Benoît Verhaeghe
email: benoit.verhaeghe@berger-levrault.com

Nicolas Anquetil
email: nicolas.anquetil@inria.fr

Anne Etien
email: anne.etien@inria.fr

Stéphane Ducasse
email: stephane.ducasse@inria.fr

Abderrahmane Seriai
email: abderrahmane.seriai@berger-levrault.com

Mustapha Derras
email: mustapha.derras@berger-levrault.com

GUI visual aspect migration: a framework agnostic solution

Keywords: Graphical User Interface, Visual Part, Model-Driven Engineering, Migration

come

Introduction

On the one hand, old Graphical User Interface (GUI) frameworks are not supported anymore: the last major version of GWT was in 2009. On the other hand, recent GUI frameworks evolve fast: two major versions of Angular 1 , three major versions of React.js 2 , four versions of Vue.js 3 , and three versions of Ember.js 4 were released in 2018. Some companies invested massively to create complex applications in old frameworks. It is the case of Berger-Levrault with applications totaling more than 500 web pages. It makes it impossible to modernize the application by re-developing it from scratch. Nowadays, the company needs to migrate applications written in generic programming languages (Java/GWT), proprietary 4th generation languages (VisualBasic 6,PowerBuilder,WebDev), or markup languages (Silverlight). Thus, we need to provide a generic approach that allows companies to migrate the GUI visual aspect among several GUI frameworks. It is also clear that, in the near future, new frameworks will appear and new migrations will be required. So, detailing how to adapt the GUI migration approach to dierent GUI frameworks is mandatory.

1 https://angular.io/ 2 https://reactjs.org/ 3 https://vuejs.org/ 4 https://emberjs.com/ 2 Tools and approaches have been proposed to support GUI migration (Fleurey et al., 2007;[START_REF] Joorabchi | Reverse engineering iOS mobile applications[END_REF][START_REF] Samir | Swing2script: Migration of Java-Swing applications to Ajax Web applications[END_REF][START_REF] Shah | Reverse-engineering user interfaces to facilitate porting to and across mobile devices and platforms[END_REF][START_REF] Wªodarski | Qualify rst! a large scale modernisation report[END_REF]. However, the authors did not apply their migration approaches on multiple GUI frameworks, and specically on web-based GUIs. Whereas authors detailed migration high-level steps (e.g. extraction and generation) or focused on migration specic aspects inherited from their work context, none explained how to adapt their approach and meta-model to several migration projects.

So, to enable the migration of several GUI using a variety of frameworks, we need to: (1) dene a framework-agnostic approach, (2) design a specializable meta-model to support the dierences between frameworks (e.g., dierent widgets) and (3) detail how to apply the approach and the meta-model on different kind of languages (e.g., markup or programming languages).

In this paper, we present an approach to migrate GUIs of web-based or desktop-based software systems, dened with GUI framework using markup (e.g. XML, HTML) or programming languages (e.g. Swing, Spec). The approach comes with meta-models which represent the GUIs structure and layout. We detail the steps to extract GUIs and generate the target applications.

Note that this paper presents an extension of previous work [START_REF] Dutriez | Switching of GUI framework: the case from Spec to Spec 2[END_REF][START_REF] Verhaeghe | GUI migration using MDE from GWT to Angular 6: An industrial case[END_REF] where only GUI structure, and not the layout, was considered for two migration projects (from GWT to Angular, and from Spec to Spec2), without a detailed framework-agnostic approach.

To validate this approach, we developed Casino, a tool that can migrate several GUI frameworks to others. We detail implementations of our approach to extract GUIs dened with a programming language (Java/GWT, Pharo/Spec), and with a markup language (Java/GXT) and to generate GUIs dened with a programming language (Pharo/Seaside and Pharo/Spec2), and with a markup language (TypeScript/Angular). Note that other combinations are possible, for instance, we also worked on plain HTML, Java Swing, and Silverlight extractor, and on an Aurelia generator 5 . We released the source code of the existing implementations and future ones in GitHub 6 . Then, we validate our approach on two industrial and three open-source projects. Our approach detects 99% of the widgets (i.e. this element is a widget of the GUI) and identies 97% (i.e. this widget is a button) of them.

Our approach migrates the visual aspect of the original applications. Behavioral aspects (treatments occurring when the end-user interacts with the GUI) are out of the scope of this paper. They will be presented in future publications.

The contributions of the paper are: a detailed approach to migrate application visual parts independently of the GUI implementation language; meta-models to represent GUIs structure and layout; a tool that implements our approach; and implementations of GUI frameworks migration.

In Section 2, we review the literature on GUI migration. In Section 3, we present our generic migration approach. In Section 4, we detail our GUI meta-models. In Section 5, we present implementations of our approach for programming and markup languages. In Section 6, we present the results produced by applying our approach to ve real applications. In Section 7, we discuss our results. In Section 8, we conclude and present future work.

State of the art

We will rst rapidly mention recent work on GUI generation using Articial Intelligence (from screenshot examples). This is the case of [START_REF] Beltramelli | pix2code: Generating code from a graphical user interface screenshot[END_REF]; [START_REF] Chen | From ui design image to gui skeleton: A neural machine translator to bootstrap mobile gui implementation[END_REF]; [START_REF] Moran | Detecting and Summarizing GUI Changes in Evolving Mobile Apps[END_REF]. These approaches rely on a huge dataset of screenshot examples (14,382 screenshots for [START_REF] Moran | Detecting and Summarizing GUI Changes in Evolving Mobile Apps[END_REF] and 10,804 for [START_REF] Chen | From ui design image to gui skeleton: A neural machine translator to bootstrap mobile gui implementation[END_REF]), to train the model. Thus, [START_REF] Beltramelli | pix2code: Generating code from a graphical user interface screenshot[END_REF] warns that the approach is not, in any way, intended, nor able to generate code in a real-world context and both the source code and the datasets are provided to foster future research [...] and are not designed for end-users 7 .

Consequently, we rule out Articial Intelligence as a possible approach given the current state of the art.

We identied various publications related to GUI migration using metamodel (Fleurey et al., 2007;[START_REF] Samir | Swing2script: Migration of Java-Swing applications to Ajax Web applications[END_REF]. Section 2.1 details existing related work. Section 2.2 presents the approaches proposed to migrate GUI application. Section 2.3 describes the user interface meta-models found in the literature.

Related work

We are interested in a generic GUI migration approach able to handle multiple source and target frameworks. Thus we are interested in whether the proposed solution can (i) import GUI from markup languages (e.g. HTML), (ii) import GUI from programming languages (e.g. Swing); (iii) import from binary source (e.g. Oracle form); (iv) handle multiple languages; (v) export GUI to markup language; (vi) export GUI to programming language. We will not consider the case of exporting to binary framework as no modern GUI framework use this approach anymore.

Prior research makes valuable contributions: GUI internal representation (models, see Section 2.3) and/or migration process (see Section 2.2). However, there are rarely enough details provided to generalize the approaches to other languages/frameworks. [START_REF] Hayakawa | Maintaining web applications by translating among dierent RIA technologies[END_REF] (multiple markup languages), [START_REF] Mesbah | Migrating multi-page web applications to single-page ajax interfaces[END_REF] (multi-page web application to Single Page Application (SPA) using Ajax). Migrating from markup languages is easier because the language is simple to parse (e.g. there are numerous parsers for HTML or XML), detecting the GUI elements (widgets) is straightforward (e.g., a tag <button>), and the structure of the interface is well described by the DOM.

