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Abstract: The early detection of melanoma is the most efficient way to reduce its mortality rate.
Dermatologists achieve this task with the help of dermoscopy, a non-invasive tool allowing the
visualization of patterns of skin lesions. Computer-aided diagnosis (CAD) systems developed on
dermoscopic images are needed to assist dermatologists. These systems rely mainly on multiclass
classification approaches. However, the multiclass classification of skin lesions by an automated
system remains a challenging task. Decomposing a multiclass problem into a binary problem can
reduce the complexity of the initial problem and increase the overall performance. This paper
proposes a CAD system to classify dermoscopic images into three diagnosis classes: melanoma, nevi,
and seborrheic keratosis. We introduce a novel ensemble scheme of convolutional neural networks
(CNNs), inspired by decomposition and ensemble methods, to improve the performance of the
CAD system. Unlike conventional ensemble methods, we use a directed acyclic graph to aggregate
binary CNNs for the melanoma detection task. On the ISIC 2018 public dataset, our method achieves
the best balanced accuracy (76.6%) among multiclass CNNs, an ensemble of multiclass CNNs with
classical aggregation methods, and other related works. Our results reveal that the directed acyclic
graph is a meaningful approach to develop a reliable and robust automated diagnosis system for the
multiclass classification of dermoscopic images.

Keywords: ensemble method; directed acyclic graph; melanoma detection; deep learning; dermo-
scopic images, multiclass classification; fusion-based model; computer-aided system; skin cancer

1. Introduction

Skin cancers are the most common types of cancer in the Caucasian population [1].
Melanoma is the most lethal skin cancer due to its possible evolution into metastasis [1].
Among pigmented lesions, it is particularly difficult to differentiate in melanoma between
nevi and seborrheic keratosis [2–4]. Typical pigmented melanoma, nevi, and seborrheic
keratosis can be distinguished easily. Figure 1 depicts these lesions and a typical melanoma
(Figure 1a), a typical nevi, (Figure 1b), and typical seborrheic keratosis (Figure 1c), which
do not raise any diagnosis issues for dermatologists. However, atypical nevi or seborrheic
keratosis can be confused with melanoma. Figure 1d–f show some atypical melanoma,
nevi, and seborrheic keratosis and highlight how it can be challenging for a dermatologist
to rule out a melanoma among these types of pigmented lesions. Faced with atypical
pigmented lesions, dermatologists require excision with histological analysis to confirm or
reject a diagnosis of melanoma.
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(a) Melanoma (b) Nevi (c) Seborrheic keratosis

(d) Melanoma (e) Nevi (f) Seborrheic keratosis

Figure 1. Pigmented skin lesions taken from ISIC [5,6] dataset. Typical lesions (a) melanoma, (b) nevi,
and (c) seborrheic keratosis do not pose any diagnosis issues for dermatologists, whereas atypical
lesions (d) melanoma, (e) nevi, and (f) seborrheic keratosis, having poor intra-lesion features, are
much more challenging to differentiate.

These types of atypical pigmented lesions explain the high ratio of the number of
lesions excised to the number of melanomas diagnosed [7]. A total of 9.6 suspicious
benign lesions are excised before reaching a confirmed diagnosis of melanoma [8]. Each
excision can lead to scarring and post-surgery complications. The principal objective
for dermatologists is to decrease this number and excise only true melanomas. Thus,
differentiating early melanoma from nevi and seborrheic keratosis not only constitutes a
daily problem for dermatologists, but also has the potential to decrease cancer deaths since
melanoma can be cured with a simple excision at an early stage [9].

Most dermatologists are currently using a dermoscopic sensor during dermatological
examination for skin cancer screening. It is a non-invasive dermatological tool allowing
the visualization of the lesions’ patterns and structures with a high resolution. It involves a
magnification lens and different lighting schemes, such as non-polarized and polarized
light. Polarized light helps to minimize the light reflection of the skin’s surface and
highlights the detailed patterns and vascularization of the lesion. A dermoscopic sensor
helps dermatologists to recognize specific features for the early diagnosis of skin cancer that
are sometimes not visible to the naked eye [10]. Figure 2 illustrates the use of a dermoscopic
sensor.

The contribution of dermatoscopy has been investigated by many authors and derma-
tologists [11,12], demonstrating its efficiency in increasing melanoma diagnostic accuracy
by 5% to 30% over clinical visual inspection alone. Frequent skin cancer screening of the
general population with a dermoscopic examination of pigmented lesions is necessary to
detect early melanoma; unfortunately, the lack of dermatologists prevents the develop-
ment of large screening programs. Therefore, CAD systems have been developed to assist
dermatologists to achieve the early diagnosis of melanoma.
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Figure 2. Photograph of a handheld dermoscopic sensor with non-polarized and polarized light,
which is used by dermatologists during their clinical examination. The dermatoscope shown in the
figure is produced by Dermoscope DermLite DL4, 3GEN Inc, San Juan Capistrano, California, USA.

