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Abstract
The approach to proof search dubbed “coinductive proof search”, and previously developed by
the authors for implicational intuitionistic logic, is in this paper extended to LJP , a focused
sequent-calculus presentation of polarized intuitionistic logic, including an array of positive and
negative connectives. As before, this includes developing a coinductive description of the search
space generated by a sequent, an equivalent inductive syntax describing the same space, and decision
procedures for inhabitation problems in the form of predicates defined by recursion on the inductive
syntax. We prove the decidability of existence of focused inhabitants, and of finiteness of the number
of focused inhabitants for polarized intuitionistic logic, by means of such recursive procedures.
Moreover, the polarized logic can be used as a platform from which proof search for other logics is
understood. We illustrate the technique with LJT , a focused sequent calculus for full intuitionistic
propositional logic (including disjunction). For that, we have to work out the “negative translation”
of LJT into LJP (that sees all intuitionistic types as negative types), and verify that the translation
gives a faithful representation of proof search in LJT as proof search in the polarized logic. We
therefore inherit decidability of both problems studied for LJP and thus get new proofs of these
results for LJT .
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1 Introduction and Motivation

An approach to proof search dubbed “coinductive proof search” has been developed by the
authors [5, 7]. The approach is based on three main ideas: (i) the Curry-Howard paradigm of
representation of proofs (by typed λ-terms) is extended to solutions of proof-search problems
(a solution is a run of the proof search process that, if not completed, does not fail to apply
bottom-up an inference rule, so it may be an infinite object); (ii) two typed λ-calculi are
developed for the effect, one being obtained by a co-inductive reading of the grammar of
proof terms, the other being obtained by enriching the grammar of proof terms with a formal
fixed-point operator to represent cyclic behaviour, the first calculus acting as the universe
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4:2 Coinductive Proof Search for Polarized Logic with Applications to Full IPL

for the mathematical definition of concepts pertaining to proof search (e. g., the existence
of solutions for a given logical sequent), the second calculus acting as the finitary setting
where algorithmic counterparts of those concepts can be found; (iii) formal (finite) sums
are employed throughout to represent choice points, so not only solutions but even entire
solution spaces are represented, both coinductively and finitarily.

The approach was developed systematically for intuitionistic implicational logic, delivering
new solutions to inhabitation and counting problems, and proofs of the state-of-the-art
coherence theorems, in the simply typed λ-calculus [8]; it also helped the investigation of
new questions, like the various concepts of finiteness suggested by proof search [6].

The goal of this paper is to extend this approach to polarized, intuitionistic propositional
logic with a rich choice of positive and negative connectives [17, 4], and to proof search in a
full-fledged focused sequent calculus. Polarized logic can be used as a platform from which
proof search for other logics is understood [15]. The extension to polarized logic also aims at
obtaining results about proof search for full intuitionistic propositional logic.

In this paper, coinductive proof search is applied to LJP , a focused sequent-calculus
presentation of polarized logic. The extension works smoothly, which is a sign of the
robustness of the approach, that has been developed for a relatively simple logic. Only the
luxuriant syntax (typical of focused systems, rich in various forms of judgments) puts a
notational challenge, and we make a proposal for that. Unlike the case of implicational logic
we described in previous work of ours, guardedness of the coinductively described expressions
is not enforced by the grammar alone, and so it has to be made an extra assumption; and
focusing suggests a refinement of our approach: formal sums are not needed in the inversion
phases, and the infinity of solutions must go infinitely often through stable sequents (this
can be expressed by a rather simple instance of the parity condition). In the end, we
obtain for LJP decidability of provability, and decidability of finiteness of the number of
proofs, with our typical two-staged decision procedure: a function that calculates the finitary
representation (in the calculus with formal fixed points) of the solution space of the given
logical sequent, composed with a syntax-directed, recursive predicate that tests the desired
property.

As said, from the results about the polarized logic, we can extract results for other
logics. We illustrate the technique with LJT , a focused sequent calculus for full intuitionistic
propositional logic (including disjunction) [11, 3]. For that, we define the “negative translation”
of LJT into LJP , that sees all intuitionistic formulas as negative formulas (an idea rooted
in the !A ⊸ B translation by Girard of intuitionistic logic into linear logic, and developed
in various contexts [19, 15, 1]). While the translation of formulas is mostly dictated by
polarity, there are subtle problems with a definition of the translation of proof terms without
knowing the logical sequent they witness (see the definitions of DLV(t) and atomic and
positive spines in Section 5). Soundness of a translation is its first aim, but we also crucially
need to guarantee that the translation gives a faithful representation of proof search in LJT

as proof search in LJP . In proving this result, we benefited from the language of proof terms
developed for polarized logic in [4].

Plan of the paper. The sequent-calculus presentation of polarized logic from [4] is reviewed
in Section 2. Coinductive proof search for LJP occupies Sections 3 and 4. Applications to
full intuitionistic logic are extracted in Section 5. Section 6 concludes.
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2 Background on the system LJP of polarized propositional logic

We introduce the sequent calculus LJP for polarized intuitionistic propositional logic (PIPL).
LJP is a variant of the cut-free fragment of λ±

G [4].
Formulas of LJP are as follows (unchanged from λ±

G):

(formulas) A ::= N | P

(negative) N, M ::= C | a−

(composite negative) C ::= ↑ P | P ⊃ N | N ∧ M

(positive) P, Q ::= a+ | ↓ N | ⊥ | P ∨ Q

Here, we assume a supply of (names of) atoms, denoted typically by a; the markers − and +
for polarity are added to the atom (name) as superscripts, giving rise to negative resp. positive
atoms. The symbols ⊥, ∧ and ∨ obviously stand for falsity, conjunction and disjunction, ⊃
stands for implication, and ↑ and ↓ are polarity shifts (as they are commonly denoted in the
literature). We call right formulas or R-formulas positive formulas and negative atoms. The
set of formulas is thus partitioned in two ways: into negative and positive formulas, and
into composite negative and right formulas. The second partitioning plays an important role
in LJP , more than in λ±

G. We also use the notion of left formulas or L-formulas: they are
either negative formulas or positive atoms.

Proof terms of LJP are organized in five syntactic categories as follows:

(values) v ::= z | thunk(t) | inP
i (v)

(terms) t ::= ⌈e⌉ | ⌜e⌝ | λp | ⟨t1, t2⟩
(co-values/spines) s ::= nil | cothunk(p) | v :: s | i :: s

(co-terms) p ::= za+
.e | xN .e | abortA | [p1, p2]

(stable expressions) e ::= dlv(t) | ret(v) | coret(x, s)

where i ∈ {1, 2}, and z and x range over countable sets of variables assumed to be disjoint,
called positive resp. negative variables.1 The syntax deviates from λ±

G [4, Figure 4] in the
following ways: the letters to denote values and covalues are now in lower case, the two
expressions to type the cut rules are absent, and the last form of values (the injections) and
abort come with type information, as well as the binding occurrences of variables in the first
two forms of co-terms – all the other syntax elements do not introduce variable bindings,
in particular, there is no binding in λp or coret(x, s). Often we refer to all proof terms of
LJP as expressions, and use letter T to range over expressions in this wide sense (T being
reminiscent of terms, but not confined to the syntactic category t). To shorten notation, we
communicate ⟨t1, t2⟩ and [p1, p2] as ⟨ti⟩i and [pi]i, respectively.

We also use the typical letters for denoting elements of the syntactic categories as sorts:
let S := {v, t, s, p, e} be their set, and use letter τ to denote any element of S.

Since proof terms of LJP come with some extra type information as compared to λ±
G, the

typing rules will be adjusted accordingly. The typing relation will also be slightly reduced:
it is assumed that the FocusL-rule of λ±

G (the one typing the coret construction for proof
terms) only applies if the right-hand side formula is an R-formula. This also means that
focus negative left sequents can be restricted to R-formulas on the right-hand side, which we
therefore do in LJP .

1 At first sight, these proof terms are far removed from any familiar sort of λ-terms; and the fact that
cut-elimination does not belong to this paper means that no reduction semantics will be given here
to help grasping what they are. As detailed in [4], this language refines call-by-push-value [14], with
the positive/negative distinction being related to the value/computation distinction. In Section 5 the
translation of the more familiar proof terms from LJT into these proof terms gives some insight. Bear
in mind proof terms are the cornerstone of coinductive proof search, as both the coinductive and the
finitary representations of search spaces are based on them.

TYPES 2020



4:4 Coinductive Proof Search for Polarized Logic with Applications to Full IPL

Γ, z : a+ ⊢ [z : a+]
Γ =⇒ t : N

Γ ⊢ [thunk(t) :↓ N ]
Γ ⊢ [v : Pi]

Γ ⊢ [inP3−i

i (v) : P1 ∨ P2]
i ∈ {1, 2}

Γ ⊢ e : a−

Γ =⇒ ⌜e⌝ : a−
Γ ⊢ e : P

Γ =⇒ ⌈e⌉ :↑ P

Γ | p : P =⇒ N

Γ =⇒ λp : P ⊃ N

Γ =⇒ ti : Ni for i = 1, 2
Γ =⇒ ⟨ti⟩i : N1 ∧ N2

Γ[nil : a−] ⊢ a−
Γ | p : P =⇒ R

Γ[cothunk(p) :↑ P ] ⊢ R

Γ ⊢ [v : P ] Γ[s : N ] ⊢ R

Γ[v :: s : P ⊃ N ] ⊢ R

Γ[s : Ni] ⊢ R

Γ[i :: s : N1 ∧ N2] ⊢ R
i ∈ {1, 2}

Γ, z : a+ ⊢ e : A

Γ | za+
.e : a+ =⇒ A

Γ, x : N ⊢ e : A

Γ | xN .e :↓ N =⇒ A

Γ | abortA :⊥=⇒ A

Γ | p1 : P1 =⇒ A Γ | p2 : P2 =⇒ A

Γ | [pi]i : P1 ∨ P2 =⇒ A

Γ =⇒ t : C
Γ ⊢ dlv(t) : C

Γ ⊢ [v : P ]
Γ ⊢ ret(v) : P

Γ, x : N [s : N ] ⊢ R

Γ, x : N ⊢ coret(x, s) : R

Figure 1 Inductive definition of typing rules of LJP .