Sánchez [START_REF] Sánchez Ramón | Model-driven reverse engineering of legacy graphical user interfaces[END_REF] and [START_REF] Garcés | White-box modernization of legacy applications: The oracle forms case study[END_REF] considered the case of Oracle Forms, a framework that we classify as binary source since there is no textual representation of the GUI (or an incomplete XML representation Garcés et al. (2017, again)). Bragagnolo et al. (2020a) 2014) consider migrating to Java Swing (programming language), [START_REF] Garcés | White-box modernization of legacy applications: The oracle forms case study[END_REF] to JEE application (markup language because the GUI is dened in HTML les), and Bragagnolo et al. (2020a) to Angular (markup language). The publications focus on the extraction part of the process since Rapid Application Development frameworks have specic problems to get access to a representation of the GUI. We will come back on this specic issue in Section 7. Their GUI meta-models are valuable (see 2.3) as well as their generic process (see 2.2), however, there are not enough details to generalize them to other languages. Fleurey et al. (2007) and [START_REF] Samir | Swing2script: Migration of Java-Swing applications to Ajax Web applications[END_REF] are the only ones who consider the extraction of GUI based on programming language. The rst one from Coolgen generated code 8 and the second one from Java Swing code. Even if none of the publications detail how to adapt the approach to extract other programming language GUI, they give hints on the general approach such as how to map source and target widgets. The two publications migrate to markup language based GUI: Fleurey et al. (2007) migrate to J2EE, and Samir et al. (2007) to Ajax Web with XUL 9 . We note that the XUL format has been discontinued.

Thus, none of the presented projects deal with the multi-framework migration dened with markup and programming languages. And, only Fleurey et al. (2007) and [START_REF] Samir | Swing2script: Migration of Java-Swing applications to Ajax Web applications[END_REF] present the extraction of GUI dened using a programming language. The proposed approaches provide good results in all case studies. The generic process in four steps seems consensual enough and we will base our solution on it. However, none of the authors had to adapt their respective approach to multiple sources or target frameworks. As a result they focused only on parts of the migration problem [START_REF] Sánchez Ramón | Model-driven reverse engineering of legacy graphical user interfaces[END_REF] which makes their approaches dicult to adapt to other migration projects.

Migration approach

On the other hand, some (e.g. [START_REF] Mesbah | Migrating multi-page web applications to single-page ajax interfaces[END_REF]) considered issues that are out of the scope of this paper. For instance, they also focus on migrating the behavioral, non GUI related, part of the code. Even if the behavior is out of the scope of visual aspect migration, it is represented in the literature GUI meta-models as events to enable future work focused on this aspect. 8 Coolgen: https://en.wikipedia.org/wiki/CA_Gen 9 https://developer.mozilla.org/en-US/docs/Archive/Mozilla/XUL 6 2.3 GUI meta-model Most approaches use the horseshoe process [START_REF] Kazman | Requirements for integrating software architecture and reengineering models: Corum ii[END_REF] based on meta-models. In the following, we discuss some of the proposed GUI metamodels.

All researchers used a hierarchical representation of the GUI in the form of a Domain Object Model (DOM) [START_REF] Brambilla | Interaction ow modeling language: Modeldriven UI engineering of web and mobile apps with IFML[END_REF]Fleurey et al., 2007;[START_REF] Gotti | Java swing modernization approach -complete abstract representation based on static and dynamic analysis[END_REF][START_REF] Joorabchi | Reverse engineering iOS mobile applications[END_REF][START_REF] Memon | GUI ripping: reverse engineering of graphical user interfaces for testing[END_REF][START_REF] Mesbah | Crawling ajax-based web applications through dynamic analysis of user interface state changes[END_REF][START_REF] Samir | Swing2script: Migration of Java-Swing applications to Ajax Web applications[END_REF][START_REF] Shah | Reverse-engineering user interfaces to facilitate porting to and across mobile devices and platforms[END_REF].

Each node in the DOM tree represents a widget of the user interface. Thus, this representation is not controversial and representing the DOM appears as a good solution to represent the GUI skeleton.

In addition to the DOM and the widgets, some authors added attributes [START_REF] Garcés | White-box modernization of legacy applications: The oracle forms case study[END_REF][START_REF] Gotti | Java swing modernization approach -complete abstract representation based on static and dynamic analysis[END_REF][START_REF] Joorabchi | Reverse engineering iOS mobile applications[END_REF][START_REF] Memon | GUI ripping: reverse engineering of graphical user interfaces for testing[END_REF][START_REF] Samir | Swing2script: Migration of Java-Swing applications to Ajax Web applications[END_REF][START_REF] Shah | Reverse-engineering user interfaces to facilitate porting to and across mobile devices and platforms[END_REF] and events (Fleurey et al., 2007;[START_REF] Garcés | White-box modernization of legacy applications: The oracle forms case study[END_REF][START_REF] Joorabchi | Reverse engineering iOS mobile applications[END_REF][START_REF] Mesbah | Crawling ajax-based web applications through dynamic analysis of user interface state changes[END_REF][START_REF] Samir | Swing2script: Migration of Java-Swing applications to Ajax Web applications[END_REF]. Attributes are used to customize the visual aspect of the widgets, and the events enable the representation of the navigation inside the GUI. Thus, attributes and events are important to have a detailed GUI meta-model. [START_REF] Gotti | Java swing modernization approach -complete abstract representation based on static and dynamic analysis[END_REF] propose an approach to extract a detailed GUI representation from Java Swing code. To do so, and additionally to the DOM and the attributes, they identify dierent kinds of known widgets such as Button, Label, Panel, etc. With the specic widgets concepts, they can better map each widget of the source code to their GUI model.

Sánchez [START_REF] Sánchez Ramón | A layout inference algorithm for graphical user interfaces[END_REF] also dene kinds of widgets such as Panel, TextBox, DataGrid. They also dene a special kind of widget named custom to support widgets that might not be recognized by their GUI extraction approach.

To represent correctly the visual aspect of a GUI, a layout representation is also necessary [START_REF] Rodríguez-Echeverría | Modernization of legacy web applications into rich internet applications[END_REF][START_REF] Sánchez Ramón | A layout inference algorithm for graphical user interfaces[END_REF][START_REF] Verhaeghe | GUI migration using MDE from GWT to Angular 6: An industrial case[END_REF]. There are three identied layout managers in Hierarchical layout consists of subdividing the available space of the screen into panels. Then the panels are responsible for placing their children in the dedicated space [START_REF] Hasselknippe | A novel tool for automatic gui layout testing[END_REF]Li, 2017). Sánchez Ramón et al. (2014) proposed a layout meta-model that supports hierarchical layouts. [START_REF] Zeidler | Comparing the usability of grid-bag and constraint-based layouts[END_REF] claims that the grid-bag layout, which is a hierarchical layout, is the most prominent and that it is supported by almost all available GUI toolkits.

Constraint-based layout also uses a hierarchical structure but it uses constraints to place the widgets, for example: place this button on the right of this text. [START_REF] Lutteroth | Domain specic high-level constraints for user interface layout[END_REF] presented the Auckland Layout Model which is an implementation of a constraint-based layout.

The literature presents several GUI meta-models composed of a structure meta-model and a layout meta-model. Authors have also proposed modications to adapt their meta-model to their specic context. Only Sánchez Ramón et al. (2016) present the concept of custom to deal with unknown widgets of RAD frameworks. However, to the best of our knowledge, no study presents how those meta-models can be specialized for other contexts. Thus, we need to dene a specializable GUI meta-model that will be tunable.

Framework-agnostic migration approach

The GUI migration problem has already been studied in dierent migration projects. However, there is no detailed framework-agnostic approach to migrate GUI visual aspect. In the following, we detail our approach and how to use it with markup and programming languages. Note that we do not consider the extraction of GUI dened with binary le and it will be part of our future work.

In Section 3.1, we give an overview of our approach, then we detail the extraction step for dierent kind of GUI frameworks (Section 3.2), and the generation step (Section 3.3).

Our Migration Process

We designed a three-step approach for GUI migrations. Each step is divided into tunable sub-steps to enable multi-framework support. Examples of substep adjustments are illustrated with concrete cases in the following sections. Source code model extraction. We build a model that represents the source code of the original application. To do so, one needs a source language parser and its meta-model. The source language can be a programming language or any other markup languages like XML or HTML. One can also extract a model from a binary le format.

