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Abstract: This paper is devoted to discussion of the efficiency of reduced models based on a Double
Modal Synthesis method that combines a classical modal reduction and a condensation at the
frictional interfaces by computing a reduced complex mode basis, for the prediction of squeal
noise of mechanical systems subjected to friction-induced vibration. More specifically, the use of
the multiresolution signal decomposition of acoustic radiation and wavelet representation will be
proposed to analyze details of a pattern on different observation scales ranging from the pixel to the
size of the complete acoustic pattern. Based on this approach and the definition of specific resulting
criteria, it is possible to quantify the differences in the representation of the acoustic fields for different
reduced models and thus to perform convergence studies for different scales of representation in
order to evaluate the potential of reduced models. The effectiveness of the proposed approach is
tested on the finite element model of a simplified brake system that is composed of a disc and two
pads. The contact is modeled by introducing contact elements at the two friction interfaces with the
classical Coulomb law and a constant friction coefficient. It is demonstrated that the new proposed
criteria, based on multiresolution signal decomposition, allow us to provide satisfactory results for
the choice of an efficient reduced model for predicting acoustic radiation due to squeal noise.

Keywords: friction-induced vibration; squeal noise; acoustic radiation; multiresolution signal
decomposition; wavelet analysis; Finite Element Model; brake system

1. Introduction

The prediction of the acoustic response associated with squeal noise is often overlooked because
it requires one to solve first the nonlinear dynamic problem. However this problem is of increasing
interest to researchers by carrying out numerical simulations and experimental studies [1–8] because
noise pollution due to friction-induced vibrations has become a major problem in the automotive
industry. A review on the subject of acoustic friction phenomena can be found in [9] and comprehensive
review on mechanisms of the brake squeal phenomena and friction-induced vibration are also available
in [10–15].

Even if the prediction of squeal noise is essential and of primary interest for designing brake
systems, the estimation of the acoustic noise, based on numerical tools for nonlinear models with
many degrees of freedom, can be rather expensive and requires considerable resources both in terms
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of computation time and data storage. So, one of the most important limitations and drawbacks of
such a simulation is the problem size to be considered. Thereby simplifications and reductions in the
mathematical modeling are usually required. This model reduction step can imply an approximation of
the original system leading to a bad representation of the vibration behavior. In the case of mechanical
systems subjected to friction-induced vibration, the performance of model reduction techniques [16–19]
for the stability prediction as well as the transient and stationary evolutions of the nonlinear responses
of the brake system can be affected by such reductions.

Nowadays, one of the main scientific challenges is not only to investigate the potential of reduced
basis for the prediction of squeal noise but also to be able to provide criteria to quantify the relevance
of different choices of reduction bases for such acoustic problem. One of the objectives of this study is
to answer this question by proposing a complete approach, allowing for the development of numerical
techniques based on the Double Modal Synthesis method for the prediction of squeal noise and the the
use of the multiresolution signal decomposition of acoustic radiation and wavelet representation in
order to analyze in detail the relevance of the reduction bases. It should be noted that this work is in
the continuity of the previous works [20–22] that address the efficiency of the Double Modal Synthesis
method for the stability analysis and the prediction of self-excited vibrations.

The present paper is organized as follows. Firstly, the modeling of the Finite Element Model
of the brake system under study is presented. Results for the stability analysis and the transient
nonlinear dynamics, as well as the prediction of squeal noise based on acoustic radiation are briefly
investigated. Secondly, the use of the multiresolution signal decomposition of acoustic radiation and
wavelet representation is discussed. More precisely two criteria are proposed in order to quantify
the efficiency of reduced models to accurately represent the acoustic fields for different scales of
representation. Finally, the proposed methodology acoustic is applied and validated on the brake
system under study.

2. Preamble

2.1. Finite Element Model of the Brake System under Study

In this section, the Finite Element Model (FEM) of the simplified brake system used to predict the
nonlinear vibration and squeal noise is described. This model is sufficient to bring out instabilities and
to evaluate the performance of some reduced bases. Figure 1 shows the frictional mechanical system
under consideration. The main components of this brake system is the disc and the two pads. Physical
parameters such as the geometry and materials are given in Table 1. The two pads slide face to face on
either side of the disc. The formulation and modeling of the mechanical system are given as follows:

• The two frictional interfaces between the disc and the two pads are composed of 220 contact
nodes. It should be noted that previous studies [4,5] have been performed to validate the mesh
refinement on the system under study;

• The four corners of the back plate of the upper pad (pad 1) are connected to a master node which
is only allowed to move in the out of plane direction;

• The inner edge of the disc (i.e., cylindrical surface in the Z direction having a radius of 0.034 m)
and the back plate of the lower pad (pad 2) are clamped;