To help dermatologists diagnose melanoma early and to reduce the number of unnec-
essary excisions of benign lesions, the computer vision community has developed several
CAD systems. A CAD system is an automatic tool used to support dermatologists in their
diagnosis. Before 2015, CAD development was mainly based on handcrafted features. It
consisted of extracting features such as shape, color, and texture. These approaches were
inspired by the ABCDE criteria (A, asymmetry; B, irregular borders; C, inhomogeneous
color; D, diameter > 6 mm; and E, evolution) [13]. The extracted characteristics were then
used as input vectors for a machine learning algorithm (multilayer perceptron (MLP), SVM,
KNN, logistic regression, etc.). Celebi et al. proposed an approach to classify dermoscopic
images involving border detection and handcrafted extraction of features (texture, color,
and shape). These features were then used to train an SVM for classification with feature
selection [14]. However, the ABCDE criteria are not the best features to use for melanoma
detection [15]. Moreover, these features are assimilated to low-level features in CAD sys-
tems, which can limit the overall accuracy of the CADs. CNNs attempt to model high-level
abstractions in data using multiple processing layers. Due to the availability of public
datasets and the advances in computing capacity, there is a growing trend in their use
in skin lesion classification. Esteva et al. [16] were the first to compare CNNs’ diagnostic
accuracy with that of dermatologists. They found that most dermatologists, and especially
the less experienced ones, were outperformed by CNNs.

The computer vision community relies on the ensemble method to achieve highly
accurate performance in the multiclass classification of skin lesions. The ensemble method
is based on fusing a finite set of classifiers [17]. Harangi et al., for example, combined
the output of the classification layer from four CNNs using a weighted majority voting
strategy for a three-class classification task [18]. Pacheco et al. tested different approaches
including simple majority voting, maximum probability, and the average of probabilities
to merge the output of 13 CNNs in an eight-class classification task [19]. The average
probability achieved the best results. Mahbod et al. proposed a framework based on three
CNN backbones, where each model was trained on images of skin lesions of six different
sizes, ranging from 224 × 224 to 450 × 450 pixels. All the models constructed were then
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assembled on a three-level ensemble strategy based on the average of predicted proba-
bilities [20]. In [21–25], the average of probabilities has also been used as an aggregated
method to improve the performance of CAD.

Broadly, current studies applying ensemble methods follow a similar workflow. First,
several multiclass CNNs are trained for a specific task and then their outputs are merged
using an aggregation approach. An overview of related works applying ensemble methods
is provided in Table 1.

Table 1. Overview of the related studies using ensemble methods with CNNs for skin disease
recognition.

Authors CNNs Aggregation Method

[18] GoogleNet, AlexNet, ResNet50,
VGG16

Weighted majority voting

[19] 13 CNN models Average probability
[20] - Average probability
[21] AlexNet, VGG16, and resnet18 Average score

[22] VGG-Net, ResNet50, InceptionV3,
Xception, and DenseNet121

Average probability

[23] - Average probability
[24] ResNet-50 and Inception V3 Average probability

[25] Densenet, ResNeXt, PolyNet, and
SENets

Average probability

[26] 10 CNN models Geometric averaging

The most used aggregation methods are:

• Max-Win strategy: The class selected by the Max-Win strategy is the class that receives
the maximum number of votes.

• Product of probabilities strategy: The product of the individual outputs of the CNNs is cal-
culated and the selected class is determined by the maximum of the normalized products.

• Average probability strategy: The arithmetic mean of the confidence values of each
CNN is calculated, and the selected class is determined by the maximum of the
normalized means.

• Max confidence strategy: The class selected by the max confidence strategy is the class
that received the maximum confidence score.

• Geometric mean strategy: The geometric mean of the confidence values of each CNN is
calculated, and the selected class is determined by the maximum of normalized means.

The multiclass classification of pigmented lesions remains a challenging task because
skin lesions have a high degree of similarity, making their classification a complex task that
requires an extensive amount of labeled data and careful definition of the network’s free
parameters to train an accurate CNN. Additionally, CNNs behave as black boxes, making
it difficult for dermatologists to interpret their prediction.

Rather than simply merging several multiclass CNNs, as has often been the case in
most work using the ensemble method, an innovative approach involves decomposing the
initial multiclass problem into several less complex classification tasks. Galar et al. stated
that multiclass classification is typically more difficult than binary classification [27]. They
explained that the decision boundary of a multiclass classification problem tends to be more
complex than a binary classification problem. Therefore, researchers have investigated
decomposition and ensemble methods as an alternative to resolve these problems. The
idea behind the decomposition and ensemble method is to split the multiclass problem into
a set of binary problems and then aggregate the results. The two well-known approaches
to developing a decomposition and ensemble strategy are one-versus-rest and one-versus-
one [27]. For an N-class classification, each approach is described as follows:
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• The one-versus-rest approach consists of constructing a set of N binary classifiers. Each
classifier is trained with one class as the positive and all the others as the negatives.
The final decision corresponds to the class associated with the classifier with the
highest output value.

• The one-versus-one approach consists of constructing all possible binary classifiers
from the N classes. Each classifier is trained on only two classes out of the N initial
classes. Thus, there will be N(N – 1)/2 classifiers. The outputs of these base classifiers
are combined to predict the final decision.