Migrated application

Source code model extraction

GUI model extraction

Source code model

Source application

Pivot GUI model

Generation

GUI model extraction. We analyze the source code model to identify the Visual part elements. We build a mapping between the widgets of the source framework and the widgets of the GUI meta-model. Finally, we create a GUI model from this mapping.

Generation. We re-create the GUI in the target language. First, we have to dene how the user interface is implemented in the target framework. Then we have to dene a mapping between the widgets of the GUI model and their implementations in the target framework. We show examples of generators in Section 5.2.

Our approach is similar to the four steps approach used in the literature.

But, we merged the last two steps considering the generation of the target model and code more trivial.

In the following, we present a concrete case of migration from Java/GWT project to Angular. First, we extract a java model from the project source code. Then, we extract a GUI model from the Java model. It produces a model of the GUI of the source application, i.e., the widgets and their position. Finally, we generate the Angular application from the GUI model. It produces a runnable version of the application including only the GUI elements in the target language.

Extraction

For this step, we must extract the widgets, their attributes, and their layout and link them together. We must also be able to deal with custom widgets dened by the developers and used in their applications. This step depends on the GUI framework used. There are some conguration sub-steps to be performed to support a new GUI framework. In the following, we describe rst the sub-steps applied (once) for each new GUI framework. Then we describe the sub-steps applied for each application of an already known framework.

New framework extraction

To support a new source framework (see Table 2) we dene the following sub-steps:

1. Map source framework to pivot model, where we dene dictionaries mapping known widgets, attributes, layouts to their counterpart in our

Markup language

Tag to widget concept [START_REF] Garcés | White-box modernization of legacy applications: The oracle forms case study[END_REF][START_REF] Hayakawa | Maintaining web applications by translating among dierent RIA technologies[END_REF][START_REF] Sánchez Ramón | Model-driven reverse engineering of legacy graphical user interfaces[END_REF] Use DOM [START_REF] Memon | GUI ripping: reverse engineering of graphical user interfaces for testing[END_REF][START_REF] Samir | Swing2script: Migration of Java-Swing applications to Ajax Web applications[END_REF] Unknown tag Conguration le [START_REF] Garcés | White-box modernization of legacy applications: The oracle forms case study[END_REF][START_REF] Memon | GUI ripping: reverse engineering of graphical user interfaces for testing[END_REF][START_REF] Mesbah | Migrating multi-page web applications to single-page ajax interfaces[END_REF] Programming language

Source class and factory [START_REF] Samir | Swing2script: Migration of Java-Swing applications to Ajax Web applications[END_REF]

Method invocation

Unknown subclasses Specic set of widgets [START_REF] Memon | GUI ripping: reverse engineering of graphical user interfaces for testing[END_REF][START_REF] Rodríguez-Echeverría | Modernization of legacy web applications into rich internet applications[END_REF] In parenthesis: related work for the step.

pivot model (presented in Section 4). For programming languages, we map a widget class to our pivot counterpart. For example, in Swing, JButton maps to our pivot Button widget. For markup language, we map a tag to a widget concept. For example, in HTML, the label attribute maps to our pivot Label attribute 2. Then, we need to identify containment rules in the source code, containment links between widgets/layout and their children attributes/widgets.

In the case of programming language, such containment links may come from specic method calls as add(. . .) or setWidget(. . .) on a container widget.

For markup language, the containment is already dened in the DOM 3. Identify custom widgets rules species how to identify application specic widgets that are not part of the source to pivot dictionary map (rst step). For programming languages, it corresponds to unknown subclasses of the generic widget class. For example, the rule for GWT is to look for all subclasses of the Widget class; in Angular, one looks for all component.ts les. In case of markup language, we look for unknown tags. Such custom widgets can typically not be translated automatically but need to be identied. Thus, the generator ags them in the generated GUI for developers to take actions (either to migrate them manually, or update the source to pivot map). 4. Finally, identify root widgets rules species how root widgets will be recognized. Root widgets are the entry points in the GUI of the application; they correspond to windows in a desktop application or pages in a web application. For markup language, roots are dened in a conguration le, whereas in programming languages, they are identiable as a specic set of widget (i.e. JWindow in Java Swing). We will see later that they are important to create a hierarchical representation (a DOM) of a GUI. Note that we only care about custom widgets and not custom attributes or layout. We consider that it is not possible to dene custom attributes (that would apply to already known widgets) or custom layouts. Such new attributes/layouts can only come as part of new custom widgets. Children in the GUI are children in the DOM [START_REF] Memon | GUI ripping: reverse engineering of graphical user interfaces for testing[END_REF][START_REF] Samir | Swing2script: Migration of Java-Swing applications to Ajax Web applications[END_REF] Programming language Look for source class instantiation or call to factories [START_REF] Rodríguez-Echeverría | Modernization of legacy web applications into rich internet applications[END_REF][START_REF] Jac | The GUISurfer tool: towards a language independent approach to reverse engineering GUI code[END_REF] Look for call to pre-determined methods Use symbolic execution to resolve precise position of widget [START_REF] Jac | The GUISurfer tool: towards a language independent approach to reverse engineering GUI code[END_REF] In parenthesis: related work for the step.

New application extraction

Once our approach is congured to support a GUI framework, migrating an application for this framework consists in four sub-steps (see Table 3).

1. First, identify custom widgets based on the rules for the framework (custom widget rules). For both markup and programming languages, it corresponds to applying the dened custom identication rules. The new widgets are added, on the y, to the framework source to pivot dictionary and mapped to a special pivot Custom Widget. Each instance of an unknown widget is mapped to a dierent instance of Custom Widget. No eort is made to group together various instances of the same unknown widget.

2. Second, in the create widget instances sub-step, the source to pivot dictionary for the framework is used to identify all instances of known widgets, attributes, and layouts. In case of markup language, we visit the markup source le and create widgets corresponding to recognized tags.

For programming languages, we look for widget class instantiation. It can occur by calling the widget constructor (i.e. in java: new) or through a factory dened by developers or the source framework.

3. Third, detect composition, each instance of widget, attribute, and layout is linked to its parent widget following the identied containment rules of the framework. In case of markup language, the composition is already dened in the DOM (Document Object Model) so children in the source DOM are children in the pivot DOM. For programming languages, we look for call to methods dened in the containment rules (i.e. add(...), setWidget(...)). This results in a DOM that includes the widgets, their attributes, and also the layouts.

4. Finally, performing a layout additional sub-step is often necessary to improve the computation of widgets layout (typically with grid layouts).

For example, widgets could be positioned one relative to the other, or some computation might be required to get the row and column values in a grid layout. We did not report this sub-step for markup languages since the DOM building is sucient to get a good representation of the layout.

However, for programming languages, this sub-step is necessary and might require symbolic execution to resolve the position of widgets in the GUI.

Generation

Widget concept to widget instantiation method

There is no study nor detailed explanation on how to export GUI into the target language. The basic approach consists in visiting the DOM of the pivot model, generating appropriate code. However, the generated code may be split into dierent les, or one pivot entity may produce several target entities, or several pivot entities may be grouped in only one target entity. As for the extraction we rst present how to congure our approach for a new target GUI framework, then we discuss actual generation for an application in a known framework.

Two sub-steps are needed to support a new framework (see Table 4): identify target framework environment and map pivot model to target framework.

1. The rst sub-step, identify target framework environment, denes where the code will be generated to be supported by the target GUI framework. For instance, for markup languages, the GUI can be fully dened in a le (.html) or in multiple les (angular component). In the case of programming languages, some frameworks force the user to dene the GUI in a specic method or the GUI can be dened at any place in the code (Java Swing). 2. In the second sub-step, map pivot model to target framework, we dene a mapping between widgets, attributes, and layouts to their target framework counterpart. For markup languages, it corresponds to the target tag, and for programming languages, the way to instantiate the widget or set the attribute (i.e. calling the constructor or a factory). 2. The second sub-step, generate code, denes how the code is exported.