• The hydraulic pressure (2 × 105 Pa for the present study) is directly applied on the back plate of
the upper pad (pad 1);

• The nonlinearities at the friction interface between the pads and the disc are due to the cubic
nonlinear terms with the the possibility of contact/no-contact states, such as

Fi
contact,disc =

{
kLδi + kNLδi

3 i f δi ≥ 0
0 otherwise

(1)
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where Fi
contact,disc defines the normal reaction at the ith couple of matching nodes on any interface

and δi is the relative normal displacement between one pad and the disc. kL and kNL are the linear
and nonlinear stiffnesses at the friction interfaces (with kL = 103N·m−1 and kNL = 1012N·m−3).
It should be noted that this formulation has been validated by experimental compression
tests [23,24];

• The normal reaction forces on each pad is classically modeled by Fi
contact,pad = −Fi

contact,disc;
• The friction forces are determined with a classical Coulomb’s law and the friction coefficient at

the different contacts between the two pads and the disc masses is supposed to be constant and
equal to µ. It should be noted that the same coefficient of friction is used for the two frictional
interfaces for the sake of simplicity;

• The tangential friction forces are related to the normal reaction forces by Fi
f riction,disc =

−Fi
f riction,pad = µ‖Fi

contact,disc‖
−→
ti where

−→
ti defines the local orthoradial in-plane direction

(i.e.,
−→
ti = −→ri ×−→z );

• the structured mesh uses hexahedrons with linear interpolation. The spatial discretization in the
Z direction (i.e., thickness of the disc and pads) is of four nodes for the disc and three nodes for
each pad. The spatial discretization on the circumference of the disc is of 150 nodes. The full FEM
model has a total of around 50,000 degrees of freedom.

Additionally, two reduction techniques (i.e., the Craig and Bampton technique (C&B) [25] and
Double Modal Synthesis (DMS)) are used on the previous FEM system to condense the number of
degrees of freedom. It is recalled that the C&B technique allows us to condense each substructure
(i.e., the two pads and the disc), whereas the DMS technique condenses the remaining degrees of
freedom at the two frictional interfaces. The interested reader is referred to the following previous
studies for more details [20–22].

Finally the equations of motion for the reduced brake system are given by

MẌ + CẊ + KX = FNL (X) + Fext (2)

where X is the generalized displacements vector while the dot denotes derivative with respect
to time. FNL and Fext correspond to the global nonlinear forces at the two interfaces
(i.e., FNL = Fcontact + F f riction) and the hydraulic pressure, respectively. M, C and K are reduced
mass, damping and stiffness matrices, respectively. The reduced matrices for each contribution of the
FEM brake system are given by

M = Tt
lMCBTr = Tt

lT
tMinitTTr (3)

K = Tt
lKCBTr = Tt

lT
tKinitTTr (4)

C = Tt
lCCBTr = Tt

lT
tCinitTTr (5)

FNL = Tt
lFNL,CB = Tt

lT
tFNL,init (6)

Fext = Tt
lFext,CB = Tt

lT
tFext,init (7)

where the subscript init refers to the initial data of the problem without condensation. At denotes the
transpose of a matrix A. T defines the transfer matrix between the initial reference model and the C&B
condensed model. Tl and Tr correspond to the left and right eigenmodes of the interface degrees of
freedom. They are associated with the transition from the C&B condensed model to the final reduced
model that includes both C&B and DMS reductions.

In the following section, the convergence study versus the two reduction techniques will be
discussed as follows:
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• The C&B technique is performed by condensing the internal degrees of freedom of each
substructure (i.e., the disc and the two pads) and by keeping the physical degrees of freedom
situated at the two frictional interfaces. The number of fixed interface modes is chosen so that the
reduced model is valid for a given frequency range of interest (i.e., [0; fmax] with fmax = 20 kHz in
the present case). To reach such an objective, the convergence study is performed on the control
parameter γ, selected for each substructure: the fixed interface modes whose frequencies are less
than γ fmax are kept;

• The DMS technique consists in the condensation of all the degrees of freedom at the two frictional
interfaces. The control parameter for the DMS reduction is set by the number of interface modes
kept (denoted NDMS).

Table 1. Model parameters.

Parameter Unit Disc Pads

Thickness (Z direction) m 0.02 0.0128
Outer radius m 0.151 0.147
Inner radius m 0.034 0.091
Young modulus E Pa 1.25 × 1011 2 × 109

Poisson’s ratio 0.3 0.1
Density kg·m−3 7200 2500

(a)

(0.0834, 0.0712 )
~y

~x

(b)

Figure 1. Simplified brake system under study (a) Finite Element Model (b) Position of the selected
point for the description of the nonlinear dynamic response.