The main limitations of these approaches are that the one-versus-one approach tends
to overfit the overall N-class classifier, and the Max-Win algorithm used does not have
bounds on the generalization error [28]. Therefore, to remedy these disadvantages, Platt [28]
proposed a decision-tree-based pairwise classification called the decision directed acyclic
graph (DDAG). Platt demonstrated that DDAGs provide good generalization performance
and their structure is efficient to train and evaluate.

In this study, we relied on the decomposition and ensemble method to develop an
accurate automated diagnosis of melanoma, nevi, and seborrheic keratosis. For this pur-
pose, we constructed a novel ensemble of CNNs based on DDAGs. We hypothesized that
decomposing a multiclass problem into a binary problem would reduce the complexity
of the initial multiclass problem faced by CNNs and simultaneously increase the overall
performance. The DDAG follows a hierarchical workflow mimicking the multi-step reason-
ing used by dermatologists faced with pigmented lesions to make a diagnosis [29]. Thus,
following a hierarchical structure can ensure that CAD decision-making is understandable
for dermatologists and increase their use in a clinical setting. To the best of our knowledge,
this is the first attempt to use a DDAG as a decomposition and ensemble strategy with
CNNs. The main contributions of this work are:

• Decomposing the initial multiclass classification of pigmented lesions into a binary
problem to reduce the complexity of the task and increase the overall classification
performance;

• Using a directed acyclic graph as an ensemble method to perform multiclass classifica-
tion with CNNs;

• Following a hierarchical workflow provides more transparent decision-making of the
computer-aided diagnosis system, thus making it more understandable for dermatologists.

The remainder of this paper is organized as follows: Section 2 describes the methods
applied. In Section 3, we present the results of the experiments conducted on the 2018
International Skin Imaging Collaboration (ISIC) public dataset, and we discuss in detail
the results of our proposed method. Finally, we conclude the work and discuss its future
scope in 4.

2. Materials and Methods

In this section, we provide a detailed description of our proposed approach to build
a computer-aided diagnosis system to differentiate melanoma, nevi, and seborrheic ker-
atosis. We selected these three most challenging classes in melanoma detection based on
our collaborative work with onco-dermatologists specialized in melanoma management
(screening and treatments). The section is divided into three subsections. The first subsec-
tion is devoted to describing the dataset, its preparation, and the preprocessing applied to
images. The second subsection presents the theory behind the DDAG and describes the
architecture and the methodology used to train our models. Finally, the third subsection
defines the metrics used to evaluate our model. The flowchart of the proposed framework
is illustrated in Figure 3.
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Figure 3. Block diagram of the proposed computer-aided diagnosis system. Skin images are first
preprocessed. Then, three binary CNNs are trained using a one-versus-one approach to differentiate
lesion i from another lesion j. Finally, the output of each CNN is aggregated using the directed acyclic
graph (DAG) to output the final prediction.

2.1. Dataset

We evaluated our approach on the common problems faced by onco-dermatologists [2–4]:
the early diagnosis of melanoma amongst nevi and seborrheic keratosis. We performed
this task using the ISIC 2018 public dataset [5,6].

2.1.1. Dataset Preparation and Class Balancing

The selected dataset comprises 1113 melanomas, 6705 nevi, and 1099 seborrheic
keratosis. We randomly split the original dataset into 80% as the training set and 20% as
the test set. Then, we proceeded to cross-validation to evaluate our model; we randomly
split the previously established training set into three groups each containing a training set
(80% of the original training set) and a validation set (20% of the original training set). To
alleviate the imbalanced distribution of classes in our training set, we used artificial data
generation of images on the training set for each split. Perez et al. [30] demonstrated the
positive impact of using data generation for training melanoma classification models. The
methods selected to generate the artificial data were horizontal flipping, vertical flipping,
rotation, width, and height shift. Table 2 describes the distribution of the dataset and the
proportion of generated images used for fine tuning.

Table 2. Distribution of the dataset.

Melanoma Nevi Seborrheic Keratosis

ISIC 2018 1113 6705 1099
Ratio 0.12 0.75 0.12

Original training set (80%) 779 4694 769
Test set (20%) 223 1341 220
Training set * 623 3755 615

Generated data from training set * 1377 1245 1385
Final training set with data generated * 2000 5000 2000

Ratio after data generation * 0.22 0.55 0.22
Validation set * 156 939 154

* Applied to each fold
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2.1.2. Image Preprocessing

In our study, we kept the preprocessing to a minimum to facilitate the reproducibility
of our CAD. We applied standard preprocessing for deep learning classification, namely
normalization, cropping, and image resizing. We also performed color standardization
to ensure the robustness of our algorithms. The images in the dataset [5,6] were collected
from multiple sources and acquired under different setups. This is illustrated in Figure 4,
which shows the variation in the illumination from one image to another.

Figure 4. A sample of images in the dataset before and after preprocessing.

