Laurent Thiry

Michel Hassenforder

Functional and Efficient Query Interpreters: Principle, Application and Performances' Comparison

Keywords: Data transformation, functional programming, information server, optimization

This paper presents a general approach to implement efficient queries' interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.

I. INTRODUCTION

T HE availability of a growing number of structured information requires dedicated tools to query, in an efficient manner, a specific information. If standards exist to describe information (e.g. knowledge models/graphs, ontologies, etc.) or queries (SPARQL and DL languages in particular), and if some tools are proposed to deal with these elements (e.g. triple stores such as Jena-Fuseki), there is no real formalism to describe both the behavior and performances of these tools. To solve this limitation, the article explains how to use functional paradigm to formalize both the syntax and the semantic of the languages used to specify information's structure and queries. From this, it extends this formalization to integrate performances' calculation and uses it to make optimizations. Finally, it presents an implementation of the concepts introduced to get a functional server and shows, by the way of a concrete example (Wikipedia pages' links), how this one can be 10 times faster than existing tools (e.g. Fuseki). More precisely, the main elements presented consist in: 1) a datatype language d usable to describe various data organizations (e.g. tables, maps, graphs, etc.) and a query language q, 2) a semantic function e : d × q → r to evaluate queries, 3) a methodology to integrate performances in the model oe : d × q → N, 4) a set of possible transformations t : d → d that are optimizations -formally: oe (t(d), q) ≤ oe (d, q). These elements are implemented into the functional programming language Haskell and can be compiled to get M. Hassenforder is with the IRIMAS Lab., 12, rue des frères Lumière, 68093 Mulhouse, France.

L. Thiry is with the IRIMAS Lab., 12, rue des frères Lumière, 68093 Mulhouse, France (e-mail: laurent.thiry@uha.fr). a concrete tool (executable) to start an information server or send it queries. Most of the code is presented in the article to: 1) show how functional paradigm leads to simple code (to be compared with existing tools such as Fuseki that has 25Mo of code, for instance), 2) be precise as much as possible -functional code being very close to mathematical model, and 3) help the reader to see the rigor used to get the results presented (e.g. performances calculation).

This document is divided in five sections. Section II gives an overview of the elements related to the work presented and helps to understand its interest. Section III introduces the fundamental elements required to understand the elements proposed. More precisely, it introduces some important concepts from functional programming, and how it helps to specify simply datatypes and data transformations (required for optimizations). Then, it proposes an approach to measure performances of a functional program (to count computation steps). Section IV then proposes an interpreter for a subset of the attributive language AL. It also studies its performances and detailed possible improvements -what illustrates how data transformations can lead to optimized programs. Section V uses a concrete example (Wikipedia links) to study the performances of the server proposes and compare them with a standard triple store (Fuseki). Section VI summarizes the main elements presented and gives an overview of the perspectives considered.

II. RELATED WORKS

It is a well-known fact that the data structures used by a program has a direct impact on its performances, i.e. memory usage or time consumption, as explained in [START_REF] Aho | Data Structures and Algorithms[END_REF]. For instance, the search of an element in a list as a complexity O(n), where n is the number of elements, while the search in a (balanced) binary tree as a O(log(n)) complexity. Next, if imperative and object-oriented programming languages are the most used languages in an industrial context, functional languages keep having many interest as explained in [START_REF] Hughes | Research topics in functional programming[END_REF] (e.g. shorter code by using generic and higher-order functions such as map, filter, etc. -these ones are used again in this paper). As a complement, a study of data structures and functional programs' performances can be found in [START_REF] Okasaki | Purely Functional Data Structures[END_REF], and [START_REF] O'sullivan | Real World Haskell[END_REF] shows how a modern functional programming language such as Haskell (the language considered in this paper) can also leads to industrial applications.

In the particular context of Semantic Web, whose a general presentation can be found in [START_REF] Hitzler | Foundations of Semantic Web Technologies[END_REF], tools proposed are mainly presented by the way of their usage or architecture (e.g. classes) but not really by the way of their behavior and performances. The most complete presentations can be found in [START_REF] Cur | RDF Database Systems: Triples Storage and SPARQL Query Processing[END_REF]- [START_REF] Verborgh | Querying datasets on the Web with high availability[END_REF] or [START_REF] Hogan | Searching and browsing linked data with swse: the semantic web search engine[END_REF]. Our previous works have tried to solve this lacks with in particular [START_REF] Thiry | A functional inference system for the web[END_REF] that presents, in a detailed manner, a knowledge management platform integrating a triple store, a query interpreter, an inference system and a web browser to navigate within or manage a knowledge model. A more recent work is given by [START_REF] Thiry | Categories for (big) data models and optimization[END_REF] that studies the performances of the preceding system and studies possible optimizations based on data transformations. This paper then synthesizes the results obtained with an extension to a subset of Description Logic [START_REF] Baader | The Description Logic Handbook: Theory, Implementation and Applications[END_REF].