This sub-step can be generalized at the support new framework level but must be performed for each application. For instance, for markup languages, it is possible to visit the GUI model DOM and generate for each widget its target language counterpart with its attributes. In the case of programming language, it calls methods that instantiate the widgets (e.g. call to the constructor, call to a factory, etc) and the methods used to build the DOM (e.g. add(), setWidget()) to generate the target GUI.

4 Specializable GUI meta-model

Our approach uses a pivot GUI meta-model (Fleurey et al., 2007;[START_REF] Garcés | White-box modernization of legacy applications: The oracle forms case study[END_REF]. This meta-model is dened as the composition of several meta-models, each representing dierent elements of the visual part. We dene three metamodels: (1) Core (Section 4.1) represents the structure of a user interface,

(2) Layout (Section 4.2) represents the visual disposition of user interface's widgets, and (3) Widgets (Section 4.3) represents the possible widget types.

Finally, in Section 4.4, we present how the meta-model can be specialized and the importance of custom widgets. Widget is a graphical resource. It can be rened as Leaf or Container. Container is a composite of Widgets. Leaf is a basic widget that can not contain another widget. For example, a text input.

Root represents the main container of a graphical interface. It is either a window of a desktop application or a web page. The Root is a kind of Container. Attribute represents a widget property and can change its behavior. For example, a button may have a text attribute.

Custom Widgets is a kind of Container that represents an unknown widget in our meta-models. During the migration process, it represents a detected but not recognized widget.

The DOM, massively used in the literature (see Section 2.3), is represented with the relation between Container and Widget. To represent the widget visual disposition, we introduced a layout meta-model (see Section 4.2) that represents the DOM with additional information such as how children are visually disposed inside their parent.

Layout represents rules to position the children of one container. Any

Container of the core meta-model can have one layout. A Layout can be rened as a Grid Layout; a Border Layout; a Horizontal Layout and a Vertical Layout. We currently support these layouts because they are most frequently used in our context. However, many other hierarchical layout managers exist [START_REF] Lutteroth | Domain specic high-level constraints for user interface layout[END_REF][START_REF] Sánchez Ramón | A layout inference algorithm for graphical user interfaces[END_REF][START_REF] Zeidler | Comparing the usability of grid-bag and constraint-based layouts[END_REF] and one can extend the layout meta-model to support them.

Cell A Layout can contain multiple Cells. Then, each Cell contains one widget. Thus, the layout dispose the widgets using the Cell. Note that some Containers do not have a Layout. For instance, a <select> in HTML has multiple <option>, thus, it is considered as a Container but does not have Layout.

Widget meta-model

The core meta-model presented in Section 4.1 allows one to represent the GUI structure. However, to migrate a GUI we map widgets of the source framework to widgets of the pivot meta-model. This mapping is made through the widget meta-model.

The widget meta-model describes the most common user interface widgets.

It currently contains all the entities described in the W3School website 10 such as Button, Label, and OrderedList. However, the website only presents the widgets of the HTML standard. Our widget meta-model is composed of 61 widgets and 31 attributes. An excerpt of the widget meta-model is presented in Figure 4. This meta-model can be extended with other widgets to t the needs of a specic migration. It was the case for the GUI extraction of Berger-Levrault applications where developers have developed a few specic widgets.

In fact, the widget meta-model includes the already known widgets, whereas the Custom widget represents the unknown widgets.

Custom widget and specialization

One of the major problem when considering multi GUI framework migration is the ability to handle widgets that might not be present in the GUI pivot model. Indeed, the mapping of widgets between frameworks is not one to one (Gerdes [START_REF] Jr | User interface migration of microsoft windows applications[END_REF][START_REF] Sánchez Ramón | Model-driven reverse engineering of legacy graphical user interfaces[END_REF][START_REF] Sánchez Ramón | A layout inference algorithm for graphical user interfaces[END_REF] 10 https://www.w3schools.com/html/default.asp Shah and Tilevich, 2011) and third-party libraries may oer new widgets. For example, AWT is an old GUI framework and some of its widgets do not have a counterpart in Angular. Note that in the case of migration between standard web-application (such as applied by [START_REF] Hayakawa | Maintaining web applications by translating among dierent RIA technologies[END_REF]), the problem is less important because most of the widgets are also standard (i.e. div, span, input, etc.).

To tackle such a problem, we use the concept of Custom Widget With this information, one can add a new widget to the pivot meta-model and update the mapping of the known widgets (mapping source to pivot).

Indeed, we designed our approach and meta-model to be specializable.

Thus, better than using Custom Widget, one can create specic widgets and use them with our approach. It is the choice we made for the framework of Berger-Levrault (see Section 6.1). It also enables our approach to be iterative: one performs the migration, our tool identies Custom Widgets, then the developers extend our meta-model, and iterates. Note that, for better migration results such a widget should also be created (programmed) in the target framework. If the developers felt the need to create them in the source framework, there is a good chance that the same need applies to the target framework.

Implementation

To validate our approach we implemented extractors and generators for GUI frameworks that use programming and markup languages. In Section 5.1, we detail the implementation of the steps to extract the GUI part of an application. In Section 5.2, we detail the implementations to generate the target GUI.

Extractors

We implemented three extractors for three dierent frameworks: The rst, BLCore, Java-based GWT, is web-based and the interface is dened in the programming language Java; the second, XML-based GXT 11 is web-based and the interface is dened in a markup language (XML); and the third, Pharobased Spec [START_REF] Fabry | Model-Driven Engineering for Software Migration in a Large Industrial Context[END_REF], is desktop-based and the interface is dened in another programming language (Pharo). In this section, we discuss separately the four sub-steps to support a new framework (see Section 3.2.1)

and the four sub-steps to support a new application (see Section 3.2.2) with concrete examples from the extractors.

Handling a new Framework

As presented in Section 3. 11 GXT, https://www.sencha.com/products/gxt/, is an extension of GWT Map source framework to pivot model. The basic approach to dene a mapping between source and pivot meta-model is simply to create a dictionary.

For GXT extractor, we map an XML tag or attribute (source meta-model) to its corresponding pivot widget, attribute, or layout. For example line 2 of Figure 5, the container:VerticalLayoutContainer source tag maps to the pivot widget Panel containing a Vertical pivot layout. Note that, line 5, the ui:field source attribute does not map to anything in the pivot meta-model by itself but is used to map the textField with its counterpart in the Java source code where the behavior of the GUI is described.

For the frameworks based on programming languages (GWT and Spec), we map a source class or method to a pivot widget, attribute, or layout. We need to consider also methods because some widgets may be constructed through factories. Also, an attribute of a source widget might be assigned with a setter method, in this case, the source method (setter) maps to a pivot attribute.

For the GUI extraction, we do not consider getters because they do not tell us anything on the value to assign to the attributes and therefore they do not point to anything that we could generate to get the same rendering.

There are other possible mappings, for example a GWT source widget Dy-namicFieldSetPanel maps to a pivot widget FieldSet and its boolean attribute dynamicFieldSet. The presence of an attribute may also be conditioned to the instantiation of a widget. For example, instantiating a Button widget with a string parameter (new Button("OK")), will set its text attribute. Another case is that of a source attribute mapping to two pivot attributes. For example the width source attribute maps to either the absoluteWidth or relativeWidth pivot attributes depending on whether the value assigned to it is in pixel (e.g. "250px") or in percentage (e.g. "50%"). This requires symbolic execution and cannot always be achieved (see Section 5.1.2).