Thus, we used the gray world [31] algorithm to perform color standardization of the
images. As advised [32], we modified the original algorithm by pre-segmenting the image
and computing the average color of each patch. We applied Equation (1), where I represents
a color image, ec is the illuminant of each component, c ∈ {R, G, B}, and n is the number
of patches in the image (for details, refer to [32]). This is particularly important, as [33]
reported a substantial benefit of this type of preprocessing in skin lesion classification.∫

∑n
j=1 Ic(xj)dxj

n
= kec (1)

Images were normalized by subtracting the mean RGB value of the ImageNet dataset,
as suggested in [34]. This was performed to facilitate the training of the models.

We also resized images to fit them to the required input size (224 × 224 pixels) of the
pretrained CNNs used in our implementation. For this, we first center-cropped the images
to 450× 450 pixels (from their original size of 600× 450 pixels) to preserve the aspect ratio.
The size of 450× 450 pixels allowed us to obtain the entire lesion present in the images.
Additionally, the cropping patch was programmed so that its center coincided with the
center of the image, to ensure that we were recovering the entire lesion. This choice is
justified by almost all the lesions in the dataset being located in the center of the image.
Then, we resized our images to 224 × 224 pixels using a bicubic interpolation Figure 4
depicts the appearance of the images after being preprocessed.

2.2. Methodology
2.2.1. Convolutional Neural Network

Several CNNs have been reported. Some of them are available as pretrained models,
trained on 14 million images from the ImageNet dataset. Thus, we can reuse their weights
and biases, and fine tune these models in order to apply them to specific classification
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tasks; this is known as transfer learning. We tested our framework with three well-known
pretrained CNNs that have been successfully used in the task of classifying skin lesions:
VGG network [34] and residual neural network (ResNet) [35].

ResNet architecture: A deeper network leads to saturation of accuracy because the
gradient of the loss function rapidly approaches zero during backpropagation, making
it difficult for the network to learn; this is called the vanishing gradient issue. The main
idea of ResNet is to reduce the vanishing gradient with the help of a residual block (see
Figure 5). The original implementation of ResNet [35] has several variations. In our work,
we used ResNet50, which has 50 convolutional layers with filters of 7 × 7, 3 × 3, and 1 × 1.
Convolutional layers are grouped as residual blocks to construct the entire architecture.
Each residual block consists of a few stacked layers of convolutional layers, a zero padding
layer, a batch normalization layer, rectified linear unit layers as an activation function, and a
max pooling layer. A global average pooling layer ends the residual blocks to condense the
output feature maps into a feature vector, followed by fully connected layers as a classifier.
We modified the ResNet50 architecture by replacing the output layer with a new, fully
connected (FC) layer of 2 nodes to perform binary classification. The modified ResNet50 is
shown in Figure 6 (top). For simplicity, we refer to this architecture as ResNet_2.

Figure 5. An illustration of a plain block (left) and a residual block (right).

Figure 6. The structures of the convolutional networks used in our method. (top) The modified ResNet50, (middle) the
modified VGG16, and (bottom) the modified VGG19. In both cases, we replaced the last fully connected (FC) layer with an
FC layer with 2 nodes. MP and FL represent the max pooling and flattening layers, respectively.



Sensors 2021, 1, 0 9 of 19

The VGGNet architecture: VGGNet is a well-documented and commonly used CNN
architecture in computer vision. Several variations of VGGNet were initially proposed [34].
The variants differ in terms of the depth of the network, ranging from 16 to 19 layers.
We selected the VGG16 and VGG19 architectures, which have previously shown high-
quality performance on the skin lesion classification task. Both VGG16 and VGG19 expect
a 224 × 224 size image as input. They consist of five convolutional blocks. Each convolu-
tional block consists of two, three, or four convolutional layers with a filter of size 3 × 3,
rectified linear unit layers as activation function, and a max pooling layer. The networks are
concluded with a classifier block consisting of three FC layers. In our work, we modified
the original VGG16 and VGG19 by removing their last FC layer and replaced each of
them with a FC layer with 2 nodes. The modified VGG16 and VGG19 are presented in the
middle and bottom of Figure 6, respectively. In the following section, these architectures
are denoted as VGG16_2 and VGG19_2, respectively.

2.2.2. DDAG Theory

A DDAG is a graph whose edges have an orientation and no cycles. The DDAG
algorithm was initially introduced by Platt [28] to extend SVM to perform multiclass classi-
fication. The idea of DDAG combines a set of binary classifiers into a multiclass classifier.
The main advantage of DDAG for the ensemble method is reducing the training and
evaluation time, using fewer computer resources while maintaining accuracy, compared
with the classical aggregate method.

For adequate formalization, we considered a binary CNN to be a function Sij : x =⇒
R2, which assigns two confidence values pi, pj ∈ R to a new, formerly unseen image x,
where pi, pj ∈ [0, 1] and ∑ pi + pj = 1. Each Sij classifies images according to whether they
belong to class ci or cj. i, j indicates the nature of the lesion, in our case i, j = B; M; N, where
B indicates benign keratosis, M indicates mlelanoma, and N is nevi. Figure 7 shows the
DDAG for the 3-class classification problem. In Figure 7 i denotes that x does not belong to
class i. Suppose that there are K classes, the DDAG contains K(K − 1)/2 binary classifier.
For a K-class classification problem, K − 1 nodes are evaluated to derive a decision. The
path taken to reach the final decision on the DDAG is known as the evaluation path.
Algorithm 1 describes the steps followed to determine the DDAG structure for the 3-class
problem while classifying observation x.