There are five forms of sequents, one for each syntatic category τ of proof terms (the full
names and the rationales of the categories are found in [4]):

(focus negative left) Γ[s : N ] ⊢ R (focus positive right) Γ ⊢ [v : P ]
(invert positive left) Γ | p : P =⇒ A (invert negative right) Γ =⇒ t : N

(stable) Γ ⊢ e : A

The rules, given in Fig. 1, are the obvious adaptations of the ones in [4, Figures 1–3] (omitting
the cut rules), given the more annotated syntax and the mentioned restrictions to R-formulas
in some places. We recall that Γ is a context made of associations of variables with left
formulas that respect polarity, hence these associations are either z : a+ or x : N (in other
words, positive variables are assigned atomic types only). The extra annotations ensure
uniqueness of typing in that, given the shown context, type and term information, there
is at most one formula that can replace any of the placeholders in Γ[s : N ] ⊢ ·, Γ ⊢ [v : ·],
Γ | p : · =⇒ ·, Γ =⇒ t : · and Γ ⊢ e : ·.

We also consider sequents without proof-term annotations, i. e., Γ ⊢ [P ], Γ =⇒ N ,
Γ[N ] ⊢ R, Γ | P =⇒ A and Γ ⊢ A, that we will call logical sequents. The letters ρ, ρ′

etc. will range over Γ ⊢ R, with an R-formula on the right-hand side. Those will be called
R-stable sequents. (Such logical sequents cannot be proven by a proof term of the form
dlv(t).) Results about all forms of sequents can sometimes be presented uniformly, with the
following notational device: If σ is any logical sequent and T a proof term of the suitable
syntactic category, let σ(T ) denote the sequent obtained by placing “T :” properly into σ,
e. g., if σ = (Γ | P =⇒ A), then σ(p) = (Γ | p : P =⇒ A) (the parentheses around sequents
are often used for better parsing of the text). We sometimes indicate the syntactic category
τ of T as upper index of σ, e. g., an arbitrary logical sequent Γ ⊢ A is indicated by σe.

We also use the set S of sorts to give a more uniform view of the different productions of
the grammar of LJP proof terms. E. g., we consider thunk(·) as a unary function symbol,
which is typed/sorted as t → v, to be written as thunk(·) : t → v. As another example, we see
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co-pairing as binary function symbol [·, ·] : p, p → p. This notational device does not take into
account variable binding, and we simply consider za+

. · as a unary function symbol for every
z and every a. The positive variables z have no special role either in this view, so they are all
nullary function symbols (i. e., constants) with sort v. Likewise, for every negative variable x,
coret(x, ·) is a unary function symbol sorted as s → e. We can thus see the definition of proof
terms of LJP as based on an infinite signature, with function symbols f of arities k ≤ 2. The
inductive definition of proof terms of LJP can then be depicted in the form of one rule scheme:

f : τ1, . . . , τk → τ Ti : τi, 1 ≤ i ≤ k

f(T1, . . . , Tk) : τ

Later we will write f(Ti)i in place of f(T1, . . . , Tk) and assume that k is somehow known.
Instead of writing the k hypotheses Ti : τi, we will then just write ∀i, Ti : τi.

3 Coinductive approach to proof search in the polarized system LJP

In this section, we adapt our coinductive approach to proof search from implicational
intuitionistic logic to LJP . Due to the high number of syntactic categories and different
constructors for proof terms, we use the extra notational devices from the end of Section 2
to ensure a uniform presentation of mostly similar rules that appear in definitions. Our
previous development sometimes departs from such a uniformity, which is why we also widen
the grammar of “forests”. This in turn asks for a mathematically more detailed presentation
of some coinductive proofs that are subtle but lie at the heart of our analysis. (For reasons
of limited space, that presentation was moved into Appendix A.5.)

3.1 Search for inhabitants in LJP , coinductively
System LJP co

Σ extends the proof terms of LJP in two directions: there is a coinductive
reading of the rules of the grammar of proof terms, and formal sums are added to the
grammar as means to express alternatives. This general idea is refined when applied to the
focused system LJP : the coinductive reading will be attached to stable expressions only;
and the formal sums are not added to the categories of (co)terms, since (co)terms serve to
represent the inversion phase in proof search, where choice is not called for.

The expressions in the wide sense of LJP co
Σ are called forests and ranged by the letter T .

They comprise five categories introduced by the simultaneous coinductive definition of the
sets vco

Σ , tco
Σ , sco

Σ , pco
Σ , and eco

Σ . However, we will continue to use the sorts τ taken from the
set S that was introduced for LJP . This allows us to maintain the function-symbol view of
LJP with the same symbols f that keep their typing/sorting. As said, only for the classes
of values, spines and expressions, we add finite sums, denoted with the multiary function
symbols Στ for τ ∈ {v, s, e}. The definition of the set of forests, i. e., the expressions (in a
wide sense) of LJP co

Σ can thus be expressed very concisely as being obtained by only two
rule schemes:

f : τ1, . . . , τk → τ ∀i. Ti : τi

f(T1, . . . , Tk) : τ
coinductive if τ = e

∀i. Ti : τ∑τ
i Ti : τ

τ ∈ {v, s, e}

The doubly horizontal line indicates a possibly coinductive reading. As a first step, we read
all these inference rules coinductively, but in a second step restrict the obtained infinitary
expressions to obey the following property: infinite branches must go infinitely often through
the e-formation rules coming from LJP , i. e., those depicted as unary function symbols
f : τ1 → e (also called the inherited e-formation rules – those for dlv(·), ret(·) and coret(x, ·)).

TYPES 2020



4:6 Coinductive Proof Search for Polarized Logic with Applications to Full IPL

This can be expressed as the parity condition (known from parity automata where this is
the acceptance condition) based on priority 2 for any rule for those f : τ1 → e and priority 1
for all the others. The parity condition requires that the maximum of the priorities seen
infinitely often on a path in the (forest) construction is even, hence infinite cycling through
the other syntactic categories and the summing operation for e-expressions is subordinate to
infinite cycling through the inherited e-formation rules. Put less technically, we allow infinite
branches in the construction of forests, but infinity is not allowed to come from infinite use
solely of the “auxiliary” productions (for τ ̸= e) or the additional sum operator for e, thus,
in particular ruling out infinite pairing with angle brackets, infinite copairing with brackets
or infinite spine composition by way of one of the :: constructors – all of which would never
correspond to typable proof terms – and also ruling out infinite stacks of finite sums.

Sums
∑τ

i Ti are required to be finite and therefore may also be denoted by T1 + . . . + Tk,
leaving τ implicit. We write O (possibly with the upper index τ that obviously cannot be
inferred from the summands) for empty sums. Sums are treated as sets of alternatives (so
they are identified up to associativity, commutativity and idempotency – that incorporates α-
equivalence (this is still a λ-calculus, the presentation with function symbols f is a notational
device) and bisimilarity coming from the full coinductive reading in the first step of the
construction).

We now define an inductive notion of membership, hence restricting the notion we had in
our previous papers on implicational logic.

▶ Definition 1 (Membership). An LJP -expression T is a member of a forest T ′ when the
predicate mem(T, T ′) holds, which is defined inductively as follows.

∀i. mem(Ti, T ′
i )

mem(f(Ti)i, f(T ′
i )i)

mem(T, T ′
j)

mem(T, T ′
1 + . . . + T ′

k)
for some j

The intuition of this definition is obviously that the sums expressed by
∑τ

i represent
alternatives out of which one is chosen for a concrete member.

The minimum requirement for this definition to be meaningful is that the five syntactic
categories are respected: if mem(T, T ′) then T ∈ τ iff T ′ ∈ τco

Σ . This property holds since we
tacitly assume that the sum operators are tagged with the respective syntactic category.

For a forest T , we call finite extension of T , which we denote by Efin(T ), the set of the
(finite) members of T , i. e., Efin(T ) = {T0 | mem(T0, T )}. Properties of special interest in this
paper are: (i) exfinext(T ), defined as: Efin(T ) is nonempty; and nofinext, the complement of
exfinext; and (ii) finfinext(T ), defined as: Efin(T ) is finite; and inffinext, the complement of
finfinext. These predicates play an important role in Section 4.

In Fig. 2, analogously to our previous work [8], we inductively characterize exfinext and
finfinext, and we coinductively characterize nofinext and inffinext. Note that the characteriz-
ation of finfinext resp. inffinext depends upon the characterization of nofinext resp. exfinext.
In Appendix A.1, it is shown that the characterizations in Fig. 2 are adequate, namely:
exfin = exfinext, nofin = nofinext, finfin = finfinext and inffin = inffinext. As immediate
consequences, exfin and nofin are complementary predicates, as are finfin and inffin, and
additionally nofin ⊆ finfin.