Identify containment link. This might be very simple. For example in GXT, we just use the DOM of the XML le describing the interface since it is already structured as a containment tree. For frameworks based on programming languages, the links between a widget and its attributes are easily set when the attributes are identied. The containment links between widgets and subwidgets, or widgets and layouts, are identied through the use of a small set of specic methods: ownerWidget.add(<widget>) for Spec and GWT, and also owner-Widget.setWidget(. . . , . . . , <widget>) for GWT. For these methods, we specify that the parent widget is the receiver, and the child widget the argument.

Identify custom widget. In programming language based frameworks, we typically look for new classes inheriting from the most abstract widget 12 in the source meta-model: Widget class for GWT, and ComposablePresenter for Spec.

In GXT, custom widgets are either unknown tags in a GUI description le (named xxx.ui.xml), or a GUI description le not listed as an application root page in the conguration le. For example, in the snippet of Figure 5, we expect to know all tags within <gxt:Window>. Other tags may appear outside it, but they are used for conguration and do not impact the visual aspect of the GUI.

Identify root widget. In GWT and GXT, we browse the model of the XML conguration le describing the application where all root pages are listed.

Note that this is the same le in both cases as GXT is just an extension of GWT.

In Spec, the notion of root widget is fuzzier, it relies on the idea that any widget, however simple or complex, can be opened as a window or included in another widget. Therefore, in this case, we have to treat each root widget of the application separately which means we rely on the user to tell us what a root widget is.

Handling a new Application

As presented in Section 3.2, to support a new application in a known framework one needs to: actually identify the custom widget types, create all widget instances, detect the composition of widgets, and perform an optional additional sub-step for layout.

Identify custom widget types. We apply the identication rule dened for the given framework. For example, as described above, in GWT we look for all new class descendants of Widget.

Create widget instances. In GXT identifying source widgets instances, attributes and layout is achieved by browsing the model of the XML le from top to bottom, creating pivot widgets, attributes, or layouts as we encounter tags (these tags were identied in the Mapping Denition sub-step in the previous section). The composition of the widgets and/or their attributes is easily extracted from the DOM of the source XML le. The same goes for layouts.

BLCore GUI creation code

BLButton button; ... button = new BLButton(); ... panel.add(button);

... Identifying widgets, attributes, layout instances for the two frameworks based on a programming language is more complex.

Widget

If a source widget is identied by a class, we just look for instantiations (new) of this class (see Figure 6). If a source widget is identied by a method (e.g. in a Factory), we look for calls to this method. In both cases, we need to retain the instance created for later analysis. Typically the instance is assigned to a variable, and we retain this variable. For example in Figure 6 the Button instance is assigned to the variable button. Since we are working on a model of the source code and not the source code as a textual artifact, this means we have the variable as an entity in the source model and we can easily nd every place where it is accessed. In Figure 7, there are two widget instantiations:

LinkLabel (which is a known widget in this case), line 4; and Label (another known widget), line 6. The rst instance is assigned to the lblPg variable, , on line 5, the lblPg variable receives the setEnabled message that maps to the disable pivot attribute. Note that, again, the value of setEnabled must be interpreted to give the correct value to the pivot attribute. In the example, we have to execute the method methodCall to resolve the boolean value. This is one of the most dicult and least reliable computations we perform as will be seen in the results of experiments given in Section 6.3. But we still achieved a worst-case of 67% of attributes correctly detected.

Detect widget composition. For the DOM building, there are two examples of calls to the add(<widget>) in Figure 7, on line 6 and 7. In each case, we already identied the variable to which these messages are sent (content) and the children widgets that are passed as argument.

Note that the line 8 of Figure 7 is not used as it does not involve any known variable or method. It actually does not impact the interface built.

In Spec, the process is similar except that widget creation and containment links are dened in dierent places. Still, they also rely on the use of variables containing the widgets created and used later to establish the containment links. The work may be a little easier as the creation of the containment links is separated in a well-dened method which makes it a bit similar to a declarative specication.

Note that children widgets are rarely added directly in their parent widget.

Because our DOM also contains the layout, widgets are added to cells that are put in layouts, themselves children of the parent widget.

Perfom additional layout computation. To get an accurate representation of the layout, one needs to compute the position of each cell inside its parent layout. The basic case is to be able to recover the order in which widgets are added into their parent layout. As an example, in a VerticalFlowLayout or Hori-zontalFlowLayout, the order in which widgets are added controls their position one relative to the other, see for example Figure 7 (lines 6 and 7) where two widgets are added consecutively to their parent. Spec having a limited number of simple layouts (VerticalFlowLayout and Hor-izontalFlowLayout), it falls within this easy case. 1 i t row = 0 ; 2 Grid g r i d = new Grid () ; 3 g r i d . setWidget (0 , 0 , new Label (" name : ")) ; 4 g r i d . setWidget (row++, 1 , new Button ()) ; 5 g r i d . setWidget(++row , 1 , new Label (" ")) ; 6 g r i d . setWidget (g r i d . getRowCount () , 0 , new Label ()) ; 7 g r i d . g e t F l e x C e l l F o r m a t t e r () . setWidth (0 , 1 , "50%") ; several positions in the grid or to be inserted in any position of the grid. For GUI based on markup languages (e.g. GXT, HTML), position computation is still relatively easy as the information is hardcoded in the source. For GUI based on programming languages (e.g. Java GWT), the position or span might be the result of computations at execution time and therefore more dicult to extract. For example see lines 3 to 6 in Figure 8.

We try to solve some of these cases by resorting to symbolic computation.

The same ideas were used in other GUI extraction tools [START_REF] Jac | The GUISurfer tool: towards a language independent approach to reverse engineering GUI code[END_REF]. Symbolic execution involves identifying the semantics of all functions/operators that can be used in the source code. Here, in the example of Figure 8, one needs to know the Pre/Post Increment/Decrement operators (line 4 and 5) as well as the getRowCount, getColumnCount, getCellCount methods, and the assignment operation (line 1). Concretely for our examples, we only need to implement the pre and post-increment operators (x++ ; ++x), and the getRow-Count and getCellCount methods. Using symbolic computation, we can resolve the successive values of row in Figure 8.

Generators

Once we have a GUI model, it is possible to generate the GUI in the target framework. As for the extractors, we implemented three generators for three dierent frameworks: The rst, Angular, is web-based and the interface is dened in a markup language (HTML), the second, Seaside, is web-based and the interface is dened in a programming language (Pharo), and the third, Spec2, is desktop-based and the interface is dened in a programming language (Pharo).

In this section, we discuss the steps to generate the target code with concrete examples from the generators:

Identify target framework environment. Before working on the concrete code generation, it is essential to discover the architecture required by the target GUI framework. The simplest solution is to read the documentation of the target framework to understand the good practices when developing an application. We also dene how GUI dependencies are imported. In Angular, the GUI code is dened inside an HTML le. However, it is also necessary to create several conguration les (e.g. module, CSS, route). All those les are taken under consideration at this sub-step and are necessary to create the target GUI. In Spec2 and Seaside, the GUI denition code has to be written in a specic method.

Map pivot model to target framework. Building the dictionary that maps pivot model concepts to target framework is similar to the one used for the extraction. In the case of Angular, we map pivot widgets to Angular tags (i.e. a Button corresponds to <input type="button"/>). In the case of Spec2, we had to determine the method used to instantiate a widget. For instance, the main widgets (i.e. button, label) should be instantiated using a factory pattern whereas the traditional call to a constructor method is favored for less frequent or more complex widgets. Finally, the Seaside framework uses invocations to factory methods to build the widgets. Note that, as for the extraction, a concept in our pivot model can correspond to multiple widgets in the target framework.

Identify target application environment. This sub-step must be done for each application. It consists in determining the environment in which the target application will be executed. It congures information such as data access endpoint URL, or for web application, local URL that might be necessary to get images (e.g.). The generator must use the information to create a runnable application in the target environment. For all our generators, the approach will complete the target GUI code with conguration les (or annotations For programming languages).