Figure 7. The decision directed acyclic graph (DDAG) for finding the best of three class.
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Algorithm 1 DDAG structure.

Require: Image x, 3 pairwise CNNs Sij, list of the three classes class_list = [1, 2, 3]
while len(class_list) >1 do

Select two elements i and j in class_list
Generate the prediction of the class associated to x with Sij

if Sij associates x to class ci then
Remove j from class_list

else
Remove i from class_list

end if
end while
Predict that x belongs to the class represented by the only element remaining in class_list

2.2.3. Aggregation Functions Theory

Aggregation functions are mathematical tools with the ability to combine multiple
attributes into one single output. More precisely, an n-dimensional aggregation function
is a monotonic function f : [0, 1]n =⇒ [0, 1] that satisfies the boundary condition
f (0, ..., 0) = 0 and f (1, ..., 1) = 1. In the ensemble method of convolutional neural networks,
the classical aggregation functions used are the arithmetic mean (avg), geometric mean
(gmean), product functions (prod), and maximum confidence score (mconf). To compare
our approach with these classical aggregation methods, we modified the CNNs previously
described in Section 3.2 (ResNet50_2, VGG16_2, and VGG19_2). For this purpose, we
replaced the last layers (FC-2) of the previous binary classifierswith an FC layer with
3 nodes to perform three-class classification (ResNet50_3, VGG16_3, and VGG19_3). This
comparison is analyzed in Section 3.5. Let pi,j denote the confidence value assigned by
the jth three-class classifier to the ith class, and let p

′
i be the probability, derived from the

confidence scores of CNNs constituting the ensemble, that an input image x belongs to class
i, i ∈ {melanoma, nevi, seborrheic keratosis} and j ∈ {ResNet50_3, VGG16_3, VGG19_3}.
The formulation of p

′
i depending on the aggregation method is:

• avg:

p
′
i =

∑m
j=1 pi,j

m
(2)

• prod:

p
′
i =

∏m
j=1 pi,j

∑n
i=1 ∏m

j=1 pi,j
(3)

• mconf:

p
′
i =

maxj pi,j

∑n
i=1 maxj pi,j

(4)

• gmean:

p
′
i =

m
√

∏m
j=1 pi,j

∑n
i=1

m
√

∏m
j=1 pi,j

(5)

• max-win:

p
′
i =

∑m
j=1 F(pi,j)

m
(6)

where F(pi,j) =

{
1, i f pi,j = maxj pi,j
0, otherwise

(7)
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2.2.4. Model Training

We used the Adam [36] optimizer to update the weights and biases of our networks
at every iteration to minimize the loss function output. We calculated the loss value
of the models using a weighted binary cross-entropy function. The general term of the
cross-entropy loss is:

L = −wi

N

∑
n=1

plog(q) (8)

where p is the ground-truth label, q is the predicted SoftMax probability, wi is the weight
for class i, and N is the number of classes. We weighted the loss function with the inverse
normalized frequency of each class defined as follows:

wi =
N
ni

(9)

where ni represents the number of samples for class i. Our network weight was initialized
with ImageNet’s pretrained weights. For each model, we tested different hyperparameters
for 150 epochs during training. More precisely, the hyperparameters that we tested were
the initial learning rate, varying from 0.01 to 0.0001, and the percentage of the last layers
of the network required to fine tune, varying from 4% to 65%. Additionally, we adapted
the dynamic learning (scheduled_lr) by using a polynomial decay schedule of the initial
learning rate (lr) if the loss error of the validation did not decrease after 8 epochs. Thus, the
new learning rate is:

scheduled_lr = lr ∗ (1− (
current_epoch
total_epochs

)) (10)

Table 3 summarises the hyperparameters search space used to finetune our models.
During finetuning, we also added a condition to stop the training earlier when the accuracy
on the training set exceeded the accuracy on the validation set by more than 10%, and
based on the models’ checkpoint, we selected the saved model obtaining the best balanced
accuracy score. This was performed to avoid overfitting.

Table 3. Hyperparameters search space for finetuning.