2.2. Basic Results for the Stability Analysis and the Transient Nonlinear Dynamics

The main aim of this section is to provide some basic results concerning the stability of the brake
system under study, as well as the nonlinear self-sustaining dynamic response if the system is unstable.

First of all the stability of the system can be determined by using the well-known Complex
Eigenvalue Analysis (CEA). Stability is determined by considering the real part of eigenvalues for
the characteristic linearized equation at the equilibrium point. If all eigenvalues have negative real
parts, the system is stable. If at least one eigenvalue has a positive real part, the system is unstable.
The imaginary part of the associated positive eigenvalue defines the angular frequency of the unstable
mode. Table 2 summarizes numerical results concerning the stability analysis of the original or reduced
FEM system versus the friction coefficient (all other parameters are considered fixed). For µ < 0.67,
the system is stable. For 0.67 < µ < 0.76, the system has one instability, and for 0.76 < µ < 1,
the system has two instabilities with the appearance of a second coalescence pattern. It should be
noted that the convergence study versus the stability analysis for the C&B and DMS reductions is out
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of the scope of the present paper. The interested reader is referred to the previous studies [20,21] for
more details.

Table 2. Stability analysis of the system versus the friction coefficient.

Friction Coefficient Number of Instabilities Frequency of Unstable Mode(s)

µ < 0.67 0 -
0.67 < µ < 0.76 1 f1 = 857 Hz

0.76 < µ < 1 2 f1 = 857 Hz and f2 = 2223 Hz

Then, Figure 2 illustrates the nonlinear self-sustaining dynamic response of the system and the
spectrograms for µ = 0.8 at the frictional interface by using the full original model. The position
of the selected point is given in Figure 1. For t = [0; 0.2] s, a classical exponential increase in the
solution from the perturbed equilibrium is shown. Then a transient nonlinear behavior appears (for
t = [0.2; 0.5] s) with the predominant presence of the second unstable mode f2 and its harmonic 2 f2.
Finally a stabilized regime is obtained for t > 0.8 s with the appearance of the first unstable mode f1

and harmonic components 2 f1, 3 f1 and 4 f1. The presence of the harmonic combination − f1 + f2 for
t = [0.4; 0.6] s is also observed, which illustrates the potential complex transient nonlinear behavior
of the brake system under study. As a reminder, the appearance of such nonlinear components
illustrates the limitations of the stability analysis that may lead to an underestimation of the frequency
components during squeal events.
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0 0.5 1 1.5

X
 (

m
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×10
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-5

0

5
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0 0.5 1 1.5
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Figure 2. Cont.
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(b)

Figure 2. Transient nonlinear behavior of the system for µ = 0.8 (a) time responses and
(b) spectrograms.

2.3. Prediction of Squeal Noise Based on Acoustic Radiation

One of the most important goals in the field of friction-induced vibration is to be able to predict
not only the stability and transient nonlinear behavior of the system but also the acoustic noise during
brake squeal. To meet this goal, one of the most popular approaches for modeling the acoustic problem
is based on the Boundary Element Method (BEM). The BEM can be decomposed into two main steps:
first the surface sound pressure calculation Pω

S which depends on the surface normal velocity field
Ẋn, and secondly the estimation of the free space sound pressure Pω by calculating the surface sound
pressure. The associated equation corresponding to the second step is defined by:

εPω = MωPω
S −Lω ∂Pω

S
∂n

(8)

where Pω
S corresponds to the sound pressure over the system skin (denoted by ∂Ω) and ω defines the

pulsation. The scalar ε is in [0; 1] depending on the location of the calculated pressure Pω: ε = 1 in
the radiation space and ε = 1

2 on boundaries). n denotes the outside normal of ∂Ω. Pω is the sound
pressure in the free space and Lω and Mω are the BEM matrices (for more details see [26,27]). It is

important to note that the term ∂Pω
S

∂n is a known value since it is directly linked to the surface normal
velocity Ẋn, which is an output value of the structural calculation.

The previous fields depend on the pulsation ω. So, the BEM has to be applied for each harmonic
component of the nonlinear response of the brake system in order to estimate the acoustic radiation.
For the present study, the multifrequency acoustic calculation method [5], that allows us to calculate the
global sound pressure (P in the free space and PS over the mesh) by superposition of the BEM results
for each frequency, is applied to estimate the noise levels over the mesh and at every point in free space.
One of the main advantage of this methodology is that only the predominant contributions are used
for the global estimation of the acoustic radiation. The pressure level in dB can be calculated, such as
Lp,bem = 10 log10(PP∗/P2

re f ), where Pre f = 2× 10−5 Pa and ∗ denote the conjugated elements. For the
system under study, it should be mentioned that we propose the boundary element model that is
composed of the upper or inner part of the brake system skin for the calculation of the acoustic radiation.
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Figures 3 and 4 illustrate the classical converged acoustic results for the steady state vibration regime
of the brake system on three horizontal planes and two vertical planes, respectively. It should be noted
that the center of the disc is located at position (0,0,0).

