before migrating. The renovation consists of improving the
source code of the application. To do so, developers reduce the number of
code smells and rewrite code to make it easier to manipulate. For example,
one can decide to rewrite all widgets creation using the basic new method. By
following this Quality First(Wªodarski et al., 2019) rule, the extraction of the
GUI is simpler, and the DOM is built using only one approach. Widgets are
always instantiating using the constructor. And the number of custom widgets
might be reduced in favor of standard ones.

8 Conclusion and Future work

In this paper, we exposed an approach and tool to migrate automatically the
visual aspect of applications GUI. We detail the extraction and the genera-
tion steps of this approach for programming and markup GUI framework. We
validated our approach by implementing it in a tool called Casino to perform
the migration of Spec, BLCore, and GXT GUI frameworks to Angular, Sea-
side, and Spec2. Then we performed �ve real migrations on open-source and
closed-source applications. We were able to extract correctly all pages of the
applications and 97% of the widgets. And the migration results are visually
equivalent.

Currently, only the visual part of the GUI is migrated. To improve the
migration of an application user interface, we will enhance our meta-models
and our tool to support the behavioral and the business parts.

We have validated our approach using manual validation techniques. While
this gave us a good approximation of the results, using an automatic solution
to validate the migration may provide us more information and help the de-
velopers during the process.

We are currently working with our industrial partner on making available
extractors for PowerBuilder and Visual Basic 6 (which are not Object-Oriented
programming language). We also plan to test our approach with mobile GUI
with a subsidiary of our industrial partner. Thus, testing our approach on
Android applications is part of our future work.

9 Declarations

Funding This work was supported by Berger-Levrault and Inria-Lille�Nord-
Europe.

Con�icts of interest/Competing interests The authors have no relevant
�nancial or non-�nancial interests to disclose.

33

Availability of data and material The source code of the Traccar case study
is available at: https://github.com/traccar/traccar-web. The source code of the DBMan-
ager case study is available at: https://github.com/juliendelplanque/DBConnectionsManager.
The source code of the SpecDB case study is available at: https://github.com/

pharo-spec/Spec. The source code of Kitchensink as the source code of PostOf-
�ce are closed-source.

Code availability The source code of the Casino tool is available at: https:

//github.com/badetitou/Casino. Additional extractors and generators are provided
at: https://badetitou.github.io/projects/Casino/#links.

References

Beltramelli T (2017) pix2code: Generating code from a graphical user interface
screenshot. arXiv preprint arXiv:170507962

Bragagnolo S, Anquetil N, Ducasse S, Abderrahmane S, Derras M (2020a)
Analysing microsoft access projects: Building a model in a partially observ-
able domain. In: International Conference on Software and Systems Reuse,
ICSR2020

Bragagnolo S, Verhaeghe B, Seriai A, Derras M, Etien A (2020b) Challenges
for layout validation: Lessons learned. In: International Conference on the
Quality of Information and Communications Technology, QUATIC'2020,
accepted

Brambilla M, Fraternali P (2014) Interaction �ow modeling language: Model-
driven UI engineering of web and mobile apps with IFML. Morgan Kauf-
mann

Cao J, Mao B, Luo J (2010) A segmentation method for web page analysis
using shrinking and dividing. International Journal of Parallel, Emergent
and Distributed Systems 25(2):93�104

Chen C, Su T, Meng G, Xing Z, Liu Y (2018) From ui design image to gui
skeleton: A neural machine translator to bootstrap mobile gui implemen-
tation. In: Proceedings of the 40th International Conference on Software
Engineering, Association for Computing Machinery, New York, NY, USA,
ICSE '18, p 665�676, DOI 10.1145/3180155.3180240

Dutriez C, Verhaeghe B, Derras M (2019) Switching of GUI framework: the
case from Spec to Spec 2. In: Proceedings of the 14th Edition of the Inter-
national Workshop on Smalltalk Technologies, Cologne, Germany

Fabry J, Ducasse S (2017) The Spec UI Framework. Square Bracket Associates
Fleurey F, Breton E, Baudry B, Nicolas A, Jezéquel JM (2007) Model-Driven
Engineering for Software Migration in a Large Industrial Context. In: En-
gels G, Opdyke B, Schmidt DC, Weil F (eds) Model Driven Engineering
Languages and Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, vol
4735, pp 482�497, DOI 10.1007/978-3-540-75209-7_33

Garcés K, Casallas R, Álvarez C, Sandoval E, Salamanca A, Viera F, Melo
F, Soto JM (2017) White-box modernization of legacy applications: The

34

https://github.com/traccar/traccar-web
https://github.com/juliendelplanque/DBConnectionsManager
https://github.com/pharo-spec/Spec
https://github.com/pharo-spec/Spec
https://github.com/badetitou/Casino
https://github.com/badetitou/Casino
https://badetitou.github.io/projects/Casino/#links

oracle forms case study. Computer Standards & Interfaces pp 110�122, DOI
https://doi.org/10.1016/j.csi.2017.10.004

Gerdes Jr J (2009) User interface migration of microsoft windows applica-
tions. Journal of Software Maintenance and Evolution: Research and Prac-
tice 21(3):171�187