Optimizer Mini-Batch Size Epoch Ratio of Last Frozen Layers Learning Rate

Adam 32 150 [4%, 65%] [10−2, 10−4 ]

All our experiments were conducted using a system with a 3.2 GHz processor, 16 GB
of memory, and a Nvidia GeForce Rtx 2080 GPU card. We used MATLAB 2020 to center-
crop and apply color constancy to our data. The keras library with tensorflow as the
backend was used to train our models. The code for our experiments is publicly available
at Supplementary Materials

2.3. Performance Criteria

To allow application of our method in a clinical context, we used various metrics to
evaluate our framework. This was performed by calculating the area under the receiver
operating characteristic curve (AUROC) and the balanced accuracy of the classification.
Although the first metric is well-known in the community, the balanced accuracy is much
more recent and was introduced during the 2018 skin image analysis challenge [5]. We
used balanced accuracy metrics to evaluate the CNN performance despite the prevalence
of benign lesions in our dataset. The sensitivity and the balanced accuracy were calculated
based on the generated confusion matrix of our models. The confusion matrix provides
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information on true positive (TP), true negative (TN), false negative (FN), and false positive
(FP) predictions. The formulations of each of these metrics are:

Balanced accuracy (BACC) =
sensitivity + speci f icity

2
(11)

Sensitivity(S) =
TP

TP + FN
(12)

To measure these indexes, we converted the classification probability vectors to binary
classification vectors using a threshold of 0.5.

2.4. Statistical Analyses

We performed non-parametric statistical tests. A paired t test was employed to
compare two models. In cases where more than two comparisons were carried out, we
used Kruskal–Wallis’s test, and afterward, a post hoc multiple-comparison test using
Dunn’s test was employed. Results were considered statistically significant if p-value <
0.05. Statistical calculation and visualizations were carried out using GraphPad Prism,
version 5.03.

3. Results and Discussion

We evaluated our novel approach based on the combination of DDAG and binary
CNNs. First, we tested the performance of the individual binary classifiers. Second, we
analyzed the effect of varying the root node after aggregating the outputs with the DDAG
approach. Third, we compared the result of our method with three well-known CNN
architectures on a three-class classification task. Then, we analyzed the performance of
our best DDAG structure. Finally, we evaluated our approach against other conventional
aggregation strategies. We used a three-fold cross-validation on the training set and present
the average and standard deviation for the BACC, the sensitivity (S), and the AUROC. In
the following, we refer to melanoma, nevi, and seborrheic keratosis as MEL, NEV, and
SEK, respectively.

3.1. Performance of Binary CNNs

Table 4 shows the results obtained with a three-fold cross-validation on the training
set with resnet50_2, VGG16_2, and VGG19_2 for each individual task: MEL versus NEV,
MEL versus SEK, and NEV versus SEK. The BACC and the sensitivity for each class are pre-
sented. Mostly, we observed that the classifiers performed very well in binary classification.
For our task, we observed that the backbone model VGG19 performed better than Resnet50
and VGG16. These results can be explained by the deeper VGG19 architecture compared
with VGG16 and Resnet50. Therefore, VGG19 can learn more discriminating features. Inter-
estingly, among these three tasks, seborrheic keratosis and nevi were easiest to distinguish,
with the best performance obtained by the binary CNNs NEV vs. SEK. Seborrheic keratosis
is very dark and composed of completely different patterns to melanocytic lesions, such
as keratin structures, horn cysts, or a cerebriform pattern. However, melanoma can be
confused with seborrheic keratosis; melanoma can be very dark, similar to seborrheic
keratosis, and can sometimes mimic seborrheic keratosis by having atypical structures. The
most challenging tasks for our framework are distinguishing benign melanocytic lesions
(nevi) from malignant melanocytic lesions. When the melanoma is excised at an early stage
with a thin Breslow (thickness of the melanoma), the difficulty of differentiating melanoma
from nevi is high even for dermatologist experts. Moreover, some melanoma are raised
on nevi, so they may share the same patterns and structures (reticular pattern or dotted
pattern); however, for melanomas, the pattern is more irregular than that of nevi.
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Table 4. Binary CNNs’ performance on the training set with 3-fold cross-validation.

Task CNN BACC S-MEL S-NEV S-SEK

MEL vs. NEV VGG19_2 80.6 ± 0.3% 78.3 ± 3.0% 84.0 ± 3.5% -
MEL vs. SEK VGG19_2 85.8 ± 1.6% 85.6 ± 1.8% - 84.5 ± 2.2%
NEV vs. SEK VGG19_2 86.7 ± 1.2% - 88 ± 0.8% 85.3 ± 2.3%

MEL vs. NEV VGG16_2 80.2 ± 0.5% 75.0 ± 1.0% 84 ± 1.0% -
MEL vs. SEK VGG16_2 83.4 ± 1.9 % 87 ± 2.0% - 79.5 ± 0.5%
NEV vs. SEK VGG16_2 87.2 ± 0.4% - 83.5 ± 1.5% 90.5 ± 1.5%

MEL vs. NEV ResNet50_2 81.83 ± 1.63% 82.3 ± 0.4% 81.2 ± 2.6% -
MEL vs. SEK ResNet50_2 81.34 ± 0.51% 90 ± 1.0% - 71.5 ± 1.9%
NEV vs. SEK ResNet50_2 81.45 ± 0.4% - 87 ± 1.3% 76 ± 1.5%