Figure 3. Acoustic patterns in dB for the steady state vibration regime (for t > 1 s) on different horizontal
planes at 0.25 m, 0.75 m and 1.25 m.

Figure 4. Acoustic patterns in dB for the steady state vibration regime (for t > 1 s) on two vertical planes.

3. Approximation of the Acoustic Radiation Based on Multiresolution Signal Decomposition and
Convergence Study of Reduced Basis

In this section we propose a tool allowing us to compare the acoustic fields calculated by the
reference solution and different reduced models. A strategy based on a decomposition of acoustic
patterns and a multi-resolution representation for analyzing information content of acoustic patterns is
developed. This method makes it possible to analyze details of acoustic pattern on different observation
scales ranging from the pixel to the size of the complete pattern. For the present study, this will allow
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us to have a notion of convergence with respect to different patterns of the acoustic field emitted
during squeal noise.

First, a reminder of the notion of the windowed Fourier Transform as well as wavelets and
their extension to the two-dimensional case is proposed. Then the proposed approach based on
the multiresolution signal decomposition with the wavelet representation and the decomposition
algorithm proposed by Mallat [28,29] are developed. The use of such an approach for a convergence
study of squeal noise is discussed and some convergence criteria are proposed for the analysis of
acoustic fields. Finally, the efficiency of the proposed strategy is undertaken based on numerical results.

3.1. On the Use of Windowed Fourier Transform

Signal analysis is traditionally done using Fourier decompositions on a trigonometric function
basis for a periodic signal, or more generally using the Fourier transform f̂ of any function f ∈ L2(R)
as indicated in Equation (9). These methods allow for a signal of finite duration to express its frequency
content. However, the Fourier transform is not adapted to non-stationary signals and to the localization
of high frequencies.

f̂ (ω) =
∫ ∞

−∞
f (x)e−iωxdx (9)

In order to overcome this problem, a first idea is to perform windowed Fourier transforms on
predefined signal portions in order to better identify the high frequency components. Considering the
windowing function g, we can define in Equation (10) a windowed Fourier transform G f ,
centered around an observation point x0. The g function allows us to spatially filter the f
function around an interval of interest centered on x0 and therefore to detect the associated
frequency components.

G f (ω, x0) =
∫ ∞

−∞
f (x)e−iωxg(x− x0)dx (10)

By defining σx and σω as the standard deviations associated with the functions g and ĝ,
respectively, the uncertainty principle applied to the function g implies the following relation σ2

x σ2
ω > π

2 .
This inequality defines the compromise to be made between spatial and frequency resolutions.
Figure 5a illustrates this inequality in the 2D dimension x/ω. G f which only allows for the description
of f around the point (x0, ω0) and for an interval [x0 − σx; x0 + σx]× [ω0 − σω; ω0 + σω ]. Thus cells
of constant area and identical form are defined. This regular decomposition thus imposes that the
discretization in frequencies of the studied problem is also regular and uniform. All the frequency
intervals are therefore of the same size and they are distributed linearly, which therefore imposes a
compromise between the spatial and temporal refinements of the windowing function g. In our study,
the signals to be analyzed are composed of non-uniformly distributed frequencies, which makes the
windowed Fourier transform unsuitable.

(a) (b)

Figure 5. Diagram of observation cells and variable mesh in the 2D dimension x/ω (a) Fourier
representation (b) Wavelet representation.
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3.2. Wavelet Transform and Logarithmic Observation Scales

Due to the fact that the conventional Fast Fourier Transform (FFT)-based spectral analysis method
provides poor representation of signals well localized in time, time-scale signal processing tools have to
be used to provide a good description of signals. Morlet [30] proposed applying the wavelet approach
to analyze the vibration of systems. The wavelet analysis transforms a signal into wavelets that are
well localized in both frequency and time. The wavelet transform W f can be expressed as

W f (s, x0) =
∫ ∞

−∞
f (x)
√

sφ(s(x− x0))dx (11)

where φ defines the mother wavelet. s corresponds to the expansion factor: it allows the function φ

to observe the studied signal f at a particular position x0. From the mother wavelet, it is possible to
define a function φs =

