
HAL Id: hal-03255797
https://hal.science/hal-03255797v2

Preprint submitted on 12 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monotone discretization of the Monge-Ampère equation
of optimal transport

Guillaume Bonnet, Jean-Marie Mirebeau

To cite this version:
Guillaume Bonnet, Jean-Marie Mirebeau. Monotone discretization of the Monge-Ampère equation of
optimal transport. 2022. �hal-03255797v2�

https://hal.science/hal-03255797v2
https://hal.archives-ouvertes.fr


Monotone discretization of the Monge-Ampère equation of
optimal transport

Guillaume Bonnet∗ Jean-Marie Mirebeau†

March 12, 2022

Abstract

We design a monotone finite difference discretization of the second boundary value
problem for the Monge-Ampère equation, whose main application is optimal transport. We
prove the existence of solutions to a class of monotone numerical schemes for degenerate
elliptic equations whose sets of solutions are stable by addition of a constant, and we show
that the scheme that we introduce for the Monge-Ampère equation belongs to this class.
We prove the convergence of this scheme, although only in the setting of quadratic optimal
transport. The scheme is based on a reformulation of the Monge-Ampère operator as a
maximum of semilinear operators. In dimension two, we recommend to use Selling’s formula,
a tool originating from low-dimensional lattice geometry, in order to choose the parameters of
the discretization. We show that this approach yields a closed-form formula for the maximum
that appears in the discretized operator, which allows the scheme to be solved particularly
efficiently. We present some numerical results that we obtained by applying the scheme
to quadratic optimal transport problems as well as to the far field refractor problem in
nonimaging optics.

1 Introduction
The problem of optimal transport [45] is strongly related to the Monge-Ampère equation [30]:
under suitable assumptions, the potential function which solves an optimal transport problem is
also solution to the Monge-Ampère equation associated with this problem, equipped with the
relevant boundary condition [20]. Some problems in nonimaging optics are also described by
Monge-Ampère equations, among which some fit in the framework of optimal transport [12,30]
and some do not [31,34].

Let us outline some approaches to the numerical resolution of optimal transport problems.
One may solve an entropic regularization of a discrete optimal transport problem using Sinkhorn’s
iterations [17]. The Benamou-Brenier method [2] is based on an extension of the optimal transport
problem, with an added time variable. Some methods were also developed to solve semi-discrete
optimal transport problems [33], and applied to problems in nonimaging optics [18]. Finally,
one may solve numerically the Monge-Ampère equation associated with the considered optimal
transport problem, as suggested in this paper and previously in [4,26]. One benefit of this last
approach is that, as illustrated by our numerical experiments in the setting of nonimaging optics in
section 6.5, it can be applied to optimal transport problems with various cost functions, provided
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that one uses a numerical scheme capable of handling Monge-Ampère equations with arbitrary
coefficients. Another benefit is that convergence results may be established using the theory of
monotone schemes for degenerate elliptic partial differential equations [1]. Note however that
establishing theoretical guarantees is more complicated when considering general cost functions,
and in this paper our convergence proof only applies in the setting of a quadratic transport cost.

We design a monotone finite difference discretization of the Monge-Ampère equation

det+
(
D2u(x)−A(x,Du(x))

)
= B(x,Du(x)) in X, (1)

where X is an open bounded subset of Rd containing the origin and A and B are bounded
functions on X ×Rd, whose values are respectively symmetric matrices and nonnegative numbers,
A and B1/d being Lipschitz continuous with respect to their second variables uniformly with
respect to their first variables, and A being continuous with respect to both its variables. For any
symmetric matrix M of size d, we denoted

det+M :=

{
detM if M � 0,

−∞ else.

(We use the Loewner order on the space of symmetric matrices: M1 �M2 if M1 −M2 is positive
semidefinite. From now on, we denote respectively by Sd, S+d , and S

++
d the sets of symmetric,

symmetric positive semidefinite, and symmetric positive definite matrices of size d.)
Since we consider Monge-Ampère equations which are related to the problem of optimal

transport, see section 5.1 and Remark 5.1, we also have to discretize the relevant boundary
condition, described in section 1.2. We prove the existence of solutions, under suitable assumptions,
to the proposed finite difference scheme. We also prove the convergence of solutions to this
scheme, but only in the setting of quadratic optimal transport, where the function A is identically
zero and the function B is separable in the form B(x, p) = f(x)/g(p).