Generate code. The code generation consists of creating the target GUI.

The main approach is to visit the pivot DOM and for each widget create its counterparts in the target application. In the case of Angular, the generation is eased by the fact that both the generated HTML le and the pivot DOM have the same structure. For Spec2 and Seaside, our generator creates into specic methods the widgets and their composition using constructors and a pre-dened set of methods. For Spec2 specically, the DOM must be dened in a method and the widget instantiated in another method.

Result

We perform the migration using our extractors and generators on ve real projects. In Section 6.1, we present the case studies. Then, we discuss our validation metrics (Section 6.2) and present the result for the extraction step (Section 6.3) and the generation step (Section 6.4).

Case studies

To validate our approach, we migrated ve applications. Table 6 summarizes the dierent migrations, the language and framework source, and the target language and target framework.

Kitchensink is a closed-source application of Berger-Levrault. This software system, targetting developers, gathers inside a single application all the components available for building a user interface. It contains 470 Java classes and 98 pages. Both are written using BLCore, a web-based GUI dened using programming language, and migrated to Angular, a web-based GUI dened using a markup language.

Two migration cases, DBManager and SpecDB, use Spec as a source framework and Spec2 as a target framework. SpecDB is part of the Spec widgets presentation package. It is used to show the dierent congurations of a Spec button. DBManager 13 provides a GUI to manage the connections between Pharo and databases. Its user interface is divided into multiple pages. Note that even if Spec2 is the next version of Spec, the framework has been completely re-written and so the migration corresponds to a full framework migration and not a GUI framework update.

The last one, Traccar 14 , uses the GXT framework (a GWT extension) as a 7 summarizes the information about the dierent projects. For the Kitchensink, PostOce, and Traccar projects, we take a sample of the root 13 https://github.com/juliendelplanque/DBConnectionsManager 14 https://github.com/traccar/traccar-web pages for the validation. So we present the number of widgets, attributes, and roots of the sample. This choice is explained in the next section (Section 6.2). For the extraction validation, our solution validates that the GUI hierarchy is identied. For the GUI hierarchy, we check that all the widgets and attributes are detected and correctly identied. This validation consists of the following three metrics [START_REF] Hayakawa | Maintaining web applications by translating among dierent RIA technologies[END_REF][START_REF] Joorabchi | Reverse engineering iOS mobile applications[END_REF][START_REF] Sánchez Ramón | Model-driven reverse engineering of legacy graphical user interfaces[END_REF]:

The percentage of widgets correctly detected and created in our pivot model. It checks that the number of widgets in the source application is the same as in our pivot model.

The percentage of widgets correctly identied, i.e. a button in the original framework corresponds to a button in the pivot model. For instance, a widget not identied is mapped to a Custom Widget or another widget (e.g. a button mapped to a panel).

The percentage of widgets assigned to the correct container. It validates the DOM building.

Finally, the same metrics are used for the attributes.

We rely on manual validation to check all these metrics. Because the manual validation is tedious and error-prone for large applications, we take a sample of the pages of the Kitchensink, PostOce, and Traccar applications. For each case, we consider a sample representing at least 10% of the application. So we randomly selected 6 pages out of 56 for Kitchensink, 10 pages out of 98 for PostOce and 3 pages out of 28 for Traccar. The migration of the Kitchensink, DBManager, and SpecDB projects were also presented in previous work [START_REF] Dutriez | Switching of GUI framework: the case from Spec to Spec 2[END_REF][START_REF] Verhaeghe | GUI migration using MDE from GWT to Angular 6: An industrial case[END_REF]. However, those experiments did not consider the migration of the layout. Thus, their result might dier from the ones reported here. The results of the previous experiments are reported in Table 8 and discussed in the next section.

For the generation validation, work has been proposed to compare images [START_REF] Kaufmann Cao | A segmentation method for web page analysis using shrinking and dividing[END_REF][START_REF] Moran | Detecting and Summarizing GUI Changes in Evolving Mobile Apps[END_REF]. However, none is directly applicable to our migration cases. Indeed, to apply this strategy one must before deal with several challenges (Bragagnolo et al., 2020b):

Ajax-based architecture: one should be able to browse the pages of an Ajax application for web application.

successive shifting: we must deal with successive shifting of widget components when a target one is not perfectly visually equivalent to an original one.

dynamic content support: for instance, some widgets, as a table, display information coming from an external server. The same data must be presented in the original and generated application.

Validation by image comparison is further discussed in Section 7.4.

We rely on a manual visual comparison of the pages. First, we check that the generated application is runnable. Then, we visually compare the application with the original one.

One could also think of using tests for the validation. However, this is not applicable, in our cases, because the applications we are migrating do not have such tests. The tool detects 99% of all the widget instantiations for all the applications. It shows we have good heuristics to identify the widgets in the source applications.

Extraction result

The tool identies correctly 97% of the widgets type. For the Traccar and DBManager, the tool misses widgets used in toolbars. This kind of widget is mainly used in desktop application and since our widgets meta-model comes from W3School which describes basic web components, we did not have them.

For Kitchensink and PostOce, the tool identies 94% and 99% of the widgets. All the unidentied are widgets created by the company for its business.

So they are mapped to Custom Widget. To solve this problem, one can extend our meta-model with the missing widgets. We also report that our implementation beneted from the detailed approach steps since it better extracts the GUI than the previous approaches. For instance, our new approach correctly assigned 99% of the widgets whereas the previous approaches dealt with only 96% of the widgets.

Except for the BLCore framework, all the widgets are well assigned to their container. With BLCore, the problem comes from the variety of ways to dene widget containment.

Attributes are correctly detected at 87%. The best result appears in the DBManager application with 92%. Our approach reports better result than the 80% of attributes detected in previous experiments.

Attributes are harder to detect for two reasons: (1) GUI frameworks dene default attributes for widgets, so we have to manually analyze those attributes and add them in our extractors, and (2) in programming languages, attributes can be declared in multiple ways: using a setter; a parameter in a constructor.

This diversity forces us to analyze all the possibilities since we did not nd a heuristic that will select all attributes denitions.

Finally, nearly all the detected attributes are well assigned to their container.

Generation result

We visually compared the visual aspect of the pages where the widgets are well identied. In the following, we present a comparison for three of the case studies presented in Section 6.1. Note that other comparisons for the Kitchensink migration are available in the documentation page of our project 15 .

Figure 10 presents the visual dierences for the page Input box of the Kitchensink application. On the left-hand side there is the original page and on the right-hand side the page after the migration. We can see that there are no dierences between the two versions. this example. The sizes of the input boxes are dierent, the text of the labels is replaced by the i18n notation, the overlay table has a complete dierent visual aspect, the checkbox is not centered, and the buttons at the bottom are not well placed. The table is not correctly migrated because the table with selection is a custom widget for the tool and we did not take the time to introduce it. It was then migrated from component it contains, here a simple table. The other dierences come from application-specic CSS. Despite all these imprecisions, the structure and the layout of the page are respected.

Figure 12 presents the visual dierences for the DBManager application.

Again on the left-hand side, there is the original page, and on the right-hand side, the page after the migration. There are some dierences in this example.

The text of the buttons on the left of the image is not present, the buttons on the right of the image are enabled but are disabled in the original application and are not correctly placed. Apart from the last dierence that comes from a developer hack, all the dierences are due to attribute extraction problems. Those problems come from missing attributes identication rules in our tool.

Finally, the drop-box input has visual dierences between the original and the generated application. It is due to dierent widget implementations.

The migration does not create the same visual aspect. We saw that there are few dierences and the layouts are respected. Most of the imprecisions come from missing attributes or incorrect values. Those problems are easy to

x manually by developers.

We do not report major dierences in the visual aspect of pages of the validation. Part of the success of the migration is due to the manual work we performed to map the GUI frameworks to our meta-models. We detail this manual eort requirement in Section 7.