Now, we are heading for the infinitary representation of all inhabitants of any logical
sequent σ of LJP as a forest whose members are precisely those inhabitants (to be confirmed
in Prop. 4). For all the five categories of logical sequents στ , we define the associated solution
space S(στ ) as a forest, more precisely, an element of τco

Σ , that is supposed to represent the
space of solutions generated by an exhaustive and possibly non-terminating search process
applied to that given logical sequent στ . This is by way of the following simultaneous
coinductive definition. It is simultaneous for the five categories of logical sequents. For each
category, there is an exhaustive case analysis on the formula argument.
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∀i. exfin(Ti)
exfin(f(Ti)i)

exfin(Tj)
exfin(

∑
i Ti)

nofin(Tj)
nofin(f(Ti)i)

∀i. nofin(Ti)
nofin(

∑
i Ti)

∀i. finfin(Ti)
finfin(f(Ti)i)

nofin(Tj)
finfin(f(Ti)i)

∀i. finfin(Ti)
finfin(

∑
i Ti)

inffin(Tj) ∀i. exfin(Ti)
inffin(f(Ti)i)

inffin(Tj)
inffin(

∑
i Ti)

Figure 2 Predicates exfin, nofin, finfin and inffin.

S(Γ ⊢ [a+]) :=
∑

(z:a+)∈Γ z S(Γ ⊢ [⊥]) := Ov

S(Γ ⊢ [↓ N ]) := thunk(S(Γ =⇒ N)) S(Γ ⊢ [P1 ∨ P2]) :=
∑

i∈{1,2} inP3−i

i (S(Γ ⊢ [Pi]))

S(Γ =⇒ a−) := ⌜S(Γ ⊢ a−)⌝ S(Γ =⇒ P ⊃ N) := λS(Γ | P =⇒ N)
S(Γ =⇒↑ P ) := ⌈S(Γ ⊢ P )⌉ S(Γ =⇒ N1 ∧ N2) := ⟨S(Γ =⇒ Ni)⟩i

S(Γ[a−] ⊢ R) := if R = a− then nil else Os

S(Γ[P ⊃ N ] ⊢ R) := S(Γ ⊢ [P ]) :: S(Γ[N ] ⊢ R)
S(Γ[↑ P ] ⊢ R) := cothunk(S(Γ | P =⇒ R))

S(Γ[N1 ∧ N2] ⊢ R) :=
∑

i∈{1,2}(i :: S(Γ[Ni] ⊢ R))

S(Γ | a+ =⇒ A) := za+
. S(Γ, z : a+ ⊢ A) S(Γ | ⊥ =⇒ A) := abortA

S(Γ | ↓ N =⇒ A) := xN . S(Γ, x : N ⊢ A) S(Γ | P1 ∨ P2 =⇒ A) := [S(Γ | Pi =⇒ A)]i

S(Γ ⊢ C) := dlv(S(Γ =⇒ C))
S(Γ ⊢ a−) :=

∑
(x:N)∈Γ coret(x, S(Γ[N ] ⊢ a−))

S(Γ ⊢ P ) := ret(S(Γ ⊢ [P ])) +
∑

(x:N)∈Γ coret(x, S(Γ[N ] ⊢ P ))

Figure 3 Solution spaces for LJP .

▶ Definition 2 (Solution spaces). We define a forest S(στ ) ∈ τco
Σ for every logical sequent στ ,

by simultaneous coinduction for all the τ ∈ S. The definition is found in Fig. 3, where in the
clauses for S(Γ | a+ =⇒ A) resp. S(Γ | ↓ N =⇒ A), the variables z resp. x are supposed to
be “fresh”.

In the mentioned clauses, since the names of bound variables are considered as immaterial,
there is no choice involved in this inversion phase of proof search, as is equally the case for
S(Γ =⇒ ·) – as should be expected from the deterministic way inversion rules are dealt with
in a focused system like LJP .

▶ Lemma 3 (Well-definedness of S(σ)). For all logical sequents σ, the definition of S(σ)
indeed produces a forest.

Proof. Well-definedness is not at stake concerning productivity of the definition since every
corecursive call is under a constructor. As is directly seen in the definition, the syntactic
categories are respected. Only the parity condition requires further thought. In Appendix A.2,
we prove it by showing that all the “intermediary” corecursive calls to S(σ) in the calculation
of S(Γ ⊢ A) – which is the only case that applies inherited e-formation rules – lower the
“weight” of the logical sequent, until a possible further call to some S(Γ′ ⊢ A′). ◀

The members of a solution space are exactly the inhabitants of the sequent:
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▶ Proposition 4 (Adequacy of the coinductive representation). For each τ ∈S, logical sequent
στ and T of category τ , mem(T, S(σ)) iff σ(T ) is provable in LJP (proof by induction on T ).

The following definition is an immediate adaptation of the corresponding definition in [8].

▶ Definition 5 (Inessential extension of contexts and R-stable sequents).
1. Γ ≤ Γ′ iff Γ ⊆ Γ′ and |Γ| = |Γ′|, with |∆| := {L | ∃y, (y : L) ∈ ∆} for an arbitrary

context ∆ (where we write y for an arbitrary variable). That is, Γ ≤ Γ′ if Γ′ only has
extra bindings w. r. t. Γ that come with types that are already present in Γ.

2. ρ ≤ ρ′ iff for some Γ ≤ Γ′ and for some right-formula R, ρ = (Γ ⊢ R) and ρ′ = (Γ′ ⊢ R).

3.2 Search for inhabitants in LJP , inductively
We are going to present a finitary version of LJP co

Σ in the form of a system LJP gfp
Σ of finitary

forests that are again generically denoted by letter T . We are again making extensive use of
our notational device introduced in Section 2. The letter f ranges over the function symbols
in this specific view on LJP . Summation is added analogously as for LJP co

Σ , and there are
two more constructions for the category of expressions.

f : τ1, . . . , τk → τ ∀i. Ti : τi

f(T1, . . . , Tk) : τ

∀i. Ti : τ∑τ
i Ti : τ

τ ∈ {v, s, e}
Xρ : e

T : e
gfpXρ.T : e

where X is assumed to range over a countably infinite set of fixpoint variables and ρ ranges
over R-stable sequents, as said before. The conventions regarding sums

∑
i in the context of

forests are also assumed for finitary forests. We stress that this is an all-inductive definition,
and that w. r. t. LJP , the same finite summation mechanism is added as for LJP co

Σ , but that
the coinductive generation of stable expressions is replaced by formal fixed points whose
binding and bound/free variables are associated with R-stable sequents ρ whose proof theory
is our main aim.

Below are some immediate adaptations of definitions in our previous paper [8]. However,
they are presented in the new uniform notation. Moreover, the notion of guardedness only
arises with the now wider formulation of finitary forests that allows fixed-point formation for
any finitary forest of the category of stable expression.

For a finitary forest T , let FPV (T ) denote the set of freely occurring typed fixed-point
variables in T , which can be described by structural recursion:

FPV (f(Ti)i) = FPV (
∑

i Ti) =
⋃

i FPV (Ti) FPV (Xρ) = {Xρ}
FPV (gfp Xρ.T ) = FPV (T ) \ {Xρ′ | ρ′ R-stable sequent and ρ ≤ ρ′}

Notice the non-standard definition that considers Xρ′ also bound by gfpXρ, as long as
ρ ≤ ρ′. This special view on binding necessitates to study the following restriction on finitary
forests: A finitary forest is called well-bound if, for any of its subterms gfp Xρ.T and any
free occurrence of Xρ′ in T , ρ ≤ ρ′.

▶ Definition 6 (Interpretation of finitary forests as forests). For a finitary forest T , the
interpretation [[T ]] is a forest given by structural recursion on T :

[[f(T1, . . . , Tk)]] = f([[T1]], . . . , [[Tk]]) [[Xρ]] = S(ρ)
[[T1 + . . . + Tk]] = [[T1]] + . . . + [[Tk]] [[gfp Xρ.T ]] = [[T ]]

This definition may look too simple to handle the interpretation of bound fixed-point variables
adequately, and in our previous paper [8] we called an analogous definition “simplified
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F(Γ ⊢ [a+]; Ξ) :=
∑

(z:a+)∈Γ z F(Γ ⊢ [↓ N ]; Ξ) := thunk(F(Γ =⇒ N ; Ξ))
F(Γ ⊢ [⊥]; Ξ) := Ov F(Γ ⊢ [P1 ∨ P2]; Ξ) :=

∑
i∈{1,2} inP3−i

i (F(Γ ⊢ [Pi]; Ξ))

F(Γ =⇒ a−; Ξ) := ⌜F(Γ ⊢ a−; Ξ)⌝ F(Γ =⇒ P ⊃ N ; Ξ) := λF(Γ | P =⇒ N ; Ξ)
F(Γ =⇒↑ P ; Ξ) := ⌈F(Γ ⊢ P ; Ξ)⌉ F(Γ =⇒ N1 ∧ N2; Ξ) := ⟨F(Γ =⇒ Ni; Ξ)⟩i

F(Γ[a−] ⊢ R; Ξ) := if R = a− then nil else Os

F(Γ[↑ P ] ⊢ R; Ξ) := cothunk(F(Γ | P =⇒ R; Ξ))
F(Γ[P ⊃ N ] ⊢ R; Ξ) := F(Γ ⊢ [P ]; Ξ) :: F(Γ[N ] ⊢ R; Ξ)

F(Γ[N1 ∧ N2] ⊢ R; Ξ) :=
∑

i∈{1,2}(i :: F(Γ[Ni] ⊢ R; Ξ))

F(Γ | a+ =⇒ A; Ξ) := za+
. F(Γ, z : a+ ⊢ A; Ξ) (z fresh)

F(Γ |↓ N =⇒ A; Ξ) := xN . F(Γ, x : N ⊢ A; Ξ) (x fresh)
F(Γ | P1 ∨ P2 =⇒ A; Ξ) := [F(Γ | Pi =⇒ A; Ξ)]i

F(Γ | ⊥ =⇒ A; Ξ) := abortA

F(Γ ⊢ C; Ξ) := dlv(F(Γ =⇒ C; Ξ))
F(Γ ⊢ a−; Ξ) := gfp Y ρ.