The Monge-Ampère equation is degenerate elliptic, meaning that it may be written in the
form

FMA(x,Du(x), D2u(x)) = 0 in X, (2)

where the operator FMA : X × Rd × Sd → R is degenerate elliptic, that is, nondecreasing with
respect to its last variable: FMA(x, p,M1) ≤ FMA(x, p,M2) ifM1 �M2. The degenerate ellipticity
property has a discrete counterpart which we call monotonicity, see Definition 2.5. Convergence of
monotone schemes for degenerate elliptic equations may often be proved using a general argument,
which was introduced in [1]. We use the fundamental part of this argument, see Theorem 2.7. As
we discuss below Theorem 2.7, the full convergence result stated in [1] requires the approximated
equation to satisfy a strong comparison principle which does not hold for the Monge-Ampère
equation equipped with the boundary condition (24). Therefore, in order to prove Theorem 5.25,
our convergence result in the setting of quadratic optimal transport, we need to establish an
appropriate substitute to this comparison principle, in the form of Theorems 5.11 and 5.12.

One way to define the operator FMA(x, p,M) so that it is both degenerate elliptic and
consistent with (1) would be as

B(x, p)− det+(M −A(x, p)). (3)

This is not the definition we use, however. The reason is that there is no obvious way to build a
monotone scheme by directly discretizing (3).

Instead, we use strategies described in [35, 36] to reformulate the Monge-Ampère equation
in the form (2), where FMA is a supremum of semilinear operators (see also Proposition 5.8
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for a more detailed description of what follows). First, note that formally, solutions to the
Monge-Ampère equation satisfy the admissibility constraint

D2u(x) � A(x,Du(x)) in X, (4)

since otherwise the left-hand side in (1) would be equal to −∞. For any symmetric positive
semidefinite matrix M , it holds that

d(detM)1/d = inf
D∈S++

d
detD=1

〈D,M〉 = inf
D∈S++

d

Tr(D)=1

(detD)−1/d〈D,M〉, (5)

where 〈D,M〉 := Tr(DM). Choosing M = D2u(x) − A(x,Du(x)) yields the two following
reformulations of the Monge-Ampère equation (1):

B(x,Du(x))− inf
D∈S++

d
detD=1

(
〈D, D2u(x)−A(x,Du(x))〉

d

)d
= 0 (6)

and alternatively, following [23],

max
D∈S+

d

Tr(D)=1

LD
(
B(x,Du(x)), D2u(x)−A(x,Du(x))

)
= 0 in X, (7)

where for any symmetric matrices D and M and nonnegative number b,

LD(b,M) := db1/d(detD)1/d − 〈D,M〉.

Note that the maximum in (7) is attained, as the maximum over a compact set of the continuous
function D 7→ LD(b,M) (this function is also concave, by the Minkowski determinant inequality).
On the contrary, the parameter set of the infimum in (6) is not compact. Both reformulations
enforce the admissibility constraint (4): for instance in (7), for any unit vector e ∈ Rd, choosing
D = e⊗ e in the maximum yields the inequality〈

e,
(
D2u(x)−A(x,Du(x))

)
e
〉
≥ 0,

from which it follows that D2u(x) � A(x,Du(x)).
The numerical scheme that we study in this paper is a discretization of (7). Hence we define

the operator FMA in (2) by

FMA(x, p,M) := max
D∈S+

d

Tr(D)=1

LD(B(x, p),M −A(x, p)). (8)

1.1 Discretization of the Monge-Ampère equation
For any discretization step h > 0, we discretize the operator FMA on a grid Gh ⊂ X ∩ hZd.
Denoting by dH the Hausdorff distance between compact subsets of Rd, which we recall is defined
by

dH(K1,K2) := max

{
max
x∈K1

min
y∈K2

|x− y|, max
x∈K2

min
y∈K1

|x− y|
}
, (9)
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we will assume that
lim
h→0

dH
(
∂X ∪ ((X ∩ hZd) \ Gh), ∂X

)
= 0, (10)

or equivalently that if K ⊂ X is compact, then for sufficiently small h > 0 one has K ∩ hZ2 ⊂ Gh.
We will also need the technical assumption (42) of uniform connectedness of the grid Gh.

Before introducing the discretization of FMA, we need to define some finite difference operators.
For any function u : Gh → R, point x ∈ Gh, and vector e ∈ Zd, we define

T ehu[x] :=

{
u[x+ he] if x+ he ∈ Gh,
+∞ else,

(11)

δehu[x] :=
T ehu[x]− u[x]

h
, ∆e

hu[x] :=
T ehu[x] + T−eh u[x]− 2u[x]

h2
. (12)

The constant +∞ in the definition of T eh is related to the way we recommend discretizing the
optimal transport boundary condition, discussed in section 1.2.