3.2. Impact of Root Node

The second aspect that we investigated was the effect of variations in the root node
on the overall performance of our approach. This was conducted based on the BACC.
The results of this analysis are presented in Table 5. Regardless of the type of DDAG, we
noticed that the overall performance of the framework depends on the performance of
each individual classifier, explaining why DDAGs based on VGG19 performed better. The
DDAG structure based on VGG19 reached BACCs between 73.7% and 76.6%, compared
with the 72.55–73.25% for the VGG16 and 70.1–71.1% for ResNet50 backbone models.
Moreover, the choice of the DDAG structure may slightly affect the final accuracy of
the framework, which is similar to the observation of [37] with support vector machine.
Thus, inspired by [38], the optimal structure of the DDAG was obtained by placing the
classifier with the greatest generalization ability in the root node. This explains why
DDAG structures with the SEK vs. NEV classifier as the root node performed better
on VGG19_2 and VGG16_2, and the best performance was achieved with root MEL vs.
NEV for resnet50_2 (Section 3.1). The best structure with the most accurate performance
(BACC = 76.6 ± 0.39%) was obtained with the DDAG structure based on VGG19 and
having a binary CNN on the task with NEV vs. SEK as the root node.

Table 5. Effects of varying the root node on the DDAG. The best performance achieved is highlighted
in bold.

Root Node CNN BACC

MEL vs. NEV VGG19_2 73.7 ± 1.2%
MEL vs. SEKL VGG19_2 74.15 ± 0.94%
NEV vs. SEK VGG19_2 76.6 ± 0.39

MEL vs. NEV VGG16_2 72.55 ± 1.64%
MEL vs. SEK VGG16_2 72.9 ± 1.69%
NEV vs. SEK VGG16_2 73.25 ± 1.54%

MEL vs. NEV ResNet50_2 71.1 ± 0.6%
MEL vs. SEK ResNet50_2 70.1 ± 1.0%
NEV vs. SEK ResNet50_2 70.35 ± 0.75%

3.3. Multiclass CNNs versus DDAG Model

Table 6 shows the evaluation of our main hypothesis. We compared our approach
with ResNet50, VGG16, and VGG19 trained on a three-class classification task based on
the results of the 3-fold cross-validation. For a faithful comparison, only the classification
layer was modified to adapt it to a three-class classification (Section 2.2.3). We refer to these
adapted models as ResNet50_3, VGG16_3, and VGG19_3. The DDAG-based approach
achieved the best BACCs compared to multiclass CNNs.
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Table 6. Comparison between the best model of DDAG and multiclass CNNs.

BACC

DDAG with VGG19_2 76.6 ± 0.39%
VGG19_3 76.52 ± 1.5%

DDAG with VGG16_2 73.25 ± 1.54%
VGG16_3 72.52 ± 1.5%

DDAG with ResNet50_2 71.1 ± 0.6%
ResNet50_3 70.93 ± 1.08%

The best models obtained for each configuration were then selected and evaluated on
the test set for an in-depth analysis. We observed that the DDAG structure with the BEK vs.
NEV classifier as the root node and the VGG19 architecture as the backbone model obtained
the best performance, reaching a balanced accuracy of 76.6% on the test set. However, we
highlight that the performance of the DDAG structure is closely linked to the choice of the
backbone model, as illustrated by our results obtained with VGG16 and ResNet50. Models
with potentially better performance, such as EfficienNet [39] and SeNet [40], may improve
the accuracy of the DDAG structure.

On the other hand, binary CNNs aggregated with a DDAG structure achieved better
performance than 3-class CNNs. These results matched with the previous analysis (see
Table 6). We performed statistical analyses using a paired t test on the predicted probabili-
ties of each model and, interestingly, we found that scores from the DDAG models were
significantly different from those of multiclass CNNs (Table 7). We thus concluded that
decomposing a multiclass problem into a binary problem reduces the complexity of the
initial problem and increases the overall performance.

Table 7. Statistical comparison of DDAGs and multiclass CNNs in test set .

CNN BACC p < 0.05

DDAG 3-class CNN

VGG19 76.6% 74.6% ***
VGG16 73.9% 73.6% ***

Resnet50 70.4% 62.4% ***
***: P value < 0.0001

3.4. Performance Analysis of Our Best DDAG Structure

Figure 8 shows the receiver operating characteristic curves obtained by our best DDAG
structure for each lesion in the test set. Our framework achieved an AUROC of 0.93, 0.87,
and 0.88 for seborrheic keratosis, melanoma, and nevi, respectively. We observed that
melanoma remained the most challenging class.

We presented the structure of our framework to a dermatologist for an in-depth analy-
sis. To facilitate the dermatologist’s analysis, we associated each prediction provided by a
classifier and its corresponding heatmap, allowing visualization of the regions contributing
to the prediction; heatmap generation was implemented with the Grad-CAM method [41].
Figure 9 illustrates the decision strategy of our best DDAG structure. As an example,
we present a challenging pigmented lesion that was classified as a melanoma at the end
of this framework. The arrows in green represent the evaluation path in this case. The
dermoscopic image (input image in Figure 9) shows a pigmented lesion that is slightly
suspicious. The reticular network is irregular and enlarged on the left part. On this part and
in the middle, we can also observe a blue white veil color with some dots corresponding to
a regression area, which is associated with melanoma diagnosis. Interestingly, the heatmap
shows the decision-making area of the CNN, focusing its prediction on the atypical left
part of the lesion, the most suspicious for melanoma diagnosis.
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Figure 8. Receiver operating characteristic (ROC) curves of our best model. The area under the curve
(AUC) of the ROC is provided for each lesion class: melanoma (MEL), seborrheic keratosis (SEK),
and nevi (NEV).