∑
(x:N)∈Γ coret(x, F(Γ[N ] ⊢ a−; Ξ, Y :ρ)) (ρ=Γ⊢a−, Y fresh)

F(Γ ⊢ P ; Ξ) := gfp Y ρ. ret(F(Γ ⊢ [P ]; Ξ, Y :ρ)) (ρ=Γ⊢a−, Y fresh)
+

∑
(x:N)∈Γ coret(x, F(Γ[N ] ⊢ P ; Ξ, Y :ρ))

Figure 4 All other cases of the finitary representation of solution spaces for LJP .

semantics” to stress that point. However, as in that previous paper, we can study those
finitary forests for which the definition is “good enough” for our purposes of capturing
solution spaces: we say a finitary forest T is proper if for any of its subterms T ′ of the form
gfp Xρ.T ′′, it holds that [[T ′]] = S(ρ).

To any free occurrence of an Xρ in T is associated a depth: for this, we count the function
symbols on the path from the occurrence to the root and notably do not count the binding
operation of fixed-point variables and the sum operations. So, Xρ only has one occurrence
of depth 0 in Xρ, likewise in gfpY ρ′

.Xρ.
We say a finitary forest T is guarded if for any of its subterms T ′ of the form gfp Xρ.T ′′,

it holds that every free occurrence in T ′′ of a fixed-point variable Xρ′ that is bound by this
fixed-point constructor has a depth of at least 1 in T ′′.

▶ Definition 7 (Finitary solution spaces for LJP ). Let Ξ := −−−→
X : ρ be a vector of m ≥ 0

declarations (Xi : ρi) where no fixed-point variable name occurs twice. The definition of
the finitary forest F(σ; Ξ) is as follows. If for some 1 ≤ i ≤ m, ρi =: (Γi ⊢ Ri) ≤ σ (i. e.,
σ = Γ ⊢ Ri and Γi ≤ Γ), then F(σ; Ξ) = Xσ

i , where i is taken to be the biggest such index
(notice that the produced Xi will not necessarily appear with the ρi associated to it in Ξ).
Otherwise, F(σ; Ξ) is as displayed in Fig. 4. Then, F(σ) denotes F(σ; Ξ) with empty Ξ.

Analogously to the similar result for implicational logic [7, Lemma 20], one can show that
F(σ; Ξ) is well-defined (the above recursive definition terminates) – some details are given in
Appendix A.4. Notice that the “if-guard” in the above definition presupposes that σ is an
R-stable sequent, hence for other forms of sequents, one necessarily has to apply the (mostly
recursive) rules of Fig. 4.
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P (ρ)
EFP (Xρ)

∀i, EFP (Ti)
EFP (f∗(Ti)i)

EFP (Tj)
EFP (

∑
i Ti)

¬P (ρ)
NEFP (Xρ)

NEFP (Tj)
NEFP (f∗(Ti)i)

∀i, NEFP (Ti)
NEFP (

∑
i Ti)

Figure 5 EFP and NEFP predicates.

▶ Theorem 8 (Equivalence of representations for LJP ). Let σ be a logical sequent and Ξ as
in Def. 7. We have:
1. F(σ; Ξ) is guarded.
2. F(σ; Ξ) is well-bound and F(σ) is closed.
3. F(σ; Ξ) is proper.
4. [[F(σ; Ξ)]] = S(σ); hence the coinductive and the finitary representations are equivalent.

Proof. The proof is by structural induction on F(σ; Ξ). Items 1 and 2 are proved independ-
ently (the former is an easy induction, the latter on well-boundness uses in the two cases
which generate gfp-constructions the lemma “if Xρ′ occurs free in F(σ; Ξ), then, for some
ρ ≤ ρ′, X : ρ ∈ Ξ”, also proved by structural induction on F(σ; Ξ), and from that lemma
follows immediately that F(σ) is closed). As in the proof of [8, Thm. 19], item 3 uses item 4,
which can be proved independently, but some effort is saved if the two items are proved
simultaneously. ◀

4 Deciding inhabitation problems in the polarized system LJP

Now we adapt to LJP our method [8] (until now only available for intuitionistic implication)
to decide type emptiness (provability), and to decide type finiteness (only finitely many
inhabitants). The presentation will look very different due to our notational device. Because
of the wider notion of finitary forests that does not ensure guardedness through the grammar,
some subtle technical refinements will be needed in the proofs (which will involve the Prop. 9
and are detailed in Appendix A.5). In the following, we write f∗ to stand for a function
symbol f or the prefix gfpXρ. of a finitary forest, the latter being seen as special unary
function symbol.

4.1 Type emptiness

We consider complementary parameterized predicates on finitary forests EFP (T ) and NEFP (T ),
where the parameter P is a predicate on logical sequents. (P = ∅ will be already an important
case). The definition of the two predicates EFP and NEFP is inductive and presented in
Fig. 5, although, as in [8], it is clear that they could equivalently be given by a definition by
recursion over the term structure. Thus, the predicates EFP and NEFP are decidable if P is.

The following can be proven by routine induction on T (barely more than an application
of de Morgan’s laws): for all T ∈ LJP gfp

Σ , NEFP (T ) iff EFP (T ) does not hold.

▶ Proposition 9 (Finitary characterization).
1. If P ⊆ exfin ◦ S and EFP (T ) then exfin([[T ]]).
2. Let T ∈ LJP gfp

Σ be well-bound, guarded and proper. If NEFP (T ) and for all Xρ ∈ FPV (T ),
exfin(S(ρ)) implies P (ρ), then nofin([[T ]]).

3. For any T ∈ LJP gfp
Σ well-bound, guarded, proper and closed, EF∅(T ) iff exfin([[T ]]).
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P (ρ)
FFP (Xρ)

∀i, FFP (Ti)
FFP (f∗(Ti)i)

NEF⋆(Tj)
FFP (f∗(Ti)i)

∀i, FFP (Ti)
FFP (

∑
i Ti)

¬P (ρ)
NFFP (Xρ)

NFFP (Tj) ∀i, EF⋆(Ti)
NFFP (f∗(Ti)i)

NFFP (Tj)
NFFP (

∑
i Ti)

Figure 6 FFP and NFFP predicates.

Proof.
1. is proved by induction on the predicate EFP (or, equivalently, on T ). The base case

for fixpoint variables needs the proviso on P , and all other cases are immediate by the
induction hypothesis (notice the special case for f∗ that is even simpler).

2. This needs a special notion of depth of observation for the truthfulness of nofin for forests.
A more refined statement has to keep track of this observation depth in premise and
conclusion, even taking into account the depth of occurrences of the bound fixed-point
variables of T . This is presented with details in Appendix A.5.

3. For P = ∅ resp. for closed T , the extra condition on P in part 1 resp. part 2 is trivially
satisfied. We now use that exfin and nofin are complements, as are NEFP and EFP . ◀

▶ Theorem 10 (Deciding the existence of inhabitants in LJP ). A logical sequent σ of LJP

is inhabited iff exfin(S(σ)) iff EF∅(F(σ)). Hence “σ is inhabited” is decided by deciding
EF∅(F(σ)). In other words, the inhabitation problem for LJP is decided by the computable
predicate EF∅ ◦ F .

Proof. The first equivalence follows by Prop. 4 and exfin = exfinext. The second equivalence
follows from Prop. 9.3, using all items of Theorem 8. Computability comes from computability
of the recursive function F and the equivalence of the inductively defined EF∅ with a recursive
procedure over the term structure of its argument. ◀

The theorem opens the way to using Prop. 9 with P := EF∅ ◦ F . This is explored now,
but will be needed only in the next subsection. The predicates EF⋆ and NEF⋆ on LJP gfp

Σ
are defined by EF⋆ := EFP and NEF⋆ := NEFP for P := EF∅ ◦ F (which by Theorem 10 is
equivalent to say P := exfin ◦ S). We already know such P is decidable, hence, also EF⋆ and
NEF⋆ are decidable. Additionally:

▶ Lemma 11 (Sharp finitary characterization). For all T ∈ LJP gfp
Σ , EF⋆(T ) iff exfin([[T ]]).

Proof. The direction from left to right follows immediately by Proposition 9.1. The other
direction is equivalent to NEF⋆(T ) implies nofin([[T ]]), which folows by an easy induction on
the predicate NEF⋆ with the help of Theorem 10 in the base case T = Xσ. ◀

4.2 Type finiteness
Decision of type finiteness will be achieved by mimicking the development for deciding type
emptiness, but will additionally require concepts and results from the latter. The finitary
characterization of type finiteness is obtained through the complementary (parametrized)
predicates FFP and NFFP , which are defined inductively on Fig. 6 and make use of the sharp
finitary characterizations of emptiness and non-emptiness (NEF⋆ and EF⋆). That the two
predicates are indeed complementary, i .e . that FFP (T ) iff NFFP (T ) does not hold, is again
proved by routine induction on T .
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▶ Proposition 12 (Finitary characterization).
1. If P ⊆ finfin ◦ S and FFP (T ) then finfin([[T ]]).
2. Let T ∈ LJP gfp

Σ be well-bound, guarded and proper. If NFFP (T ) and for all Xρ ∈ FPV (T ),
finfin(S(ρ)) implies P (ρ), then inffin([[T ]]).