In the whole paper, we denote by (e1, . . . , ed) the canonical basis of Zd. For any function
u : Gh → R and point x ∈ Gh, we define the Laplacian approximation and, whenever it makes
sense, the centered gradient approximation

∆hu[x] :=

d∑
i=1

∆ei
h u[x], Dhu[x] :=

(
δeih u[x]− δ−eih u[x]

2

)
1≤i≤d

. (13)

We use Lax-Friedrichs approximations of the gradient of u in A(x,Du(x)) and B(x,Du(x)). To
this end, we let amin ≤ 0, aLF ≥ 0, and bLF ≥ 0 be three constants independent of h. We will
assume that for any x ∈ X and p, p′ ∈ Rd,

A(x, p) � aminId, (14)
|A(x, p)−A(x, p′)|2 ≤ aLF|p− p′|1, (15)

|B(x, p)1/d −B(x, p′)1/d| ≤ bLF|p− p′|1. (16)

For any function u : Gh → R, point x ∈ Gh, and vector e ∈ Zd, we define

Aehu[x] :=

{
amin|e|2 ∨

(
〈e,A(x,Dhu[x])e〉 − h

2aLF|e|
2∆hu[x]

)
if ∆hu[x] < +∞,

amin|e|2 else,
(17)

Bhu[x] :=

{
0 ∨

(
B(x,Dhu[x])1/d − h

2 bLF∆hu[x]
)d

if ∆hu[x] < +∞,
0 else.

(18)

(In the whole paper, we denote respectively by a∨ b and a∧ b the maximum and the minimum of
two real numbers a and b.) For any family v = (vi)1≤i≤I of vectors of Zd and any γ ∈ RI , we
define

Dv(γ) :=

I∑
i=1

γivi ⊗ vi.

Finally, for any function u : Gh → R, point x ∈ Gh, and family v of vectors of Zd, we define

∆v
hu[x] := (∆e

hu[x])e∈v, Avhu[x] := (Aehu[x])e∈v. (19)
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For any h > 0, let Vh be a set of families of size d(d+ 1)/2 of vectors of Zd such that

lim
h→0

dH

(
{Dv(γ) | v ∈ Vh, γ ∈ Rd(d+1)/2

+ , Tr(Dv(γ)) = 1}, {D ∈ S+d | Tr(D) = 1}
)

= 0. (20)

Equivalently, if K ⊂ S++
d is compact, then for sufficiently small h > 0 each element of K can be

written as Dv(γ) where v ∈ Vh and γ ∈ Rd(d+1)/2
+ . We will also need to assume that

lim
h→0

hmax
v∈Vh

max
e∈v
|e| = 0, (21)

and that for any h > 0,
e1 ∈

⋃
v∈Vh

⋃
e∈v
{±e}, (22)

where we recall that e1 denotes the first vector of the canonical basis of Rd. We discretize FMA

by the operator ShMA : RGh → RGh defined by

ShMAu[x] := max
v∈Vh

max
γ∈Rd(d+1)/2

+

Tr(Dv(γ))=1

Lv,γ(Bhu[x],∆v
hu[x]−Avhu[x]), (23)

where for any family v = (vi)1≤i≤I of vectors of Zd, γ ∈ RI+, b ≥ 0, and m ∈ (R ∪ {+∞})I ,

Lv,γ(b,m) := db1/d(detDv(γ))1/d − 〈γ,m〉.

Coefficients of γ are required to be nonnegative in order for the discretization to result in a
numerical scheme which satisfies the monotonicity property (defined rigorously in Definition 2.12).
Note that the constraint Tr(Dv(γ)) = 1 may be rewritten as

∑d(d+1)/2
i=1 γi|vi|2 = 1.

In dimension d = 2, we recommend choosing Vh as a set of superbases of Z2:

Definition 1.1. A pair v = (v1, v2) of vectors of Z2 is a basis of Z2 if det(v1, v2) = ±1. A triple
v = (v1, v2, v3) of vectors of Z2 is a superbase of Z2 if v1 + v2 + v3 = 0 and det(v1, v2) = ±1.