√
sφ(sx), where the expansion factor s allows her to move the frequency of the

bandpass filter of the base function and then to modify the width of the frequency band. By denoting
< . , . > the usual scalar product of L2(R), it is then possible to rewrite the wavelet transform W f as a
convolution product between the function f and the wavelet φs, such as

W f (s, x0) =< f (x), φs(x− x0) > (12)

Any function f ∈ L2(R) can thus be decomposed on the basis
(

ϕj,k
)
(j,k)∈Z2 , such as

f (x) = ∑
(j,k)∈Z2

< f (y), ϕj,k(y) > ϕj,k(x) (13)

with ϕj,k(x) =
√

2−jφ2j(x − 2−jk) with (j, k) ∈ Z2.
(

ϕj,k

)
(j,k)∈Z2

defines a wavelet family that

corresponds to an orthonormal basis of L2(R). For a given observation scale 2j, the set of functions(
ϕj,k

)
k∈Z

defines the vector subspace V2j . Each V2j corresponds to a multiresolution vector space

sequence. It can be noted that ∀j ∈ Z, V2j ⊂ V2j+1 , which reflects the fact that the successive sets of
function approximations, allows for a more precise description of any function by a factor of 2. We can
define the operator A2j which approximates some function f (x) at a resolution 2j, such as

∀j ∈ Z, A2j f (x) = ∑
k∈Z

< f (y), ϕj,k(y) > ϕj,k(x) (14)

It should be noted that A2j is a linear operator. A2j f (x) is not modified if we approximate it again
at the resolution 2j (i.e., A2j is a projection operator on a particular vector space V2j ⊂ L2(R)).

Then, it is possible to extract the difference of information between the approximation of a function
f (x) at the two resolutions 2j and 2j+1. The discrete detail signal D2j f (x) is given by

∀j ∈ Z, D2j f (x) = ∑
k∈Z

< f (y), ψj,k(y) > ψj,k(x)

with D2j f =
(
< f (y), ψj,k(y) >

)
k∈Z

(15)

which represents the difference of information between the resolutions 2j and 2j+1. It should be noted
that the resolutions 2j and 2j+1 of the function f (x) are, respectively, equal to its orthogonal projection
on V2j and V2j+1 . So the discrete detail signal D2j f (x) is given by the orthogonal projection of the
original signal on the orthogonal complement O2j of V2j in V2j+1 , such as O2j ⊕V2j = V2j+1 .

Mallat [28,29] proposes an iterative algorithm allowing us to calculate the signal at the lower
resolution (i.e., A2j ) as well as the information between the resolutions 2j and 2j+1 (i.e., D2j ) from a
signal A2j+1 . From an original signal, measured at a resolution of 1, it is then possible to obtain its
decomposition N ( f )J =

(
A2−J f , (D2j f )−J6j6−1

)
up to an order J > 0. This set of discrete signal sets



Appl. Sci. 2020, 10, 7418 10 of 17

is called an orthogonal wavelet representation and it represents the signal at a coarse resolution A2−J

as well as all associated detail signals at the intermediate resolutions 2j with −J 6 j 6 −1.
The advantage of this wavelet decomposition is that the change of scale is here logarithmic,

whereas it was linear for the windowed Fourier transform. This affects the shape of the observation
cells in the space x/ω. Assuming that the function ψ has zero mean, a standard deviation σx and its
Fourier transform ψ̂ centered around ω0 with a standard deviation of σω , the cells described by different
wavelets of the form ψs(x − x0) cover the area [x0 − (σx/s); x0 + (σx/s)] × [sω0 − sσω; sω0 + sσω ],
as illustrated in Figure 5b. It is clearly shown that when the observation scale s is small, the spatial
resolution is coarse, while the frequency resolution is fine. When the observation scale s increases,
the spatial resolution becomes finer but the frequency domain also increases in size. The spatial
resolution is therefore not the same from one scale to another. It is perfectly suited to the study of
non-stationary signals composed of several frequency components by making it possible to locate
specific frequency components in the signal.

3.3. Extension of the Orthogonal Wavelet Representation to the Two-Dimensional Case

In this section, we briefly develop the two-dimensional case for acoustic radiation images
corresponding to squeal noise. More details can be found in [28,29].