3. For any T ∈ LJP gfp
Σ well-bound, guarded, proper and closed, FF∅(T ) iff finfin([[T ]]).

Proof. Each of the items follows anologously to the corresponding item of Proposition 9.
In particular: 1 follows by induction on FFP , and uses the fact nofin ⊆ finfin; 2 needs a
special notion of depth of observation for the truthfulness of inffin for forests, as detailed
in Appendix A.5; 3 follows then by items 1 and 2, and uses the facts finfin and inffin are
complements, as are FFP and NFFP . ◀

▶ Theorem 13 (Deciding finiteness of inhabitants in LJP ). A logical sequent σ of LJP has
(only) finitely many inhabitants iff finfin(S(σ)) iff FF∅(F(σ)). Hence “σ has (only) finitely
many inhabitants” is decided by deciding FF∅(F(σ)). In other words, the type finiteness
problem for LJP is decided by the computable predicate FF∅ ◦ F .

Proof. The first equivalence follows by Prop. 4 and finfin = finfinext. The second equivalence
follows from Prop. 12.3, using all items of Thm. 8. Computability comes from computability
of the recursive function F , decidability of NEF⋆, and the equivalence of the inductively
defined FF∅ with a recursive procedure over the term structure of its argument. ◀

5 Applications to intuitionistic propositional logic with all connectives

One of the interests of polarized logic is that it can be used to analyze other logics [15]. This
is also true of LJP and we illustrate it now, deriving algorithms for deciding the emptiness
(provability) and the finiteness problems for LJT with all connectives. Such transfer of
results from LJP will be immediate after the preparatory work that sets up an appropriate
version of LJT , alongside with its embedding into LJP .

5.1 System LJT of intuitionistic logic with all propositional connectives
The best known variant of the focused sequent calculus LJT for IPL is the one for implication
only [10]. Variants including conjunction and disjunction as well can be found in [11, 3]. We
present our own variant, still denoted LJT . Formulas of LJT are as follows:

(intuitionistic formulas) A, B ::= A ⊃ B | A ∧ B | R

(right intuitionistic formulas) R ::= a | ⊥ | A ∨ B

where a ranges over atoms, of which an infinite supply is assumed. A positive intuitionistic
formula, P , is a non-atomic right intuitionistic formula.

Proof terms of LJT are organized in three syntactic categories as follows:

(terms) t ::= λxA.t | ⟨t1, t2⟩ | e

(expressions) e ::= xs | inA
i (t)

(spines) s ::= nil | t :: s | i :: s | abortR | [xA1
1 .e1, xA2

2 e2]

where i ∈ {1, 2}, and x ranges over a countable set of variables. We will refer to e1 and e2 in
the latter form of spines as arms. Proof terms in any category are ranged over by T .

There are three forms of sequents, Γ =⇒ t : A and Γ ⊢ e : R and Γ[s : A] ⊢ R, where, as
usual, Γ is a context made of associations of variables with formulas. Therefore, a logical
sequent σ in LJT may have three forms: Γ =⇒ A and Γ ⊢ R and Γ[A] ⊢ R. The latter two
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Γ, x : A =⇒ t : B

Γ =⇒ λxA.t : A ⊃ B

Γ =⇒ ti : Ai for i = 1, 2
Γ =⇒ ⟨t1, t2⟩ : A1 ∧ A2

Γ ⊢ e : R
Γ =⇒ e : R

Γ, x : A[s : A] ⊢ R

Γ, x : A ⊢ xs : R

Γ =⇒ t : Ai

Γ ⊢ inA3−i

i (t) : A1 ∨ A2
i ∈ {1, 2} Γ =⇒ t : A Γ[s : B] ⊢ R

Γ[t :: s : A ⊃ B] ⊢ R Γ[nil : a] ⊢ a

Γ[abortR :⊥] ⊢ R

Γ[s : Ai] ⊢ R

Γ[i :: s : A1 ∧ A2] ⊢ R
i ∈ {1, 2}

Γ, xi : Ai ⊢ ei : R for i = 1, 2
Γ[xA1

1 .e1, xA2
2 .e2 : A1 ∨ A2] ⊢ R

Figure 7 Typing rules of LJT .

(A ⊃ B)∗ = ↓ A∗ ⊃ B∗ (A ∨ B)◦ = ↓ A∗∨ ↓ B∗

(A ∧ B)∗ = A∗ ∧ B∗ ⊥◦ = ⊥
P ∗ = ↑ P ◦ a◦ = a−

a∗ = a◦

(λxA.t)∗ = λ(xA∗
.DLV(t∗)) (xs)∗ = coret(x, s∗)

⟨t1, t2⟩∗ = ⟨t∗
1, t∗

2⟩ inA
i (t)∗ = ret(in↓A∗

i (thunk(t∗)))
e∗ = ⌜e∗⌝, if e is atomic
e∗ = ⌈e∗⌉, if e is positive

nil∗ = nil (abortR)∗ = cothunk(abortR◦
)

(t :: s)∗ = thunk(t∗) :: s∗ [xA1
1 .e1, xA2

2 .e2]∗ = cothunk([xA∗
1

1 .e∗
1, x

A∗
2

2 .e∗
2])

(i :: s)∗ = i :: s∗

Figure 8 Negative translation.

forms require a right formula to the right of the turnstile. The full definition of the typing
rules of LJT is given in Fig. 7. As for LJP , the annotations guarantee that there is at most
one formula that can replace the placeholders in Γ =⇒ t : ·, Γ ⊢ e : · and Γ[s : A] ⊢ ·.

The characteristic feature of the design of LJT is the restriction of the type of spines to
right formulas. Since the type of nil is atomic, spines have to be “long”; and the arms of
spines cannot be lambda-abstractions nor pairs, which is enforced by restricting the arms
of spines to be expressions, rather than general terms: this is the usefulness of separating
the class of expressions from the class of terms. In the typing rules, the restriction to right
formulas is generated at the select rule (the typing rule for xs); and the long form is forced
by the identity axiom (the typing rule for nil) because it applies to atoms only.

We could not find in the literature the restriction of cut-free LJT we consider here, but
Ferrari and Fiorentini [9] consider a presentation of IPL that enforces a similar use of right
formulas, in spite of being given in natural deduction format and without proof terms. It
is easy to equip this natural deduction system with proof terms and map it into LJT : the
technique is fully developed in [4] for polarized logic, but goes back to [3]. Since the just
mentioned system [9] is complete for provability, so is LJT .

System LJT can be embedded in LJP . We define the negative translation (·)∗ : LJT →
LJP in Fig. 8, comprising a translation of formulas and a translation of proof terms.
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The translation of formulas uses an auxiliary translation of right intuitionistic formulas R:
R◦ is a right formula (and specifically, P ◦ is a positive formula). An intuitionistic formula
A is mapped to a negative formula A∗, hence the name of the translation. At the level of
proof terms: terms (resp. spines, expressions) are mapped to terms (resp. spines, stable
expressions). Definitions like e∗ = ⌜e∗⌝ are meaningful if one thinks of the left e as being
tagged with the injection into terms. Use is made of the derived construction DLV(t), a stable
expression of LJP , defined by DLV(⌜e⌝) = e and DLV(t) = dlv(t) otherwise. Its derived
typing rule is that Γ ⊢ DLV(t) : N follows from Γ =⇒ t : N .

The translation of proof terms is defined for legal proof terms in LJT only: T is legal
if every expression e occurring in T is either atomic or positive; an expression xs is atomic
(resp. positive) if s is atomic (resp. positive), whereas an injection is positive; and a spine s

is atomic (resp. positive) if every “leaf” of s is nil or aborta (resp. an injection or abortP ).
Only when translating a legal T can we apply the definition of (·)∗ to e as a term.

Formally, the inductive definition of atomic and positive spines is as follows:
nil is atomic; aborta is atomic; if s is atomic, then t :: s and i :: s are atomic; if, for each
i = 1, 2, ei = yisi and si is atomic, then [xA1

1 .e1, xA2
2 .e2] is atomic.

abortP is positive; if s is positive, then t :: s and i :: s are positive; if, for each i = 1, 2,
ei = yisi and si is positive, or ei = inA

i (t), then [xA1
1 .e1, xA2

2 .e2] is positive.
Suppose Γ[s : A] ⊢ R is derivable. If R = a (resp. R = P ) then s is atomic (resp. positive).
Hence any typable proof term of LJT is legal. Moreover, if Γ ⊢ e : R then if e is atomic,
R = a and if e is positive, R = P .

The negative translation is easily seen to be injective. In order to state other properties
of the translation, we define the logical LJP sequent σ∗ for every logical LJT sequent σ:
(Γ =⇒ A)∗ = (Γ∗ =⇒ A∗) and (Γ ⊢ R)∗ = (Γ∗ ⊢ R◦) and (Γ[A] ⊢ R)∗ = (Γ∗[A∗] ⊢ R◦).

▶ Proposition 14 (Soundness). For all T = t, e, s in LJT : if σ(T ) is derivable in LJT then
σ∗(T ∗) is derivable in LJP .

Proof. By simultaneous induction on derivations for σ(T ). ◀

For the converse property (faithfulness), we need to understand better the image of
the negative translation, which we will call the ∗-fragment of LJP . Consider the following
subclass of formulas in LJP :

(∗-formulas) M, N ::= a− | ↑ P | ↓ N ⊃ M | N ∧ M

(positive ◦-formulas) P ::= ⊥ | ↓ N∨ ↓ M

The positive ◦-formulas are separated because they are useful to define ◦-formulas R, which
are either atoms a− or positive ◦-formulas P . A ∗-formula N is a negative formula; a
positive ◦-formula P is a positive formula; a ◦-formula R is a right formula. The negative
translation, at the level of formulas, is a bijection from intuitionistic formulas to ∗-formulas,
from positive intuitionistic formulas to positive ◦-formulas; and from right intuitionistic
formulas to ◦-formulas. The respective inverse maps are denoted | · |: they just erase the
polarity shifts and the minus sign from atoms.