Note that in the definition above, the constraint det(v1, v2) = ±1 is equivalent to det(v2, v3) =
±1 or det(v1, v3) = ±1. We explain in Appendix B how a set Vh of superbases of Z2 satisfying
the above assumptions may be constructed, using tools from the fields of lattice geometry and
arithmetic known as the Selling’s decomposition [43] and the Stern-Brocot tree [9]. We prove
in section 4 that when choosing Vh in this way, the second maximum in (23) admits a closed-
form expression, at least when no infinite values are involved (infinite values may stem from
the handling of the boundary condition, see (11), and a simple modification of the formula of
Theorem 1.2 allows to compute the maximum in this case, by excluding finite differences whose
value is infinite):

Theorem 1.2. If v = (v1, v2) is a basis of Z2, then for any b ≥ 0 and m ∈ R2,

max
γ∈R2

+

Tr(Dv(γ))=1

Lv,γ(b,m) = H̃v(b,m),

where

H̃v(b,m) :=

(
b

|v1|2|v2|2
+

(
m1

2|v1|2
− m2

2|v2|2

)2
)1/2

− m1

2|v1|2
− m2

2|v2|2
.
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If v = (v1, v2, v3) is a superbase of Z2, then for any b ≥ 0 and m ∈ R3,

max
γ∈R3

+

Tr(Dv(γ))=1

Lv,γ(b,m) = Hv(b,m) ∨ max
1≤i<j≤3

H̃(vi,vj)(b,m),

where

Hv(b,m) :=

{
(b+ 〈m,Qvm〉)1/2 + 〈wv,m〉 if Qvm+ (b+ 〈m,Qvm〉)1/2wv <vec 0,

−∞ else,

Qv :=
1

4

 |v2|2|v3|2 〈v1, v2〉|v3|2 〈v1, v3〉|v2|2
〈v1, v2〉|v3|2 |v1|2|v3|2 〈v2, v3〉|v1|2
〈v1, v3〉|v2|2 〈v2, v3〉|v1|2 |v1|2|v2|2

 , wv :=
1

2

〈v2, v3〉〈v1, v3〉
〈v1, v2〉

 ,

and, for a ∈ Rd, we write a <vec 0 (respectively a >vec 0) if all components of a are negative
(respectively positive).

1.2 Discretization of the boundary condition
In the setting of optimal transport, the relevant problem for the Monge-Ampère equation (1) is
the second boundary value problem, which involves the optimal transport boundary condition

Du(x) ∈ P (x), ∀x ∈ X, (24)

where for any x ∈ X, P (x) is an open bounded convex nonempty subset of Rd. We assume that
P (x) depends continuously on x, for the Hausdorff distance dH over compact subsets of Rd whose
definition we recalled in (9). In the particular setting of quadratic optimal transport, in which we
will prove convergence of the proposed numerical scheme, the set P (x) does not depend on the
variable x.

Note that despite being called a boundary condition, the constraint (24) involves the whole
domain X. Some numerical approaches for solving the second boundary value problem, although
not the one that we describe in this paper, rely on the fact that, in some cases, the constraint
(24) can be reformulated in a way that only involves the boundary ∂X of the domain X, see for
instance [4].

For now, let us consider the class of numerical schemes for equations (1) and (24) that are
defined, for any discretization step h > 0, by an operator ShMABV2 : RGh → RGh , and may be
written as

ShMABV2u[x] = 0 in Gh. (25)

One property of equations (1) and (24) is that their expressions depend only on derivatives of
the function u and not on u itself, and therefore that the set of solutions is stable by addition of
a constant. Accordingly, we say that the operator ShMABV2 and the scheme (25) are additively
invariant if for any function u : Gh → R and real number ξ, ShMABV2(u+ ξ) = ShMABV2u.

We adapt the approach introduced in [26] to build an operator ShMABV2 suitable for (25). The
idea is to build ShMABV2 as a maximum of ShMA and of a monotone discretization ShBV2 : RGh → RGh
of the left-hand side in a degenerate elliptic formulation of (24).

We use the following formulation of (24), initially introduced in [5]:

FBV2(x,Du(x)) ≤ 0 in X, (26)
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where FBV2 : X × Rd → R is defined by

FBV2(x, p) := max
|e|=1

(〈e, p〉 − σP (x)(e)). (27)

(We denote by σP (x) the support function of the convex set P (x): for any e ∈ Rd, σP (x)(e) :=
supp∈P (x)〈e, p〉. Formally, if p belongs to the boundary ∂P (x) of P (x), then the maximum in the
definition of FBV2 is attained when e is the unit outer normal of ∂P (x) at the point p.)