Figure 9. Output of our computer-aided diagnosis for melanoma detection. Heatmap generation
was implemented with Grad-CAM [41]. MEL: melanoma, SEK: seborrheic keratosis, NEV: nevi.

3.5. Comparison with Other Methods

We further compared our approach based on DDAG with commonly used aggregation
methods (avg, mconf, prod, gmean, and max-win). For this, the best models obtained
with ResNet50_3, VGG16_3, and VGG19_3 during cross-validation were merged following
these aggregation methods. The results presented in Table 8 summarize for each method
the performance obtained on the test set and highlight the outcome of Kruskal–Wallis’s test
and post hoc multiple-comparison on the predicted probabilities. Here, “g.r” denotes the
group rank of methods with stastistically similar predicted scores, and “s.o.g” is the set of
other groups that are statistically worse. An empty set indicates that a particular method
was not statistically better than any other group.

The DDAG structure achieved the best BACC (76.6%) amongst the ensemble of
multiclass CNNs with classical aggregation methods. Moreover, the probability scores
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generated by our approach were statistically different (p < 0.05) from those of other classical
aggregation methods, which confirms the robustness of our DDAG structure and its ability
to improve the performance of a computer-aided diagnosis system. We also found that,
among the classical aggregation methods, avg, max_conf, and gmean achieved the best
performance, with no statistically difference amongst their predicted score. These results
suggest that these are the best of the classical aggregation approaches to use for building
a CAD on dermoscopic images. The product of the probabilities strategy was the worst
performer. Thus, the product significantly enhances the propagation of the worst prediction
probabilities. To reduce this effect in the application of ensemble methods, we recommend
merging only classifiers with similar performance.

We also compared our method with existing methods on the same three-class classifi-
cation task [42,43]. Based on the BACC, our approach outperformed these related methods.

Our approach is much simpler to interpret by dermatologists because it follows
a hierarchical workflow similar to two-step reasoning [29], whereas conventional ap-
proaches simply aggregate several CNNs without providing transparency in the decision-
making process.

Table 8. Comparison of our approach with classical aggregation methods and other related methods
on the same task. The group rank of methods with statistically similar BACC is shown in “g.r” (1 is
the best), while “s.o.g” shows which groups are statistically worse. The statistical test used there is
Kruskal–Wallis’s test and Dunn’s multiple-comparison test.

Aggregated Method CNN BACC Statistical Test
g.r s.o.g

Our approach VGG19_2 76.6% 1 {2–4}
AVG ResNet50_3+ VGG16_3 + VGG19_3 75.2% 2 {3–4}

Max_conf ResNet50_3+ VGG16_3 + VGG19_3 75.2% 2 {3–4}
Gmean ResNet50_3+ VGG16_3 + VGG19_3 75.2% 2 {3–4}

Max-win ResNet50_3+ VGG16_3 + VGG19_3 74.6% 3 {4}
[42] VGG16 74.3% - -

Prod ResNet50_3+ VGG16_3 + VGG19_3 73.9% 4 {}
[43] DenseNet-161 70% - -

p < 0.05

4. Conclusions and Future Work

In our research, we implemented a new CAD framework on dermoscopic images for
multiclass classification of melanoma, nevi, and seborrheic keratosis. Detecting melanoma
among these two classes is a challenging daily task for dermatologists. We introduced a
novel ensemble method of convolutional neural networks inspired by the decomposition
and ensemble method. This approach is based on a set of three binary CNNs trained to
differentiate one of the three lesions from another lesion (one-versus-one approach). Then,
CNN outputs are aggregated using the DDAG. Based on our results, this approach helps
the method to easily outperform a multiclass CNN. We further compared our framework
with current ensemble methods: arithmetic mean, simple majority voting, maximum
confidence score, geometric mean, and product of the probabilities. We demonstrated that
our approach outperformed all the classical aggregation methods. These results highlighted
the effectiveness of the proposed method. Our study corroborates that decomposing a
multiclass problem into a binary problem reduces the complexity of the initial multiclass
problem for CNNs and therefore increases the accuracy of the CAD. Notably, the proposed
approach follows a hierarchical workflow, which provides transparency in the decision-
making process and thus facilitates their interpretation by dermatologists. However, the
overall performance of the CAD depends on the accuracy of the pairwise CNNs in the
framework. Therefore, further investigations should include the performance of each
individual CNN in the decision’s thresholds, which may alleviate their effect on the
performance of the CAD.
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Supplementary Materials: Code for our experiments are available online at https://gitlab.com/
cartel-gouabou/ensemble_method_of_cnn_with_dag_applied_on_dermoscopic_images(accessed on:
08 june 2021).
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