If we are interested in deriving in LJP logical sequents of the form σ∗ only, then some
obvious cuts can be applied to the grammar of proof terms of LJP , yielding the following
grammar G of ∗-proof terms:

(∗-terms) t ::= ⌈e⌉ | ⌜e⌝ | λ(xN .e) | ⟨t1, t2⟩
(∗-spines) s ::= nil | cothunk(abortR) | cothunk([xN1

1 .e1, xN2
2 .e2]) | thunk(t) :: s | i :: s

(∗-expressions) e ::= dlv(t) | ret(inP
i (thunk(t))) | coret(x, s)

Here the type annotations range over formulas in the ∗-fragment.
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A legal ∗-proof term is one where dlv(t) is only allowed as the body of a λ-abstraction.
Legal expressions are generated by a restricted variant of the grammar above: dlv(t) is
forbidden as a ∗-expression per se, but, as a compensation, we introduce a second form of
λ-abstraction, λ(xN .dlv(t)).

There is a forgetful map from legal ∗-terms (resp. legal ∗-spines, legal ∗-expressions) to
terms (resp. spines, expressions) of LJT that essentially erases term decorations, and is given
in detail in Appendix A.6. The negative translation only generates legal ∗-proof terms; and,
since the negative translation is just a process of decoration, the forgetful map is left inverse
to it: |T ∗| = T .

▶ Proposition 15 (Faithfulness). For all T in LJP : if σ∗(T ) is derivable in LJP , then T is
legal and σ(|T |) is derivable in LJT and |T |∗ = T .

Proof. By simultaneous induction on T = t, s, r as generated by the grammar G above. ◀

By faithfulness and injectivity of the negative translation, the implications in Proposi-
tion 14 are in fact equivalences. Moreover:

▶ Corollary 16 (Reduction of counting and inhabitation problems).
1. There is a bijection between the set of those T ∈ LJT such that σ(T ) is derivable in LJT

and the set of those T ′ ∈ LJP such that σ∗(T ′) is derivable in LJP .
2. There is T ∈ LJT such that σ(T ) is derivable in LJT iff there is T ′ ∈ LJP such that

σ∗(T ′) is derivable in LJP .

Proof. We prove the first item. The negative translation is the candidate for the bijection.
Due to Proposition 14, it maps from the first set to the second. We already observed that
the translation is injective. Proposition 15 guarantees that the translation is also surjective.
The second item is an immediate consequence of the first. ◀

5.2 Deciding emptiness and finiteness in LJT

The “extraction” of the two decision procedures is immediate. Both procedures will be given
by the composition of two recursive functions: first, F calculates the finitary representation
of the full solution space; second, recursing on the structure of this representation, a predicate
(EF∅ or FF∅) is decided.

Emptiness. Given σ in LJT : σ is inhabited in LJT iff σ∗ is inhabited in LJP (Cor. 16);
iff exfin(S(σ∗)) (Prop. 4 and exfin = exfinext); iff EF∅(F(σ∗)) (Thm. 10). The obtained
algorithm is thus EF∅(F(σ∗)). Recall from Subsec. 4.1 that, although predicate EF∅ is given
inductively, it can be equivalently given by recursion over the structure of finitary forests.

Finiteness. Given σ in LJT : σ has finitely many inhabitants in LJT iff σ∗ has finitely many
inhabitants in LJP (Cor. 16); iff finfin(S(σ∗)) (Prop. 4 and finfin = finfinext); iff FF∅(F(σ∗))
(Thm. 13). The obtained algorithm is thus FF∅(F(σ∗)). Again, here, we should think of FF∅
as given by its recursive description.

Discussion. Complexity issues are not (yet) a concern of “coinductive proof search”. So
far we privileged a conceptual approach, where the representation of the search space is
separated from its analysis. This separation of concerns is reflected in the architecture of our
decision procedures, given as the composition of F with a recursive predicate adequate for
the specific problem at hand. This organization is modular, with F(σ∗) being reused, as we
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move our attention to a different decision problem; but it is not optimized, because knowing
the particular predicate we want to compose F with, in general, suggests simplifications.
Nevertheless, here are some comparisons with algorithms from the literature.

It is well-known that provability in full IPL is PSPACE-complete. In particular, [13]
establishes a space bound O(n log n) for this problem based on a contraction-free proof system.
Of course, this kind of efficiency cannot be expected from a naive implementation of our
decision method above, as it would first fully compute through F the finitary representation
of the solution space. An immediate optimization would be to compute with F lazily,
and interleave it with the structural decision algorithm for EF∅, thus avoiding the explicit
construction of the solution space. We wonder if such kind of optimization leads to a decision
algorithm for provability in full IPL within PSPACE. Note that, if our sole interest was
decision of provability, it would be better to start from variants of LJT like the systems
MJHist [12] or Nbu [9], which, in particular, block application of context-expanding rules if
the formulas to be added are already present in the context (like in total discharge convention).
However, neither the latter systems nor contraction-free systems give an appropriate basis to
address questions related to the full set of normal proofs/inhabitants.

The work of [18] is the only one we are aware of that deals with a question of type finiteness
for full IPL (but ⊥ is not included). That work considers a cut-free LJT -presentation of
IPL close to ours, but allowing more proofs, due to unrestricted RHS in its contraction
rule (recall our version of LJT imposes an atom or disjunction on the RHS when a formula
from the context is selected to the “focus”). The work [18] uses graphs to represent the
search space, and such graphs are guaranteed to be finite only in the case where contexts are
sets, in other words, when the total discharge convention is assumed. The decision of type
finiteness is then based on traversal of this finite graph structure and exhaustive checking for
the absence of “cyclic proof structures”. In our case, the decision comes by computing the
result of the function F , which gives the finitary forest representing the solution space, and
then by deciding by a simple structural recursion the predicate FF∅ on such a forest; but,
again, one may compute with F lazily and interleave it with the structural decision of FF∅.
It should be noted that decision of type finiteness in [18] is part of more general algorithms
that count the number of inhabitants of a type. In our case, counting of inhabitants is done
by a function defined by structural recursion on finitary forests. This worked fine for the
implicational fragment of LJT [8], and we anticipate no major obstacles in extending the
idea to full LJT .

6 Final remarks

We have shown that “coinductive proof search” extends to polarized intuitionistic logic
[17, 4]: the basic result about the equivalence of the coinductive and finitary representation
of solution spaces is obtained, as well as decidability of some predicates (one of which is
provability) through recursive predicates defined over the finitary syntax.

In the presence of disjunction, focused proofs fail to be canonical – in e. g. [16] (Subsec. 1.7)
it is observed that types with a unique canonical inhabitant may have infinitely many focused
inhabitants. So, we stress again, our algorithms for type finiteness refer to the finiteness of
the number of focused inhabitants (which are all the inhabitants according to the specific
proof systems considered in this paper). The next challenge is to try our approach with the
even more sophisticated systems [16] that capture canonical inhabitants, and for that we
find it useful to deal with LJP first.
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But the study of LJP has other uses, as a platform to study other logics. We illustrated
this view with LJT , a focused proof system for intuitionistic logic, by means of the negative
translation of LJT into LJP . Variants of this translation were previously mentioned or
sketched [19, 15], here we give a full treatment as a translation between languages of proof
terms. By composing the properties of the negative translation with the results about
polarized logic, we extract results about proof search in LJT (including notably disjunction).

Our negative translation is reminiscent of Girard’s translation of intuitionistic logic
into linear logic. The latter translation may be seen as underlying other translations in
the literature – see [1] for a study that involves polarized linear logic and even covers
cut-elimination (our setting is cut-free and linearity plays no role). We also worked out a
positive translation of cut-free LJQ [2] into LJP , but have no space to show it. This opens
the way to the study of inhabitation problems relative to call-by-value λ-terms, and for that,
the results obtained here about LJP will be reused.

In the context of intuitionistic implication, we obtained in [6] decidability of problems
involving the concept of solution rather than inhabitant (including the problem of termination
of proof search). As further future work, we plan to extend to LJP such decidability results.
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A Appendix with some more technical details

A.1 On the characterization of predicates on forests in Section 3.1
▶ Lemma 17.
1. Given a forest T , exfin(T ) iff nofin(T ) does not hold.
2. Given a forest T , finfin(T ) iff inffin(T ) does not hold.

Proof. Both items are plain instances of the generic result in the style of De Morgan’s laws
that presents inductive predicates as complements of coinductive predicates, by a dualization
operation on the underlying clauses. ◀

The following lemma shows that the predicates exfin and finfin correspond to the intended
meaning in terms of the finite extensions. Additionally, the lemma shows that the negation
of exfin resp. finfin holds exactly for the forests which have no finite members resp. for the
forests which have infinitely many finite members.

▶ Lemma 18 (Coinductive characterization). Given a forest T ,
1. exfin(T ) iff Efin(T ) is non-empty, i. e., exfin = exfinext as sets of forests;
2. finfin(T ) iff Efin(T ) is finite, i. e., finfin = finfinext as sets of forests.