For any function u : Gh → R, point x ∈ Gh, and vector e ∈ Rd, we define the upwind finite
difference

De
hu[x] :=

d∑
i=1

((0 ∧ 〈e, ei〉)δeih u[x]− (0 ∨ 〈e, ei〉)δ−eih u[x]),

using the convention 0× (+∞) = 0 (this convention is only needed in the immediate neighborhood
of ∂X, where δ±eih u[x] may take infinite values). Then we define ShBV2 and ShMABV2 as

ShBV2u[x] := max
|e|=1

(De
hu[x]− σP (x)(e)), (28)

ShMABV2u[x] := ShMAu[x] ∨ ShBV2u[x].

In this setting, the scheme (25) is additively invariant.
Additively invariant schemes of the form (25) are not well-posed: their sets of solutions are

stable by addition of a constant, thus not a singleton. Moreover they often have no solutions. One
way to see this formally is that a well-posed scheme would need an additional equality to guarantee
uniqueness of solutions, for instance u[0] = 0, but that then there would be one more equality
than unknowns in the scheme. In the continuous setting, equations whose sets of solutions are
stable by addition of a constant often admit solutions if and only if their coefficients satisfy some
nonlocal condition, such as the mass balance condition (56) in the case of the Monge-Ampère
equation of optimal transport; however, there may be no obvious discrete counterpart to this
condition. See section 2 for further discussion of this issue.

In order to get around this difficulty, we solve an altered form of the scheme (25), following
the approach used in the numerical experiments of [4] (note that we present a fully detailed
mathematical analysis of this alteration, in contrast with [4] where it was introduced essentially
as a numerical trick). We add an unknown α to the scheme, which must be a real number. For
fixed α, we define the operators Sh,αMA : RGh → RGh and Sh,αMABV2 : RGh → RGh as

Sh,αMAu[x] := ShMAu[x] + α, Sh,αMABV2u[x] := Sh,αMAu[x] ∨ ShBV2u[x]. (29)

The scheme that we actually solve, with respect to the extended unknown (α, u), is

Sh,αMABV2u[x] = 0 in Gh. (30)

1.3 Main contributions and relation to previous works
We introduce the numerical scheme (30) for the Monge-Ampère equation (1), equipped with the
boundary condition (24). We prove the existence of solutions to a class of monotone additively
invariant numerical schemes featuring an additional unknown α ∈ R as in (30), see section 2,
and we show, in section 3, that the scheme (30) belongs to this class. This scheme is based on
a discretization of the reformulation (7) of the Monge-Ampère equation. We prove in section 4
that this discretization admits a closed-form expression, as stated in Theorem 1.2. We prove
convergence of the scheme in the setting of quadratic optimal transport, see section 5; convergence

7



in the setting of more general optimal transport problems remains an open problem. We present in
section 6 some numerical experiments, including an application to the far field refractor problem
in nonimaging optics.

The closed-form expression obtained in Theorem 1.2 makes the implementation of the scheme
particularly efficient, since no discretization of the parameter set of the maximum in (7) is needed.
While to our knowledge the proposed discretization is the first one to admit such a closed-form
expression among those that are based on the reformulation (7) of the Monge-Ampère equation, it
is to be related to the MA-LBR scheme, introduced in [3] in the setting of the Dirichlet problem
for the Monge-Ampère equation when the function A is identically zero, and to the scheme we
introduced in [8] for the Pucci equation. Both of the above-mentioned schemes involve the notion
of superbases of Z2. We prove in Appendix A that the MA-LBR scheme is a discretization of (6),
although it was not introduced as such in [3].

As opposed to (6), the reformulation (7) has the benefit that its left-hand side remains finite
even when (4) is not satisfied. Thus schemes based on it are more stable numerically than those
based on (6), and can handle the degenerate case of functions B : X × Rd → R+ which are not
everywhere positive, in which case the solutions to the Monge-Ampère problem typically satisfy
(4) but not its strict variant. On the contrary, the MA-LBR scheme only applies in the case
B > 0, and in addition solving it using the damped Newton requires using extremely small steps
so that the constraint (4) remains satisfied along the iterations. This behavior of the Newton
method is illustrated numerically in section 6.4, and does not occur with the scheme introduced
in this paper.

Numerical schemes based on (7) were previously introduced in [23], and then in [14], although
only in the setting of the Dirichlet problem for the Monge-Ampère equation when A = 0. In those
papers, no counterpart of Theorem 1.2 was proved, hence the parameter set of the maximum in
(7) had to be discretized.

Convergence of schemes for the second boundary value problem was previously studied in [4]
and in [26] in the setting of the quadratic optimal transport problem. Schemes considered in
those two papers were based on the MA-LBR scheme introduced in [3], and adapted in order to
discretize the boundary condition (24).