Discussion

In this section, we discuss our approach and the validation set-up. In Section 7.1 we discuss the similar visual aspect constraint and animation migration. In Section 7.2, we present the case of none le-based GUI migration.

In Section 7.3, we discuss the number of selected pages and how the selection has been made for the validation. In Section 7.4, we detail the diculties encountered to perform an image comparison validation. In Section 7.5, we discuss the manual work required to implement our approach.

Similar visual aspect and Animations

Our approach allows one to migrate the visual aspect of its GUI among dierent GUI frameworks. As validation, we proposed to compare the visual aspect of the former GUI to the generated one. However, widgets do not have the same visual aspect in dierent GUI frameworks. For instance, an AWT button does not look like an AngularJS button.

It is possible to perform an expensive manual step to tune the visual aspect of all target framework widgets to mimic the former visual. Because of its cost, performing this step is not always desirable.

One the one hand, as depicted by [START_REF] Moore | Knowledge-based user interface migration[END_REF], The resulting user interface should have the true look and feel of the new environment. On the other hand, for commercial software, keeping the same visual aspect increases the acceptance rate of client users [START_REF] Sánchez Ramón | Model-driven reverse engineering of legacy graphical user interfaces[END_REF].

Note that the same limitation exists for GUI animations. Animations are represented as attributes of the widgets. These GUI animations attributes exist in several GUI frameworks and it is possible to reproduce them in others.

However, this task is expensive and one should rely on its migration context to determine if animation migration is mandatory. We did not work on animations migration because our source applications did not use animations.

We believe that extra research work should be done on attributes to enable a good animations representation and migration.

Migrating none-le or binary le-based GUI

In this paper, we deal with the migration of GUI dened in programming languages or markup languages. However, some GUIs are dened using other formats. It is the case of GUIs that are dened in binary les.

For instance, GUI dened with RAD requires another approach. Bragagnolo et al. (2020a) have studied the extraction of the GUI for Access projects.

In their case study, they had to perform the extraction of the GUI through the Access IDE which limited the extraction capabilities.

Thus, to migrate binary le-based GUI, the extraction part of the migration is dierent. The mapping to the GUI meta-model is similar to our approach once one has gained access to the source GUI representation.

Migration of binary le-based GUI is part of our industrial partner projects with a WebDeb to Angular migration project.

Sample selection

As depicted in the previous sections, we had to perform a manual validation. However, performing a manual validation on the 186 pages is too timeconsuming.

Thus, we decided to perform the validation of a subset. To do so, we decided to selected 10% of the pages of the applications. This selection is crucial because it must not introduce bias in the validation. So, to avoid introducing bias, we decided to perform a random selection of the pages. However, it could still not fully represent the application.

So, to ensure the good representativity of the selected pages, we compare the total number of widgets and attributes in the application to the number of widgets and attributes of the selected pages. The selected pages include 9%

of the total number of widgets and 13% of the total number of attributes.

Thus, it appears that the 10% pages randomly selected are representative of the total application in terms of the number of elements.

Additionally to comparing the number of elements, we check that selected pages are of dierent sizes. As result, the pages have from one to hundreds of widgets. Thus, the randomly selected page are of dierent sizes, and this helps ensure no bias in the validation.

Image comparison validation

To validate the proper generation of target GUI, we rely on a manual comparison of the pages visual aspect. We acknowledge the existence of projects that compare the visual aspect of two screenshots [START_REF] Kaufmann Cao | A segmentation method for web page analysis using shrinking and dividing[END_REF][START_REF] Moran | Detecting and Summarizing GUI Changes in Evolving Mobile Apps[END_REF]. [START_REF] Kaufmann Cao | A segmentation method for web page analysis using shrinking and dividing[END_REF] classied pages by comparing their GUI, e.g.

determined if a page come from a newspaper website or another one. [START_REF] Moran | Detecting and Summarizing GUI Changes in Evolving Mobile Apps[END_REF] detected dierences between two versions of the same GUI after modication made by developers. Since the modications are minimal and the GUI developed with the same framework, one can expect few dierences between screenshots.

We performed a preliminary work (Bragagnolo et al., 2020b) to adapt image comparison to the validation of GUI migration. In this work, we reported several challenges that must be rst solved.

First, for Ajax-based applications such as GWT and Angular, one should be able to browse the pages of the web application. Indeed, to automatically take screenshots of the pages, one must crawl all pages. However, pages are not directly accessible with their URL in some Ajax-based applications such as the applications using GWT in our context.

Second, we must deal with the successive shifting challenge. When migrating a widget from a source framework to a target framework, it might not have the same visual aspect. However, if a target widget has a size dierent than the original widget, it introduces a shift in the screenshot of a few pixels.

Repeating this shift on several widgets in a page can lead to two completely dierent source and target pages, and so prevent the screenshot comparison.

Finally, to enable the image comparison in the migration context, one must before deal with dynamic content. Indeed, a table lled with data will not take the same space in a GUI as an empty table. However, in our context, we do not support the migration of backend connections. Thus, migrated tables are always empty and visual comparison can not be used.

Thus, automatic validation through visual comparison of page screenshots is not applicable in the current state of GUI visual aspect among multiple technologies.

Manual work

The migration of BLCore, GXT, and Spec requires two manual tasks (1) to map their widgets with the ones of our meta-model and (2) to identify how the DOM is built in each GUI framework.

Mapping the widget consists of analyzing the documentation of each GUI framework, retrieving the widgets and their attributes, and mapping them to our meta-model. Whereas the second task is easy for markup languages, it requires more knowledge for programming languages analysis. Indeed, in programming languages based GUI, developers can dene the DOM in several ways. So, we had to enumerate all the DOM building possibilities and integrate them into our extractors.

To reduce the required manual eort, one can perform a renovation of its software system before migrating. The renovation consists of improving the source code of the application. To do so, developers reduce the number of code smells and rewrite code to make it easier to manipulate. For example, one can decide to rewrite all widgets creation using the basic new method. By following this Quality First [START_REF] Wªodarski | Qualify rst! a large scale modernisation report[END_REF] rule, the extraction of the GUI is simpler, and the DOM is built using only one approach. Widgets are always instantiating using the constructor. And the number of custom widgets might be reduced in favor of standard ones.

Conclusion and Future work

In this paper, we exposed an approach and tool to migrate automatically the visual aspect of applications GUI. We detail the extraction and the generation steps of this approach for programming and markup GUI framework. We validated our approach by implementing it in a tool called Casino to perform the migration of Spec, BLCore, and GXT GUI frameworks to Angular, Seaside, and Spec2. Then we performed ve real migrations on open-source and closed-source applications. We were able to extract correctly all pages of the applications and 97% of the widgets. And the migration results are visually equivalent.

Currently, only the visual part of the GUI is migrated. To improve the migration of an application user interface, we will enhance our meta-models and our tool to support the behavioral and the business parts.

We have validated our approach using manual validation techniques. While this gave us a good approximation of the results, using an automatic solution to validate the migration may provide us more information and help the developers during the process.

We are currently working with our industrial partner on making available extractors for PowerBuilder and Visual Basic 6 (which are not Object-Oriented programming language). We also plan to test our approach with mobile GUI with a subsidiary of our industrial partner. Thus, testing our approach on Android applications is part of our future work.

Declarations

Funding This work was supported by Berger-Levrault and Inria-LilleNord-Europe.