Proof. Item 1 follows directly from the fact: exfin(T ) iff mem(T0, T ) for some T0. The left
to right implication is proved by induction on exfin. (Recall exfin is a predicate on forests,
but is defined inductively.) The right to left implication can be proved via the equivalent
statement “for all T0, mem(T0, T ) implies exfin(T )”, which follows by induction on LJP proof
terms T0. For the case of membership in sums, it is necessary to decompose them (thanks to
priority 1) until membership in an expression f(Ti)i is reached so that the argument for the
first inductive clause of membership applies. Item 2 follows analogously, but also uses the
fact nofin = nofinext, which is an immediate consequence of item 1 and Lemma 17. ◀
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A.2 On well-definedness of infinitary representation in Section 3.1

This section is dedicated to the proof of Lemma 3.
It remains to check the parity condition. As mentioned in the main text, this comes

from the observation that all the “intermediary” corecursive calls to S(σ) in the calculation
of S(Γ ⊢ A) – which is the only case that applies inherited e-formation rules – lower the
“weight” of the logical sequent, until a possible further call to some S(Γ′ ⊢ A′).

▶ Definition 19 (weight). Weight of a formula: w(⊥, a+) := 0, w(a−) := 1, and for composite
formulas, add the weights of the components and add the following for the extra symbols:
w(↓, ∧) := 0, w(∨) := 1, w(↑) := 2, w(⊃) := 3. Then w(N) ≥ 1 and w(P ) ≥ 0.

Weight of context Γ: the sum of the weights of all the formulas associated with the
variables.

Weight of logical sequent: w(Γ ⊢ A) := w(Γ)+w(A), w(Γ =⇒ N) := w(Γ)+w(N)−1 ≥ 0.
w(Γ ⊢ [P ]) := w(Γ) + w(P ), w(Γ|P =⇒ A) := w(Γ) + w(P ) + w(A) + 1, w(Γ[N ] ⊢ R) :=
w(Γ) + w(N) + w(R). Then for all σ, w(σ) ≥ 0.

In preparation of Section A.4, we even show the following more general statement:

▶ Lemma 20. Every direct corecursive call in the definition of S(σ) to some S(σ′) for
neither σ nor σ′ R-stable sequents lowers the weight of the logical sequent.

Proof. We have to show the following inequalities:
w(Γ ⊢ C) > w(Γ =⇒ C) (the rule introducing dlv(·) is easy to overlook but not needed

for the proof of Lemma 3): this is why · =⇒ · has to weigh less
w(Γ|a+ =⇒ A) > w(Γ, z : a+ ⊢ A): this is why ·|· =⇒ · has to weigh more (and variable

names must not enter the weight of contexts Γ)
w(Γ| ↓ N =⇒ A) > w(Γ, x : N ⊢ A): w(↓) = 0 suffices
w(Γ ⊢ [↓ N ]) > w(Γ =⇒ N): w(↓) = 0 suffices
w(Γ ⊢ [P1 ∨ P2]) > w(Γ ⊢ [Pi]): trivial since w(∨) > 0
w(Γ =⇒ a−) > w(Γ ⊢ a−) is not to be shown (and is wrong) since we hit the class of

R-stable sequents
w(Γ =⇒↑ P ) > w(Γ ⊢ P ): this works since ↑ weighs more (given that · =⇒ · weighs less),

but this inequation is not needed either
w(Γ =⇒ P ⊃ N) > w(Γ|P =⇒ N): since both logical sequent weights are unfavourably

modified, the weight of ⊃ has to be so high
w(Γ =⇒ N1 ∧ N2) > w(Γ =⇒ Ni): since w(N3−i) ≥ 1
w(Γ[↑ P ] ⊢ R) > w(Γ|P =⇒ R): this is why ↑ has to weigh more (given that ·|· =⇒ ·

weighs more)
w(Γ[P ⊃ N ] ⊢ R) > w(Γ ⊢ [P ]) and > w(Γ[N ] ⊢ R): both are trivial since w(⊃) > 0
w(Γ[N1 ∧ N2] ⊢ R) > w(Γ[Ni] ⊢ R): since w(N3−i) ≥ 1
w(Γ|P1 ∨ P2 =⇒ A) > w(Γ|Pi =⇒ A): trivial since w(∨) > 0 ◀

It is clear that this lemma guarantees the parity condition for all S(σ).

A.3 On forest transformation for inessential extensions in Section 3.1

If ρ = (Γ ⊢ R) and ρ′ = (Γ′ ⊢ R), then the result [ρ′/ρ]T of the decontraction operation
applied to T is defined to be [Γ′/Γ]T , with the latter given as follows:
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[Γ′/Γ]f(T1, . . . , Tk) = f([Γ′/Γ]Ti, . . . , [Γ′/Γ]Tk) for f neither z nor coret(x, ·)

[Γ′/Γ]
∑

i Ti =
∑

i [Γ′/Γ]Ti

[Γ′/Γ]z = z if z /∈ dom(Γ)
[Γ′/Γ]z =

∑
z′∈Dz

z′ if z ∈ dom(Γ)

[Γ′/Γ]coret(x, s) = coret(x, [Γ′/Γ]s) if x ̸∈ dom(Γ)
[Γ′/Γ]coret(x, s) =

∑
x′∈Dx

coret(x′, [Γ′/Γ]s) if x ∈ dom(Γ)

Figure 9 Corecursive equations for definition of decontraction.

▶ Definition 21 (Decontraction). Let Γ ≤ Γ′. For a forest T of LJP co
Σ , the forest [Γ′/Γ]T of

LJP co
Σ is defined by corecursion in Fig. 9, where, for w ∈ dom(Γ),

Dw := {w} ∪ {w′ : (w′ : Γ(w)) ∈ (Γ′ \ Γ)} .

In other words, the occurrences of variables (in the syntactic way they are introduced in the
forests) are duplicated for all other variables of the same type that Γ′ has in addition.

▶ Lemma 22 (Solution spaces and decontraction). Let ρ ≤ ρ′. Then S(ρ′) = [ρ′/ρ]S(ρ).

Proof. Analogous to the proof for implicational logic [7]. Obviously, the decontraction
operation for forests has to be used to define decontraction operations for all forms of logical
sequents (analogously to the R-stable sequents, where only Γ varies). Then, the coinductive
proof is done simultaneously for all forms of logical sequents. ◀

A.4 On termination of finitary representation in Section 3.2
Definition 7 contains recursive equations that are not justified by calls to the same function for
“smaller” sequents, in particular not for the rules governing R-stable sequents as first argument.
We mentioned that the proof of termination of an analogous function for implicational logic [7,
Lemma 20] can be adapted to establish also termination of F(σ; Ξ) for any valid arguments.
Here, we substantiate this claim.

The difficulty comes from the rich syntax of LJP , so that the “true” recursive structure
of F(ρ; Ξ) – for R-stable sequents that spawn the formal fixed points – gets hidden through
intermediary recursive calls with the other forms of logical sequents. However, we will now
argue that all those can be seen as plainly auxiliary since they just decrease the “weight” of
the problem to be solved.

▶ Lemma 23. Every direct recursive call in the definition of F(σ; Ξ) to some F(σ′; Ξ′) for
neither σ nor σ′ R-stable sequents lowers the weight of the first argument.

Proof. This requires to check the very same inequations as in the proof of Lemma 20. ◀

The message of the lemma is that the proof search through all the other forms of logical
sequents (including the form Γ ⊢ C) is by itself terminating. Of course, this was to be
expected. Otherwise, we could not have “solved” them by a recursive definition in F where
only R-stable sequents ask to be hypothetically solved through fixed-point variables.
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The present argument comes from an analysis that is deeply connected to LJP , it has
nothing to do with an abstract approach of defining (infinitary or finitary) forests. As seen
directly in the definition of F , only by cycling finitely through the dlv(·) construction is the
context Γ extended in the arguments σ to F . And the context of the last fixed-point variable
in Ξ grows in lockstep.

It is trivial to observe that all the formula material of the right-hand sides lies in the same
subformula-closed sets (see [7]) as the left-hand sides (in other words, the logical sequents in
the recursive calls are taken from the same formula material, and there is no reconstruction
whatsoever).

Therefore, the previous proof for the implicational case [7, Lemma 20] can be carried
over without substantial changes. What counts are recursive calls with first argument an
R-stable sequent for the calculation when the first argument is an R-stable sequent. In the
implicational case, these “big” steps were enforced by the grammar for finitary forests (and
the logical sequents Γ ⊢ R had even only atomic R there, but this change is rather irrelevant
for the proof (instead of counting atoms, one has to count R formulas for getting the measure,
but this does not affect finiteness of it). The preparatory steps in the proof of [7, Lemma 20]
are also easily adapted, where the Γ part of the first argument to F takes the role of the
context Γ in that proof.

A.5 Completing the proofs of Props. 9.2 and 12.2 with extra concepts
First we prove Prop. 9.2. For this, we need an auxiliary concept with which we can formulate
a refinement of that proposition. From the refinement, we eventually get Prop. 9.2.

We give a sequence of approximations from above to the coinductive predicate nofin
whose intersection characterizes the predicate. The index n is meant to indicate to which
observation depth of T we can guarantee that nofin(T ) holds. For this purpose, we do not
take into account the summation operation as giving depth. We present the notion as a
simultaneous inductive definition.

nofin0(T )
nofinn(Tj)

nofinn+1(f(Ti)i)
for some j

∀i. nofinn+1(Ti)
nofinn+1(

∑
i Ti)

A guarantee up to observation depth 0 does not mean that the root symbol is suitable but
the assertion is just void. Going through a function symbol requires extra depth. The child
has to be fine up to a depth that is one less. As announced, the summation operation does
not provide depth, which is why this simultaneous inductive definition cannot be seen as a
definition of nofinn by recursion over the index n.