In [4], convergence of a scheme of the form (25) was proved, but existence of solutions to
this scheme was not. It turns out that solutions typically do not exist, due to the scheme being
additively invariant. The approach used to solve the scheme in the numerical experiments was
equivalent to adding an unknown α ∈ R as in (30), but the proof of convergence was not extended
to this setting.

Remark 1.3 (Applicability of Theorem 2.15 to the scheme in [4]). The work [4] establishes the
convergence of the solutions to a discretization of the optimal transport problem, under the
assumption that they exist. The latter point is dubious, as discussed above and acknowledged
by the authors of [4], and for that reason an altered variant of the scheme is considered in
the numerical experiments section, featuring an additional unknown which is analogous to the
parameter α ∈ R in (29); the existence of solutions to this variant is observed numerically in [4],
but left as an open problem from a theoretical standpoint.

While the detailed analysis of the scheme in [4] is out of the scope of this paper, let us
discuss the applicability to this scheme of the assumptions of our existence result, Theorem 2.15.
Those assumptions are continuity, monotonicity and stability, in the sense of Definition 2.12.
The continuity of the scheme in [4] is easy to prove, since no infinite values are involved in the
definition of the scheme operator, contrary to the scheme that we introduce in this paper. The
monotonicity property is not satisfied by the scheme recommended by default in [4] due to the
centered discretization of the gradient of the unknown u; however, a monotone Lax-Friedrichs
discretization was described as an alternative in [4, section 4.4]. The remaining open question
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is the stability of the scheme in [4], again in the sense of Definition 2.12; we could not see an
immediate proof of this property, but one could expect to develop one based on the sketches of
the proofs of Proposition 3.6 and also of [4, Proposition 4.3, item (5)], which is a result about the
Lipschitz continuity of the solutions to this scheme.

Another scheme of the form (25) is studied in [26]. In that work, a Dirichlet boundary
condition is enforced on ∂X, which in our setting would amount to replacing +∞ with some fixed
constant C ∈ R in (11). Therefore the scheme considered in [26] is not additively invariant. The
Dirichlet boundary condition is to be understood in a weak sense (the one of viscosity solutions,
see Definition 2.3). It may formally be simplified to u(x) ≤ C on ∂X, with equality at some
point x∗ ∈ ∂X. An important assumption in [26] is that the scheme satisfies a property of
underestimation, discussed in Remark 1.4. Under this assumption, the existence and convergence
of solutions is proved. The property of underestimation is satisfied in the case of quadratic optimal
transport at the cost of a careful handling of the constraint (24), but it does not seem obvious
that it is satisfied for similar schemes in the case of more general optimal transport problems,
with A 6= 0 in (1). No numerical experiments were performed in [26]. In our experience, the
scheme introduced in that paper has the drawback that the numerical error of its solutions tends
to be unevenly distributed. This effect is related to the particular role played in the discretization
by the point x∗ ∈ ∂X where the Dirichlet condition is satisfied in the classical sense, which leads
to numerical artifacts and tends to decrease the accuracy of the scheme.

In our proof of convergence of the scheme (30), we use the arguments introduced in [26] when
appropriate. However, the property of underestimation is not required in our setting.
Remark 1.4 (Role of the property of underestimation in [4,26], and substitutes used in this paper).
In each of the papers [4, 26], the theoretical analysis of the considered scheme uses the fact that
this scheme satisfies some property of underestimation. The schemes considered in those papers
are both based on the MA-LBR discretization [3], represented in Appendix A by the operator Λh
in (76), of the Monge-Ampère operator u 7→ detD2u(·).

The property of underestimation used in [4] is formulated as the fact that the operator Λh
overestimates the Lebesgue measure of the subgradient, in the sense that Λhu[x] ≥ h−d|∂ũ(x)| for
any function u : Gh → R and for any suitable point x ∈ Gh, where ũ : Rd → R denotes the convex
envelope of u. This property is described in more detail in [4, Lemma 4.2]. Whether this property
could be extended to the setting of the scheme (30) considered in this paper is not clear, since this
scheme is based on a discretization of the reformulation (2) of the Monge-Ampère equation, which
does not feature directly the Monge-Ampère operator u 7→ detD2u(·). The arguments in the
convergence analysis in [4] that use the property of underestimation are based on the construction
of solutions to semi-discrete optimal transport problems, and are completely different from the
arguments in this paper, which are based on the theory of convergence of monotone schemes to
viscosity solutions to degenerate elliptic equations.