III. BACKGROUND

This part gives an illustrated presentation of fundamental concepts used in functional programming (and the paper) and detailed the process proposed to get the performances of the programs.

A. Functional Descriptions 1) Illustrated Presentation: Functional paradigm uses functions such as s : N → N , and constants -e.g. z : N , to describe "things". In particular, the preceding examples define a set N = {z, s(z), ..., s n (z), ...} corresponding here to the Peano representation of natural numbers N. Operators on this set are then defined by using functions and rewriting rules such as: e 1 : p(z, m) = z and e 2 : p(s(n), m) = s(p(n, m)). These rules correspond to the addition, and one can check that p(s 2 (z), s 1 (z)) = s 3 (z) by applying e 2 twice then e 1 . Now, the expressions defining N can formalized by the way of a grammar:

<N> := z | s(<N>)
Or by using a datatype definition in any (functional) programming language. The code below then gives an implementation of (N, p) in the Haskell programming language.

data N = Z | S(N) p(Z,m) = m p(S(n),m) = S(p(n,m))
2) Data Collections: As another example, lists of N can be specified by a constant for the empty list e : L N , and a function to add a value to a list a : N ×L N → L N . Thus, an expression such as a(n 1 , a(n 2 , e)) will be interpreted as a list [n 1 , n 2]. The catenation operator is then defined in a similar manner of the plus operator on numbers with: p 1 : pl(e, l) = l and p 2 : pl(a(x, l), l) = a(x, pl(l, l)). One can then check for instance that pl([START_REF] Aho | Data Structures and Algorithms[END_REF][START_REF] Hughes | Research topics in functional programming[END_REF], [START_REF] Okasaki | Purely Functional Data Structures[END_REF]) = [1, 2, 3] by applying p 2 twice then p 1 .

Lists can be generalized by using a parameterized datatype L(x) where x is a type variable replacing N in the previous definition (and thus L N = L(N)). Some generic functions, used in the rest of the document, can then be defined to: concatenate a list of lists (cat), apply a function to all the elements of a list (map(f)), select the elements satisfying a predicate (filter(p)), etc. The implementation of these functions in Haskell are given below.

data L x = E | A (x,L x) pl(E ,l') = l' pl(A(x,l),l') = A(x,r)
where r = pl(l,l')

cat(E) = E cat(A(x,l)) = pl(x,r) where r = cat(l) map(f,E) = E map(f,A(x,l)) = A(f(x),r)
where r = map(f,l)

filter(p,l) = r' where f(x) = if (p(x)) then A(x,E) else E r = map(f,l) r' = cat(r) B. Performance Measurement & Optimizations 1) Principle:
The performance of a functional program depends on the number of computation steps to get a result. To get this value, we propose to add an extra result to the functions as illustrated below, e.g. pl :

L(x) × L(x) → L(x) is transformed into opl : L(x) × L(x) → L(x) × N.
All the functions are prefixed by "o" (to show that they embedded the complexity O) and are constructed in a systematic manner on: taking the original functions, replacing results r i by (r i , n i), and summing the various performances Σ i n i when functions are composed.

opl(E ,l') = (l',0) opl(A(x,l),l') = (A(x,r),n+1)

where (r,n) = opl(l,l')

ocat(E) = (E,0) ocat(A(x,l)) = (r',n+n ') where (r,n) = ocat(l) (r',n') = opl(x,r)

omap(f,E) = (E,0) omap(f,A(x,l)) = (A(r',r),n+n') where (r,n) = omap(f,l) (r',n') = f(x) ofilter(p,l) = cat(map(f,l)) where f(x) = if (r) then (A(x,E),n+1) else (E,n+1) where (r,n) = p(x) (r,n) = omap(f,l) Thus, performance measurement is now possible. For instance, opl([1, 2], [3]) = ([1, 2, 3], 2) -more generally opl(l, l) = (pl(l, l), n) where n is the length of l (what is also written "pl is O(n)"). Or again, of ilter(odd, [1..10]) = ([1, 3, 5, 7, 9], 25).
2) Sample Optimization: Optimizations consist in transforming code to reduce the number of computation steps. For instance, the code below proposes another realization of the filter function, and of ilter (odd, [1..10]) = ([1, 3, 5, 7, 9], 10) what requires half of the computations ! The change realized is based on a well-known "short-cut fusion" [START_REF] Takano | Shortcut deforestation in calculational form[END_REF] and consists simply in eliminating intermediate functions (here, cat and map) by using their definition. Other examples of this principle will be detailed in the rest of the document. = (E,0) ofilter'(p,A(x,l)) = if (r) then (A(x,r'),n+n') else (r',n+n') where (r,n) = p(x) (r',n') = ofilter'(p,l)

IV. INFORMATION SERVER

This part proposes: 1) an interpreter for a query language using a particular data structure (table), 2) a quick data transformation that leads to 3) an optimized interpreter using another data structure (map).