By induction on the inductive definition, one can show that nofinn is antitone in n, i. e.,
if nofinn+1(T ) then nofinn(T ).

▶ Lemma 24 (Closure under decontraction of each nofinn). Let ρ ≤ ρ′ and n ≥ 0. For all
forests T , nofinn(T ) implies nofinn([ρ′/ρ]T ).

Proof. By induction on the inductive definition – we profit from not counting sums as
providing depth. ◀

▶ Lemma 25 (Inductive characterization of absence of members). Given a forest T . Then,
nofin(T ) iff nofinn(T ) for all n.

Proof. From left to right, this is by induction on n. One decomposes (thanks to priority 1) the
sums until one reaches finitely many expressions f(Ti)i to which the induction hypothesis ap-
plies. From right to left, one proves coinductively R ⊆ nofin, for R := {T : ∀ n ≥ 0, nofinn(T )}.
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For example, in the case T = f(Ti)i ∈ R, this amounts to showing Tj ∈ R for some j. The
assumption nofin1(f(Ti)i) already implies the existence of at least one Tj . The proof is
then indirect: if for all i we would have Ti ̸∈ R, then, for each i, there would be an ni s. t.
¬nofinni(Ti), and letting m be the maximum of these ni’s, ¬nofinm(Ti) by antitonicity; hence
we would have ¬nofinm+1(T ), but T ∈ R. ◀

For T ∈ LJP gfp
Σ , we write An(T ) for the following assumption: For every free occurrence

of some Xρ in T (those Xρ are found in FPV (T )) such that ¬P (ρ), there is an n0 with
nofinn0(S(ρ)) and d + n0 ≥ n for d the depth of the occurrence in T as defined earlier, where
sums and generations of fixed points do not contribute to depth.

Notice that, trivially n′ ≤ n and An(T ) imply An′(T ).

▶ Lemma 26 (Ramification of Proposition 9.2). Let T ∈ LJP gfp
Σ be well-bound, proper and

guarded and such that NEFP (T ) holds. Then, for all n ≥ 0, An(T ) implies nofinn([[T ]]).

Proof. By induction on the predicate NEFP (which can also be seen as a proof by induction
on finitary forests).

Case T = Xρ. Then [[T ]] = S(ρ). Assume n ≥ 0 such that An(T ). By inversion, ¬P (ρ),
hence, since Xρ ∈ FPV (T ) at depth 0 in T , this gives n0 ≥ n with nofinn0(S(ρ)). Since
nofinm is antitone in m, we also have nofinn([[T ]]).

Case T = gfpXρ.T1. NEFP (T ) comes from NEFP (T1). Let N := [[T ]] = [[T1]]. As T is
proper, N = S(ρ). We do the proof by a side induction on n. The case n = 0 is trivial. So
assume n = n′ + 1 and An(T ) and that we already know that An′(T ) implies nofinn′(S(ρ)).
We have to show nofinn(S(ρ)), i. e., nofinn([[T1]]). We use the main induction hypothesis on
T1 with the same index n. Hence, it suffices to show An(T1). Consider any free occurrence
of some Y ρ′ in T1 such that ¬P (ρ′). We have to show that there is an n0 with nofinn0(S(ρ′))
and d + n0 ≥ n for d the depth of the occurrence in T1.

First sub-case: the considered occurrence is also a free occurrence in T . Since we disregard
fixed-point constructions for depth, d is also the depth in T . Because of An(T ), we get an
n0 as desired.

Second sub-case: the remaining case is with Y = X and, since T is well-bound, ρ ≤ ρ′.
As remarked before, An(T ) gives us An′(T ). The side induction hypothesis therefore yields
nofinn′(S(ρ)). By closure of nofinn under decontraction, we get nofinn′([ρ′/ρ]S(ρ)), but that
latter forest is S(ρ′) by Lemma 22. By guardedness of T , this occurrence of Xρ′ has depth
d ≥ 1 in T1. Hence, d + n′ ≥ 1 + n′ = n.

Case T = f(T1, . . . , Tk) with a proper function symbol f . Assume n ≥ 0 such that
An(T ). There is an index j such that NEFP (T ) comes from NEFP (Tj). Assume n ≥ 0 such
that An(T ). We have to show that nofinn([[T ]]). This is trivial for n = 0. Thus, assume
n = n′ + 1. We are heading for nofinn′([[Tj ]]). We use the induction hypothesis on Tj (even
with this smaller index n′). Therefore, we are left to show An′(Tj). Consider any free
occurrence of some Xρ in Tj such that ¬P (ρ), of depth d in Tj . This occurrence is then also
a free occurrence in T of depth d + 1 in T . From An(T ), we get an n0 with nofinn0(S(ρ))
and d + 1 + n0 ≥ n, hence with d + n0 ≥ n′, hence n0 is as required for showing An′(Tj).

Case T =
∑

i Ti. NEFP (T ) comes from NEFP (Ti) for all i. Assume n ≥ 0 such that An(T ).
We have to show that nofinn([[T ]]). This is trivial for n = 0. Thus, assume n = n′ + 1 and fix
some index i. We have to show nofinn([[Ti]]). We use the induction hypothesis on Ti (with the
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same index n). Therefore, we are left to show An(Ti). Consider any free occurrence of some
Xρ in Ti such that ¬P (ρ), of depth d in Ti. This occurrence is then also a free occurrence
in T of depth d in T . From An(T ), we get an n0 with nofinn0(S(ρ)) and d + n0 ≥ n, hence
n0 is as required for showing An(Ti). (Of course, it is important that sums do not count
for depth in finitary terms if they do not count for the index of the approximations to nofin.
Therefore, this proof case is so simple.) ◀

We return to Prop. 9.2:

Proof. Let T ∈ LJP gfp
Σ be well-bound, proper and guarded, assume NEFP (T ) and that for

all Xρ ∈ FPV (T ), exfin(S(ρ)) implies P (ρ). We have to show nofin([[T ]]). By Lemma 25 it
suffices to show nofinn([[T ]]) for all n. Let n ≥ 0. By the just proven refinement, it suffices to
show An(T ). Consider any free occurrence of some Xρ in T such that ¬P (ρ), of depth d in
T . By contraposition of the assumption on FPV (T ) and by the complementarity of nofin
and exfin, we have nofin(S(ρ)), hence by Lemma 25 nofinn(S(ρ)), and d + n ≥ n, as required
for An(T ). ◀

The whole development above can be replayed to prove Prop. 12.2. Now, the required
auxiliary concept is inffinn, which gives a sequence of approximations to the coinductive
predicate inffin:

inffin0(T )
inffinn(Tj) ∀i. exfin(Ti)

inffinn+1(f(Ti)i)
for some j

inffinn+1(Tj)
inffinn+1(

∑
i Ti)

for some j

▶ Lemma 27 (Antitonicity and closedness under decontraction of inffinn). Given a forest T

and n ≥ 0,
1. if inffinn+1(T ) then inffinn(T );
2. for any ρ ≤ ρ′, inffinn(T ) implies inffinn([ρ′/ρ]T ).

Proof. Both items 1 and 2 follow by induction on the inductive definition of inffinn, and 2
uses closedness of exfin under decontraction. ◀

▶ Lemma 28 (Inductive characterization of finiteness of members). Given a forest T , inffin(T )
iff inffinn(T ) for all n ≥ 0.

Proof. Analogously to the proof of Lemma 25, the left to right direction follows by induc-
tion on n, and the right to left direction follows by proving coinductively R ⊆ inffin, for
R := {T : ∀ n ≥ 0, inffinn(T )}. ◀

For T ∈ LJP gfp
Σ , now An(T ) will stand for the assumption: For every free occurrence

of some Xρ in T (those Xρ are found in FPV (T )) such that ¬P (ρ), there is an n0 with
inffinn0(S(ρ)) and d + n0 ≥ n for d the depth of the occurrence in T as defined earlier, where
sums and generations of fixed points do not contribute to depth. (The only change w. r. t.
the definition of An(T ) above is the replacement of nofinn0 by inffinn0 .)

▶ Lemma 29 (Ramification of Proposition 12.2). Let T ∈ LJP gfp
Σ be well-bound, proper and

guarded and such that NFFP (T ) holds. Then, for all n ≥ 0, An(T ) implies inffinn([[T ]]).

Proof. By induction on the predicate NFFP . All cases for T follow analogously to the
corresponding cases of Lemma 26, with the help of Lemma 27. The case T = f(Ti)i uses
additionally Lemma 11. ◀

Finally, Prop. 12.2 follows from Lemma 29 (in lockstep with the proof of Prop. 9.2 from
Lemma 26) thanks to Lemma 28.

TYPES 2020
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A.6 Details on the forgetful map in Section 5
The forgetful map from legal ∗-terms (resp. legal ∗-spines, legal ∗-expressions) to terms
(resp. spines, expressions) of LJT is as follows:

|λ(xN .dlv(t))| = λx|N |.|t| |nil| = nil
|λ(xN .e)| = λx|N |.|e| |cothunk(abortR)| = abort|R|

|⟨t1, t2⟩| = ⟨|t1|, |t2|⟩ cothunk([xN1
1 .e1, xN2

2 .e2]) = [x|N1|
1 .|e1|, x

|N2|
2 .|e2|]

|⌜e⌝| = |e| |thunk(t) :: s| = |t| :: |s|
|⌈e⌉| = |e| |i :: s| = i :: |s|

|coret(x, s)| = x|s| |ret(inP
i (thunk(t)))| = in|P |

i (|t|)
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