Gotti Z, Mbarki S (2016) Java swing modernization approach - complete ab-
stract representation based on static and dynamic analysis:. In: Proceed-
ings of the 11th International Joint Conference on Software Technologies,
SCITEPRESS - Science and Technology Publications, pp 210�219, DOI
10.5220/0005986002100219

Hasselknippe KF, Li J (2017) A novel tool for automatic gui layout testing.
In: 2017 24th Asia-Paci�c Software Engineering Conference (APSEC), pp
695�700, DOI 10.1109/APSEC.2017.87

Hayakawa T, Hasegawa S, Yoshika S, Hikita T (2012) Maintaining web appli-
cations by translating among di�erent RIA technologies. GSTF Journal on
Computing p 7

Joorabchi ME, Mesbah A (2012) Reverse engineering iOS mobile applications.
In: 2012 19th Working Conference on Reverse Engineering, IEEE, pp 177�
186, DOI 10.1109/WCRE.2012.27

Kazman R, Woods S, Carriére S (1998) Requirements for integrating software
architecture and reengineering models: Corum ii. In: Proceedings of WCRE
'98, IEEE Computer Society, pp 154�163, iSBN: 0-8186-89-67-6

Lutteroth C, Strandh R, Weber G (2008) Domain speci�c high-level con-
straints for user interface layout. Constraints 13(3):307�342

Memon A, Banerjee I, Nagarajan A (2003) GUI ripping: reverse engineering of
graphical user interfaces for testing. In: Reverse Engineering, 2003. WCRE
2003. Proceedings. 10th Working Conference on, IEEE, pp 260�269, DOI
10.1109/WCRE.2003.1287256

Mesbah A, van Deursen A (2007) Migrating multi-page web applications to
single-page ajax interfaces. In: Proceedings of the 11th European Confer-
ence on Software Maintenance and Reengineering, IEEE Computer Society,
Washington, DC, USA, CSMR '07, pp 181�190, DOI 10.1109/CSMR.2007.
33

Mesbah A, van Deursen A, Lenselink S (2012) Crawling ajax-based web ap-
plications through dynamic analysis of user interface state changes. ACM
Transactions on the Web 6(1):1�30, DOI 10.1145/2109205.2109208

Moore, Rugaber, Seaver (1994) Knowledge-based user interface migration. In:
Proceedings 1994 International Conference on Software Maintenance, IEEE
Comput. Soc. Press, pp 72�79, DOI 10.1109/ICSM.1994.336788

Moran K, Watson C, Hoskins J, Purnell G, Poshyvanyk D (2018) Detecting
and Summarizing GUI Changes in Evolving Mobile Apps. arXiv:180709440
[cs] ArXiv: 1807.09440

Rodríguez-Echeverría R, Conejero JM, Clemente PJ, Preciado JC, Sánchez-
Figueroa F (2011) Modernization of legacy web applications into rich inter-
net applications. In: International Conference onWeb Engineering, Springer,
pp 236�250

35

Samir H, Kamel A, Stroulia E (2007) Swing2script: Migration of Java-Swing
applications to Ajax Web applications. In: 14th Working Conference on
Reverse Engineering (WCRE 2007)

Sánchez Ramón O, Sánchez Cuadrado J, García Molina J (2014) Model-driven
reverse engineering of legacy graphical user interfaces. Automated Software
Engineering 21(2):147�186, DOI 10.1007/s10515-013-0130-2

Sánchez Ramón Ó, Sánchez Cuadrado J, García Molina J, Vanderdonckt J
(2016) A layout inference algorithm for graphical user interfaces. Informa-
tion and Software Technology 70:155�175

Shah E, Tilevich E (2011) Reverse-engineering user interfaces to facilitate
porting to and across mobile devices and platforms. In: Proceedings of the
compilation of the co-located workshops on DSM'11, TMC'11, AGERE!
2011, AOOPES'11, NEAT'11, \& VMIL'11, ACM, pp 255�260

Silva JaC, Silva CC, Goncalo RD, Saraiva Ja, Campos JC (2010) The
GUISurfer tool: towards a language independent approach to reverse en-
gineering GUI code. In: Proceedings of the 2Nd ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, ACM Press, pp 181�186,
DOI 10.1145/1822018.1822045

Verhaeghe B, Etien A, Anquetil N, Seriai A, Deruelle L, Ducasse S, Derras M
(2019) GUI migration using MDE from GWT to Angular 6: An industrial
case. In: 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), Hangzhou, China

Wªodarski L, Pereira B, Povazan I, Fabry J, Zaytsev V (2019) Qualify �rst! a
large scale modernisation report. In: 2019 IEEE 26th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER), IEEE,
pp 569�573

Zeidler C, Müller J, Lutteroth C, Weber G (2012) Comparing the usability
of grid-bag and constraint-based layouts. In: Proceedings of the 24th Aus-
tralian Computer-Human Interaction Conference, ACM, pp 674�682

36

	Introduction
	State of the art
	Framework-agnostic migration approach
	Specializable GUI meta-model
	Implementation
	Result
	Discussion
	Conclusion and Future work
	Declarations