A. Presentation

An information server is mainly defined by a set of data d, queries on this one q, and an evaluator e for these queries, i.e. e : d × q → r where r represent the set of results.

1) Syntax & Semantic: Datatypes d can be simple values d 0 , records d×d, or lists L(d). Some examples are d 1 = L(x× t) and d 2 = L(t × L(x)), and the code below gives sample values for these types. The first value v 1 can be interpreted as the table represented in Fig. 1, and v2 as another representation of the same information similar to a map t → L(x) -this point is detailed later in the document. v1 = [("x1","T1"),("x2","T1"),("x3","T1") ,("x2","T2"),("x4","T2")] v2 = [("T1",["x1","x2","x3"]),("T2",["x2","x4"])]

Value Tag

x 1 T 1 x 4 T 2 Fig. 1 Sample data (v 1)
By considering the example illustrated in Fig. 1, sample queries q can consist in finding the values having a particular tag q 0 , values having two tags q ∧ q , or values not having a specific tag ¬q -what corresponds to a subset of class expressions found in Description Logic (DL).

A semantic function for this language is then simply defined as follow: e1(v1,q0) =map(\(x,y)->x,filter(\(x,y)->y==q0,d1)) e1(v1,q1/\q2)=inter(e1(v1,q1),e1(v1,q2)) ...

In the code, an expression such as λx → e corresponds to a anonymous function f (x) = e, and the function inter returns the common elements of two lists (similar to set's intersections).

2) Performances: The principle introduced in Section III-B1 is now applied to get the performance of the implementation (see code below). The function elem that tests the presence of an element into a list is introduced to define the function intersection. oelem(x,[]) = (False,1) oelem(x,y:z) = let (r,n)=oelem(x,z) in if (x==y) then (True,1) else (r,n+1) ointer(x,y) = ofilter(\z->oelem(z,y),x) oe1(v1,q0)=let (r,n) = ofilter(\(x,y)->(y==q0,1),v1) (r',n')= omap(\(x,y)->(x,1),r) in (r',n+n') oe1(v1,q1/\q2) = let (r,n) = oe1(v1,q1) (r',n') = oe1(v1,q2) (r'',n'')= ointer(r,r') in (r'',n+n'+n'')

As an illustration, oe 1 (v 1 , T 1 ∧ T 2) = ([x 2], 27).

B. Optimization 1) New Data Structure & Semantic:

A well-known optimization technique is "caching" that consists in memorizing the result of a query. With the elements presented, this technique can be viewed as a datatype's transformation to:

v 2 = [(T 1 , [x 1 , x 2 , x 3]), (T 2 , [x 2 , x 4])].
This change implies a new semantic function that can be defined as follow: e2(v2,q0) = head(map(\(x,y)->y,filter(\(x,y)->x==q0,v2))) e2(v2,q1/\q2)=inter(e2(v2,q1),e2(v2,q2)) ...

2) New Performances:

The performance is obtained with the same principles already used, and the code:

oe2(v2,q0)=let (r,n) =ofilter(\(x,y)->(x==q0,1),v2) (r',n')=omap(\(x,y)->(y,1),r) in (head(r'),n+n'+1) oe2(v2,q1/\q2) = let (r,n) = oe2(v2,q1) (r',n') = oe2(v2,q2) (r'',n'')= ointer(r,r') in (r'',n+n'+n'')
As an illustration, oe 2 (v 2 , T 1 ∧ T 2) = ([x 2], 13) with a difference of 12 computations (twice faster) from the original implementation. The reasons can be: 1) the use of the head function returning the first element of a list that eliminates extra computations (on the tail of the list), and 2) the length of the list analyzed (i.e. number of tags rather than (value,tag) pairs).

3) (Optimized) Data Transformation: The transformation t 21 : d 2 → d 1 can be defined by:

t21(v2) = concat(map(\(x,y)->map(\z->(z,x),y),v2)) ot21(v2) = let off(x,y) = omap(\z->((z,x),1),y) (r,n) = omap(off,v2) (r',n') = ocat(r) in (r',n+n')
An interesting point here is the possibility to use the "short-cut fusion" principle mentioned before to define a equivalent function:

V. REAL-WORLD APPLICATION & COMPARISON

As a sample application, we have used a dataset representing the Wikipedia pages' links of the web site, and available at: snap.stanford.edu/data/wikispeedia.html. The data is store in a tsv file (with size 3Mo) and consists in 119882 links between 4600 pages.