We focus on the extension for a function in L2(R2) for which the scalar product is given by

∀( f , g) ∈
(

L2(R2)
)2

, < f , g >=
∫∫

R2
f (x, y)g(x, y)dxdy (16)

For multiresolution approximations, each vector space V2j can be decomposed as a tensor product
of two identical sub-spaces of L2(R), such as ∀j ∈ Z, V2j = V2j ⊗ V2j . Then the scaling function
Φ(x, y) whose dilatation and translation given an orthonormal basis of each space V2j , can be defined
by Φ(x, y) = φ(x)φ(y), where φ(x) is the one-dimensional scaling function of the multiresolution
approximation V2j . The, the orthogonal basis of V2j can be defined by

∀j ∈ Z,
(

Φj,k,l(x, y)
)
(k,l)∈Z2

=
(
2−jφ2j(x− 2−jk)φ2j(y− 2−jl)

)
(k,l)∈Z2 =

(
ϕj,k(x)ϕj,l(y)

)
(k,l)∈Z2

(17)

It should be noted that relation between the multiresolution approximation V2j and V2j+1 can be
easily defined by [28,29]

V2j+1 = V2j ⊕ (V2j ⊗O2j)⊕ (O2j ⊗V2j)⊕ (O2j ⊗O2j) (18)

where O2j defines the orthogonal complement of V2j in V2j+1 as previously discussed in Section 3.2.
As previously discussed in Section 3.2 for the one-dimensional case, the detail signal at the resolution
2j is still equal to the orthogonal projection of the signal on the orthogonal complement of V2j ∈ V2j+1 .
Mallat [28,29] demonstrated that this orthogonal complement O2j can be defined by scaling and
translating the three following wavelets functions

Ψ1(x, y) = φ(x)ψ(y)
Ψ2(x, y) = ψ(x)φ(y)
Ψ3(x, y) = ψ(x)ψ(y)

(19)

where φ(x) and ψ(y) are, respectively, the one-dimensional scaling function of the multiresolution
approximation V2j and O2j .

Then, it is possible to define the operator A2j f , which approximates the function f (x, y) at a given
resolution 2j, such as

∀j ∈ Z, A2j f =
(
< f (x, y), Φj,k,l >

)
(k,l)∈Z2

(20)
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The difference of information between A2j+1 f and A2j f can also by defined by the three following
detailed images (in the three orthonormal directions)

∀j ∈ Z, D1
2j f =

(
< f (x, y), Ψ1

j,k,l >
)
(k,l)∈Z2

(21)

∀j ∈ Z, D2
2j f =

(
< f (x, y), Ψ2

j,k,l >
)
(k,l)∈Z2

(22)

∀j ∈ Z, D3
2j f =

(
< f (x, y), Ψ3

j,k,l >
)
(k,l)∈Z2

(23)

Finally, it can be concluded that an two-dimensional image is completely represented by the
3J + 1 discrete images defined by the decomposition

N ( f )J =
(

A2−J f , (D1
2k f , D2

2k f , D3
2k f )−J6k6−1

)
(24)

where J corresponds to the number of iterations for the decomposition of the original image. Figure 6
illustrates the decomposition process and the disposition of A2−J f , D1

2k f , D2
2k f and D3

2k f for
three iterations.

Figure 6. Illustration of the 2D wavelet decomposition of a pattern of size N for three iterations,
according to Mallat’s algorithm.

3.4. Application for Squeal Noise and Convergence Results

3.4.1. Preamble: On the Use of the Multiresolution Signal Decompostion for Squeal Noise and
Definition of Convergence Criteria

The acoustic results for the prediction of squeal noise can be defined by matrices of coefficients
representing the acoustic intensity on a discretized two-dimensional space (see for example the three
images in 2D-dimension from Figure 3). These images are bounded patterns with a given resolution.
There is therefore a maximum resolution beyond which it is no longer possible to extract detail from the
signal. This resolution is linked to the mesh of the surface. Therefore, it defines the starting resolution
of the decomposition algorithm.

Since the acoustic observation surface is bounded, there is a minimum observation scale,
beyond which the decomposition algorithm reaches a resolution which is that of the size of the
surface itself. Assuming that the image of acoustic radiation is given by a matrix of size N × M
with N > M, this minimum resolution is equal to Jopt = dlog2(N)e where d . e sets rounding to the
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next higher unit. In this case, the two-dimensional image is completely represented by the 3Jopt + 1
discrete images with the decomposition N ( f )Jopt given in Equation (24). The matrices given in
Equations (20)–(23) that correspond to the first iterations of j are those which analyze details at a fine
resolution. So they can be associated with a small wavelength which characterizes the fine details of
the pattern. On the contrary, the matrices associated with a larger j are those that reflect the fluctuations
at high wavelength, characterizing the overall appearance of the two-dimensional studied image.