In [26], two distinct definitions of the property of underestimation are given. The first
one [26, Definition 3.8] is similar to the definition in [4]. The second one [26, Remark 3.9] asks
that ShMABV2u[x] ≤ FMABV2u(x) in Gh, for all smooth convex functions u, where ShMABV2 is the
discrete operator describing the whole scheme and FMABV2 is its continuous counterpart. The
second definition is claimed to correctly approximate the first one at small grid scales.

The property of underestimation is not only used in the convergence analysis in [26], but it
is also crucial for the proof [26, Lemma 3.12], which guarantees the existence of a subsolution
to the scheme in [26] and is an intermediary step for proving the existence of solutions. One
technique that is often used to build a subsolution to a scheme is to consider a strict subsolution
to the continuous problem, and to use the consistency of the scheme to show that it is also a
subsolution to the scheme. However in the setting of [26] no strict subsolutions to the continuous
problem may exist, as shown by some counterpart to Theorem 5.11 in this setting (with α = 0,
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see [26, Theorem 2.1]). Formally, the property of underestimation allows one to consider a solution
to the continuous problem instead of a strict subsolution in the argument above (in [26], a slight
variation of the solution, constructed by solving a semi-discrete optimal transport problem, is
considered instead for technical reasons). In our setting, Theorem 5.11 does not prevent us to
build a strict subsolution to the continuous problem for some value α < 0, which is sufficient in
order to apply our existence result Theorem 2.15, hence we have no need for the underestimation
property at this stage.

Let us finally discuss why the property of underestimation is needed in the proof of the
convergence result [26, Theorem 3.11]. In the standard theory of convergence of monotone
schemes [1], it is shown that some appropriately defined upper and lower limits u and u of
sequences of solutions to the scheme are respectively a subsolution and supersolution to the
continuous problem (see Theorem 2.7). In [26], the counterpart [26, Theorem 2.1] to Theorem 5.11
is used to deduce that the subsolution u is actually a solution to the Monge-Ampère problem.
From this point, it remains to prove that u = u. In the general setting of monotone schemes, this
is often done by using a comparison principle for the continuous problem, but such a comparison
principle is lacking in the setting of [26]. Another strategy is to prove that the solutions to
the scheme are sufficiently regular so that the limits u and u coincide by definition, at least
up to extraction of a subsequence: this is what we do in this paper, see our stability result
Proposition 3.6. In [26], no such stability result is proved, and the arguments used instead to
show that u = u rely on the assumption that the scheme satisfies the property of underestimation,
indirectly through the use of the subsolutions to the scheme built in the previous paragraph.

Note that the scheme (30), and its continuous counterpart (43) below, which both feature an
additional unknown or parameter α ∈ R, fit in the framework of eigenvalue problems recently
studied in [27]. Although our proof of convergence only applies to Monge-Ampère equation in
the setting of quadratic optimal transport, our existence result, Theorem 2.15, is applicable to
other such eigenvalue problems, as illustrated by the examples in section 2.

2 Monotone additively invariant schemes

2.1 Degenerate elliptic additively invariant equations
In this section, we study numerical schemes for a general degenerate elliptic equation of the form

F (x,Du(x), D2u(x)) = 0 in X. (31)

Typically, F is discontinuous and F (x, p,M) is defined differently depending on whether x belongs
to X or to ∂X, in order to take into account the boundary condition in equation (31). The
equation without the boundary condition would then be

F (x,Du(x), D2u(x)) = 0 in X. (32)

Let us recall the definition of degenerate ellipticity:

Definition 2.1 (Degenerate ellipticity). The operator F : X × Rd × Sd → R, and the equations
(31) and (32), are degenerate elliptic if F is nonincreasing with respect to its last variable for the
Loewner order: F (x, p,M1) ≤ F (x, p,M2) if M1 �M2.

We say that equations (31) and (32) are additively invariant since, for reasonable notions
of solutions, their sets of solutions are stable by addition of a constant, due to the fact that at
any point x, the left-hand sides of those equations depend only on the derivatives Du(x) and
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D2u(x) of the function u, and not on its value u(x). This is not a standard property, and we will
show that it is a source of difficulty in the design of monotone numerical schemes. Typically, an
additively invariant equation only has solutions if its coefficients are well-chosen and satisfy a
particular nonlocal property.
Example 2.2. Throughout this section, we illustrate our definitions and results with Poisson’s
equation on the one-dimensional domain X = (−1, 1), with the zero Neumann boundary condition:{

u′′(x) = ψ(x) in (−1, 1),

u′(−1) = u′(1) = 0,

where ψ : [−1, 1]→ R is an integrable function. We write this equation in the form

Fex(x, u′(x), u′′(x)) = 0 in [−1, 1], (33)

where the degenerate elliptic operator Fex : [−1, 1]× R× R→ R is defined by

Fex(x, p,m) :=


−p if x = −1,

p if x = 1,

ψ(x)−m else.