A. IO & Servers

In the application, the data is first parsed, transformed into a list of records (d 1), then serialized in a file V1.txtsee the createV 1 function given in Appendix VI-A. Next, a command line utility as been defined (see the main function in the appendix) to load the file, read a query, and print the result. The source is then compiled by using the Glasgow Haskell Compiler (ghc) in a command called "query". Two sample queries have been considered with: a simple one, q 1 = Apollo 11, to get the pages pointing to "Apollo 11", and a complex one to get the pages pointing both to two given pages, q 2 = M oon ∧ F lorida.

The tool is then used to get the answer of these queriesthis, with the Linux "time" command to get the duration of the evaluation function, as follow:

> time(./query "Q0 \"Apollo_11\"") ([...,"Wernher_von_Braun"],119901) real 0m1,755s > time(./query "And (Q0 \"Moon\") (Q0 \"Florida\")") (["Apollo_11",...,"George_W._Bush"],260214) real 0m1,800s

Next, the command line utility has been transformed into a service by using the code given in Appendix VI-B. Thus, the data is now loaded in memory what eliminates the file reading from the preceding examples. The code below then presents the usage of the new utility: the first line starts the server on a port, and the second one send query to the server.

./query server1 9000 & time(./query query localhost 9000 "Q0 \"Apollo_11\"") real 0m0,060s time(./query query localhost 9000 "And (Q0 \"Moon\") (Q0 \"Florida\")") real 0m0,111s

The code has then be adapted to use the optimized interpreter (oe 2) and has given the following performances: # q1 real 0m0,928s (in file storage) real 0m0,007s (in-memory/server) # q2 real 0m0,903s (in file storage) real 0m0,015s (in-memory/server)

B. Triples & Fuseki

Finally, the dataset has been: 1) transformed into a list of triples (N-Triples notation), and 2) loaded into the Fuseki server. The command line utilities proposed with the server distribution have then been used as follow to get performances: time (./s-query --service="localhost:3030/wiki/query" "SELECT ?x WHERE { ?x <o:linkto> <o:Apollo_11> . }") real 0m0,100s time (./s-query --service="localhost:3030/wiki/query" "SELECT ?x WHERE { ?x <o:linkto> <o:Moon> . ?x <o:linkto> <o:Florida> . }") real 0m0,107s C. Synthesis Fig. 2 summarizes the various performances obtained for the standard triples's store Fuseki, and the server proposed in its initial version (e 1) and its optimized one (e 2) -this for a simple query (q 1) and a more complex one (q 2).

Server q 1 q 2 e 1 0,060 0,111 e 2 0,007 0,015 F useki 0,100 0,107 Thus, the original/functional version of the server and Fuseki have similar performances for complex queries, while the optimized version is 10x faster.

VI. CONCLUSION

This paper has illustrated how functional concepts can be used to organize or transform information, and query a specific element in an efficient manner. Queries are expressed with a subset of DL language and two semantic functions are proposed depending on how data are structured. Then, performances measurement and comparison show that a simple interpreter for the language can be dramatically improved (twice to ten time faster) by using data transformations. Most of the concepts are implemented in the functional programming language Haskell, and the total code of the resulting server is approximatively 5.3Ko -what can be compared to more standard tools such as Fuseki, for instance, that has 25Mo. Sure, this later offers more functionalities but can be more difficult to manage and optimize. As another comparison, the paper has shown that this tool is globally ten times slower than the server proposed (Fig. 2).

The main perspectives considered now will consist in 1) looking for other possible optimization (e.g. splitted data and concurrent computations), and 2) extending the query language with other constructs. Indeed, if the language is actually more general than the one presented (e.g. expressions such as ∃hasT ag {T i } are possible but have not been detailed for clarity reasons), it is not a full DL language.

 (x,[]):xs) = t21'(xs) t21'((x,(y:ys)):xs) = (y,x):t21'((x,ys):xs) ot21'([]) = ([],1) ot21'((x,[]):xs) = let (r,n)=ot21'(xs) in (r,n+1) ot21'((x,(y:ys)):xs) = let (r,n)=ot21'((x,ys):xs) in ((y,x):r,n+1) A comparison of the performances gives: ot 21 (v 2) = (v 1 , 16) and ot 21 (v 2) = (v 1 , 8) what shows that the new version of the transformation is twice faster than the first one. World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering Vol:13, No:2, 2019 52 International Scholarly and Scientific Research & Innovation 13(2) 2019 ISNI:0000000091950263 Open Science Index, Computer and Information Engineering Vol:13, No:2, 2019 waset.org/Publication/10010034

Fig. 2

 2 Fig. 2 Global performances (s)

APPENDIX

A. Command Line Utility main = do

[q] <-getArgs f <-readFile "v1.txt" let v1 = read f :: [(String,String)] let q_ = read q :: Q let r1 = oe1(v1,q_{}) print r1 createV1 = do