So, it is possible to quantify the differences in the representation of the acoustic fields for different
reduced models by analyzing and comparing details of a pattern for different C&B and DMS reductions,
and this is for different observation scales ranging from the pixel to the size of the complete acoustic
pattern. In order to quantify the quality of the convergence based on C&B or DMS reductions for the
two-dimensional acoustic radiation, a first criterion εac

j based on the relative error between a signal f
and the reference signal fre f is proposed, such as

εac
j ( f ) =

δac
j ( fre f − f )

δac
j ( fre f )

, 1 6 j 6 Jopt (25)

with 
δac

Jopt
( f ) = ‖A

2−Jopt f ‖F +
1
3

3

∑
i=1
‖Di

2−Jopt f ‖F

δac
j ( f ) =

1
3

3

∑
i=1

‖Di
2−j f ‖F

22(Jopt−j)
, for 1 6 j < Jopt

(26)

where ‖ . ‖F defines the Frobenius norm. It should be noted that one of the major advantages of this
criterion is that it makes it possible to have an appreciation of the quality of the convergence for
different scales of observations (i.e., for each j ∈ [[1; Jopt]]) on the complete 2D image of the estimated
acoustic field.

Additionally, a global criterion λac, allowing us to obtain an evaluation of the overall error
between a pattern f and the reference pattern fre f , is proposed, such as

λac( f ) =

Jopt

∑
j=1

δac
j ( fre f − f )

Jopt

∑
j=1

δac
j ( fre f )

(27)

Note that the two proposed criteria, εac
j and λac, are complementary: the first allows us to have

a detailed analysis with respect to several scales of representation and thus to study the relevance
of a reduced model for an approximation of the acoustic radiation at a given resolution, while the
second corresponds to a global vision and allows us to estimate the relevance of a basis reduction for
an accumulation of representation scales.

3.4.2. Application and Numerical Results

Figures 7 and 8 give the evolution of εac
j at µ = 0.8, depending of the size of the C&B basis as well

as DMS basis for the acoustic patterns during the steady state vibration regime on the three horizontal
planes (at 0.25 m, 0.75 m and 1.25 m, as previously defined in Figure 3) and the two vertical planes
(as previously defined in Figure 4), respectively. It should be noted that each size of the C&B reduction
(i.e., the value of γ) and each size of the DMS reduction (the value of NDMS) is associated with the
color bar and the definitions of the color bar are explained in the legend of Figures 7 and 8.

First of all, it is clearly shown that the C&B reduction technique converges very well—increasing
γ and decreasing εac

j for each scale of observation (see more specifically bars for the legends “Scale
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2j—CB” for j = 1 to 6). Of course, this conclusion is also clearly illustrated by showing the evolution of
λac, as illustrated in Figure 9. It can also be observed that the convergence results are very similar for
the two cases (i.e., acoustic patterns on the horizontal and vertical planes). These results indicate that
increasing γ (i.e., the size of the C&B reduction) allows us to enhance the visualization (i.e., image)
of the acoustic radiation and therefore the prediction of the squeal noise. In order to illustrate this
fact, Figure 10 gives the acoustic patterns on one chosen horizontal plane (at the distance of 0.75 m
in the direction z, the second horizontal plane in Figure 3) for the reference model (denoted “Ref.”,
first line of Figure 10) and two chosen C&B reductions (with γ = 1 and γ = 1.5 in the second and
third lines of Figure 10, respectively). The result obtained for γ = 1.5 is very similar to the reference
both in form and in acoustic level, while the results for γ = 1 are worse with an overestimation of the
acoustic intensity.

Then, in order to analyze only the effects of the DMS size, the reference is chosen as the numerical
result of the C&B reduction technique with γ = 1.5 (i.e., this choice avoids introducing cumulative
errors from the two successive C&B and DMS reductions in the value of εac

j ). It should be noted
that the reduced system γ = 1.5 comprises 2885 degrees of freedom, divided into 2640 degrees of
freedom at the interfaces (i.e., spatial physical degrees of freedom), plus 245 generalized degrees
of freedom corresponding to the modes with fixed interfaces (103 generalized degrees of freedom
(dof) for the disc, 111 generalized dof for the upper pad and 31 generalized dof for the lower pad).
Analyzing the convergence of the DMS basis in Figures 7 and 8 (see more specifically bars for the
legends “Scale 2j—DMS” for j = 1 to 6), it is observed that increasing the number of interface modes
(i.e., NDMS) does not significantly decrease εac

j . In fact this result demonstrates that considering few
complex eigenmodes (i.e., NDMS > 50) seems to be enough to provide a satisfactory approximation
of the radiated fields at different resolutions. Results for λac reinforce this conclusion with a value
of λac inferior of 8 × 10−2, whatever the size of the tested DMS basis. Note that, in the present case,
convergence results for εac

j and λac are provided by applying, beforehand, the C&B reduction technique
with γ = 1.5. Figure 10 also gives the visualization of the acoustic radiation on the horizontal plane at
the distance of 0.75 m for three DMS reductions (NDMS = 50, NDMS = 150 and NDMS = 1000, the last
three lines of Figure 10), to be compared with γ = 1.5 (i.e., the third line of Figure 10).