Conicts of interest/Competing interests The authors have no relevant nancial or non-nancial interests to disclose.

 also worked on GUI extraction based on binary sources with the migration of Visual Basic applications. Sánchez Ramón et al. (

Fleurey

 et al. (2007);[START_REF] Garcés | White-box modernization of legacy applications: The oracle forms case study[END_REF] and Sánchez[START_REF] Sánchez Ramón | Model-driven reverse engineering of legacy graphical user interfaces[END_REF] developed tools that semi-automatically migrate GUI. All of them use the following four steps migration process:1. Generation of a model of the original application. 2. Transformation of this model into a pivot model that includes data structures, actions, user interface, and navigation. 3. Transformation of the pivot GUI model into a target framework model. 4. Generation of the target source code. Hayakawa et al. (2012) proposed a similar approach in two steps: (a) reverse engineering similar to the extraction of a pivot model, and (b) generation of the new application similar to the generation of target source code. They can reduce the number of steps in part because they worked only with GUI dened with markup languages that are easier to parse and generate. In addition to those main steps, Mesbah and van Deursen (2007) added a behavior extraction step and a behavior generation step. This step allows them to migrate the navigation ow and the behavior of the User Interface.

 the literature: hardcoded, hierarchical, and constraint-based: Hardcoded layout. Sánchez Ramón et al. (2016) dene for each widget its position with absolute coordinates on the screen. It is used in old GUI frameworks.

Fig. 1 :

 1 Fig. 1: Our GUI migration process

Fig. 2 :

 2 Fig. 2: Core meta-model

4. 2 Fig. 3 :

 23 Fig. 3: Layout meta-model (grey concepts are shared with the core metamodel)

Fig. 4 :

 4 Fig. 4: Excerpt of the widget meta-model (grey concepts are shared with the core meta-model)

(

 [START_REF] Sánchez Ramón | Model-driven reverse engineering of legacy graphical user interfaces[END_REF][START_REF] Sánchez Ramón | A layout inference algorithm for graphical user interfaces[END_REF]. During the extraction step, when an unknown widget type is encountered, the extractor creates a Custom Widget. Then, it tries to extract the DOM of the Custom Widget as a simple container. During the generation, Custom Widgets are generated as containers with a comment in the generated code to warn developers and give them additional information: name of the source widget, attributes (if identied), possible children widgets (if identied), location in the source code.

Fig. 5 :

 5 Fig. 5: Snippet of an GXT login view in XML

 Fig. 6: Example of Widgets Identication

Fig. 7 :

 7 Fig. 7: User interface creation in Java GWT

Fig. 8 :

 8 Fig. 8: Complex layout creation in Java GWT

Fig. 9 :

 9 Fig. 9: BLCore -GUI meta-model

 source framework and Seaside as a target framework Traccar is an open-source server and web client for various GPS tracking devices. It contains 649 classes and 28 pages.

6. 2

 2 Validation set-up We divided the migration validation into two parts: the extraction validation and generation validation. The extraction validation consists of checking that our model includes the elements of the original application. It compares the DOM and the attributes of the GUI without considering the nal visual aspect. The generation validation consists of visually comparing each original page with the exported one.

Figure 11

 11 Figure11presents the visual dierences for the User Setting page of Traccar. On the left-hand side, there is the original page, and on the right-hand side, the page after the migration to Seaside. There are more dierences in 15 https://badetitou.github.io/projects/Casino/Casino/#current-results

 Fig. 12: Visual comparison (DBManager)

Table 1

 1 summarizes the related work considered. First line presents our need for the extraction, exportation, and multi framework support. Note that extract binary is part of our need but will not be detailed in this article.

	7 https://github.com/tonybeltramelli/pix2code#disclaimer

Most of past research considered migrating from markup languages: Garcés et al. (

2017

) (partial XML to JEE),

Table 2 :

 2 Framework agnostic extraction approach -support new framework

	source	Map source to	Indentify	Indentify	Indentify	root
		pivot	contain-	custom	widgets rules	
			ment rules	widgets		
				rules		

Table 3 :

 3 Substeps to migrate an application using a known framework

	Source	Identify	Create	Detect Compo-	Perform layout
		Custom	widgets	sition	additional	sub-
		Widget	instances		step
	Markup		Browse markup		
	language		le and create		
			widgets when		
			encounter		
			recognized tags		
		Apply Custom			
		widgets			
		identication			
		rules			

Table 4 :

 4 Framework agnostic generation approach -support new framework

		Identify target framework en-	Map pivot model to target
		vironment	framework
	Markup	Written in one or multiple les	Widget concept to tag
	Programming Dened in one method or multi-	
		ple methods dened by the target	
		framework	

Table 5 :

 5 Framework agnostic generation approach -support new application

	Identify target application	Generate Code
	environment	
	Markup	Visit the GUI Model DOM
		and generate for each wid-
	Conguration information (URL for web application data access)	get/attribute/layout/ its tag counterpart
	Programming	Generate the GUI code using set-
		ter, DOM builder methods, and
		constructor

Then, two other sub-steps are needed to support the migration of a new application (see Table

5

): identify target application environment and generate code.

1. Identify target application environment is identical for programming and markup languages. It consists of discovering the conguration needed by the application. For example, it includes the endpoints URL to access data.

 It allows one to have ne control of the nal GUI layout. A hardcoded layout can be modeled as is with the AbsolutePosition entity. But it is best to migrate it to a hierarchical layout as proposed by Sánchez Ramón et al. (2016).

Table 6 :

 6 Case study Description

		Source	GUI denition Target	GUI denition
	Project	Framework Type	Framework Type
	Kitchensink	BLCore	programming	Angular	markup
	PostOce	BLCore	programming	Angular	markup
	Traccar	GXT	markup	Seaside	programming
	DBManager Spec	programming	Spec2	programming
	SpecDB	Spec	programming	Spec2	programming
	and 56 web pages. PostOce is a software system used in French adminis-
	tration for the dispatch and digitalization of mails. It contains 3227 classes

Table 7 :

 7 Application descriptions

	Source framework Project BLCore Kitchensink PostOce GXT Traccar	Widgets Attributes 238 156 724 1065 125 104	Roots 6 (out of 56) 1 10 (out of 98) 1 3 (out of 28) 1
	Spec	DBManager SpecDB	38 15	27 21	3 1
	1 10% sample				

Table

Table 8 :

 8 Extraction from previous work

	Framework Project	Widget	Widget	Attribute	Attribute
	source		detected	well	detected	well
	BLCore	Kitchensink	100% (238)	assigned 89% (211)	NA 1	assigned NA 1
	Spec	DBManager SpecDB	100% (38) 100% (15)	100% (38) 100% (15)	92% (25) 67% (14)	100% (25) 100% (14)
	average		100%	96%	80%	100%
	1 Value not given in previous work			

Table 9 :

 9 Extraction results

	Framework Project	Widget	Widget	Widget	Attribute Attribute Attribute
	source		detected identied well as-	detected identied well as-
					signed			signed
		Kitchensink 100%	94%	99%	77%	95%	100%
	BLCore	(238) PostOce 99%	(224) 99%	(236) 96%	(118) 88%	(112) 98%	(118) 99%
			(718)	(712)	(695)	(940)	(923)	(937)
	GXT	Traccar	100% (125)	99% (124)	100% (125)	81% (84)	100% (84)	100% (84)
		DBManager100%	94%	100%	92%	100%	100%
	Spec	SpecDB	(38) 100%	(36) 100%	(38) 100%	(25) 67%	(25) 100%	(25) 100%
			(15)	(15)	(15)	(14)	(14)	(14)
	Average		99%	98%	99%	87%	98%	100%

Table 9

 9 summarizes the extraction results.

https://aurelia.io/

https://github.com/badetitou/Casino

We remind the reader that we consider there can be no custom attribute or layout, see Section 3.2

Availability of data and material The source code of the Traccar case study is available at: https://github.com/traccar/traccar-web. The source code of the DBManager case study is available at: https://github.com/juliendelplanque/DBConnectionsManager.

The source code of the SpecDB case study is available at: https://github.com/ pharo-spec/Spec. The source code of Kitchensink as the source code of PostOfce are closed-source.

Code availability The source code of the Casino tool is available at: https: //github.com/badetitou/Casino. Additional extractors and generators are provided at: https://badetitou.github.io/projects/Casino/#links.