101 �------------------------------------------------�

u 1
CO
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Figure 7. Values of εac for µ = 0.8—horizontal planes (definition of the color bar for “Scale 2j—CB”:
1 → γ = 0.5, 2 → γ = 1, 3 → γ = 1.25, 4 → γ = 1.5, 5 → γ = 2.5; definition of the color bar
for “Scale 2j—DMS”: 1 → NDMS = 50, 2 → NDMS = 100, 3 → NDMS = 150, 4 → NDMS = 220,
5→ NDMS = 500, 6→ NDMS = 750, 7→ NDMS = 1000.
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Figure 8. Values of εac for µ = 0.8—vertical planes. Definition of the color bar for “Scale 2j—CB”:
1 → γ = 0.5, 2 → γ = 1, 3 → γ = 1.25, 4 → γ = 1.5, 5 → γcolora = 2.5; definition of color bar
for “Scale 2j—DMS” : 1 → NDMS = 50, 2 → NDMS = 100, 3 → NDMS = 150, 4 → NDMS = 220,
5→ NDMS = 500, 6→ NDMS = 750, 7→ NDMS = 1000.
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Figure 9. Values of λac at µ = 0.8 for horizontal planes (red) and vertical planes (green).

In order to further illustrate the relevance of the proposed methodology, numerical simulations
are carried out to estimate the radiated acoustic field for µ = 1. Figure 11 gives the evolution of λac

for different C&B and DMS bases. Moreover Figure 10 gives the associated acoustic patterns for the
reference model, two C&B bases and three DMS reductions (see the second column of Figure 10).
All the results are in agreement with the discussion made previously for µ = 0.8: increasing γ

(i.e., the size of C&B basis) increases the quality of the estimation of the approximated acoustic noise,
whereas increasing the number of complex interface modes (i.e., NDMS) does not significantly improve
the image quality of the radiated field. It is also interesting to note that the results presented for the two
cases (µ = 0.8 and µ = 1) give very different radiated field levels as illustrated in Figure 10 (see and
compare the first and second columns). All these results illustrate the fact that the two proposed
criteria εac

j and λac give an error between a pattern f and the reference pattern fre f which makes it
possible to judge the quality of the approximation to the acoustic field. Some additional investigations
should be done in the future to provide a robust strategy to efficiently decide on the sizes of the C&B
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and DMS bases that are relevant to give a adequate spatial representation of the radiated field based
on the two criteria εac

j and λac.

Figure 10. Acoustic patterns on the horizontal plane at the distance of 0.75 m in the direction Z for
different C&B and DMS reductions, scale in dB.
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Figure 11. Values of λac at µ = 1 for horizontal planes (red) and vertical planes (green).

Finally, some additional theoretical comments can be added for a better understanding of the
convergence of the DMS basis. From a physical point of view, a succession of contact/non-contact states
can occur during self-excited vibrations. However, a DMS basis is initially calculated for a specific
equilibrium point (with the definition of the complex interfaces modes, see [21] for more details) and
for each friction coefficient (unlike the Craig and Bampton reduction). Even if it is possible to globally
reproduce the nonlinear vibration behavior as well as the squeal noise of the brake system with a
small size of DMS basis, increasing the size of DMS basis does not imply a significant improvement in
the prediction of the squeal noise due to the fact that some physical complex states at the frictional
interface can not be exactly described (but only approximated). Moreover it has been observed that a
DMS reduction with NDMS < 50 leads to bad results. This is a classic result of the DMS method which
requires to retain a certain number of interface modes to start getting relevant results.
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4. Conclusions

This study proposes to evaluate the efficiency of the Double Modal Synthesis (DMS) method that
involves the use of a classical Craig and Bampton modal reduction on each substructure considering
the interface surfaces associated to condensation at the frictional interface based on complex modes,
for the prediction of squeal noise and the visualization of the resulting acoustic fields on different
horizontal and vertical planes.

To reach such an objective, two criteria, εac
j and λac, and a methodology based on the

multiresolution signal decomposition of acoustic radiation with wavelet representation, have been
proposed. The proposed strategy allows us to define which reduced model is able to properly
approximate various images of acoustic patterns during squeal events.

All the numerical results indicated that a reduced basis built with the DMS technique is able to
reproduce the essential physical phenomena present during friction and self-excited vibration and so
to provide a good approximation of the acoustic patterns and 2D visualization of squeal noise.
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