(The choice Fex(x, p,m) = ψ(x)−m, rather than Fex(x, p,m) = m−ψ(x), is required in order for
the equation (33) to be degenerate elliptic. The choice Fex(−1, p,m) = −p and Fex(1, p,m) = p,
rather than Fex(−1, p,m) = p and Fex(1, p,m) = −p, is not dictated by the degenerate ellipticity
property, but is the standard formulation of Neumann boundary conditions for degenerate elliptic
equations, and the one which allows a comparison principle to hold in the context of more
favorable equations such as ψ − u′′ + u = 0, see [16, section 7.B].) The equation (33) only has
solutions (respectively subsolutions, supersolutions) if

∫ 1

−1 ψ(x) dx = 0 (respectively ≤ 0, ≥ 0),
which we assume. Notice the similarity with the mass balance condition (56) which occurs in the
setting of optimal transport.

An appropriate notion of solutions for degenerate elliptic equations, and for the study of
discretizations of such equations, is the one of viscosity solutions. Before defining them, let us
recall the definitions of the upper semicontinuous envelope F ∗ and lower semicontinuous envelope
F∗ of a function F : E → R, E being a subset of Rn: for any x ∈ E,

F ∗(x) := lim sup
x′→x

F (x), F∗(x) := lim inf
x′→x

F (x).

Definition 2.3 (Viscosity solution). A function u : X → R is a viscosity subsolution to (31) if (i)
it is upper semicontinuous and (ii) for any function ϕ in C2(X) and local maximum x of u−ϕ in
X,

F∗(x,Dϕ(x), D2ϕ(x)) ≤ 0.

It is a viscosity supersolution if (i) it is lower semicontinuous and (ii) for any function ϕ in C2(X)
and local minimum x of u− ϕ in X,

F ∗(x,Dϕ(x), D2ϕ(x)) ≥ 0.

It is a viscosity solution if it is both a viscosity subsolution and a viscosity supersolution. The
same definitions, with X replaced by X, apply to equation (32).

Note that if a viscosity subsolution (respectively supersolution) u to (31) is twice differentiable
at some point x ∈ X and if F∗(x,Du(x), D2u(x)) = F ∗(x,Du(x), D2u(x)), then u is a classical
subsolution (respectively supersolution) to (31) at the point x.
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2.2 Discretization
For any discretization step h > 0, let Gh be a finite nonempty subset of X containing the origin.
In the rest of this paper, it is required that Gh be a subset of the Cartesian grid X ∩hZd; however,
this is not necessary in this section. What will be required in our definition of consistency is that

lim
h→0

dH(Gh, X) = 0. (34)

Note that in the case that Gh is included in X ∩ hZd, then (34) is implied by (10).
We represent discretizations of the operator F by operators S : RGh → RGh that are additively

invariant, according to the following definition:

Definition 2.4. An operator S : RGh → RGh is additively invariant if for any u : Gh → R, ξ ∈ R,
and x ∈ Gh, it holds that

S(u+ ξ)[x] = Su[x].

For now, we let Sh : RGh → RGh be an additively invariant operator, for any h > 0, and we
consider a numerical scheme of the form

Shu[x] = 0 in Gh. (35)

Definition 2.5. The scheme (35) is:

• Monotone if for any h > 0, x ∈ Gh, and u, u : Gh → R such that u[x] = u[x] and u ≥ u in
Gh, it holds that Shu[x] ≤ Shu[x].

• Consistent with equation (31) if (34) holds and for any ϕ ∈ C∞(X) and x ∈ X,

lim sup
h>0, h→0
x′∈Gh, x′→x

Shϕ[x′] ≤ F ∗(x,Dϕ(x), D2ϕ(x)),

lim inf
h>0, h→0
x′∈Gh, x′→x

Shϕ[x′] ≥ F∗(x,Dϕ(x), D2ϕ(x)).

Remark 2.6. Schemes of the form (35) are typically called degenerate elliptic if for any h > 0,
x ∈ Gh, and u, u : Gh → R such that u[x] ≤ u[x] (rather than u[x] = u[x] in Definition 2.5) and
u ≥ u in Gh \ {x}, it holds that Shu[x] ≤ Shu[x]. In our setting, monotonicity and degenerate
ellipticity are equivalent, since the operators Sh are additively invariant.

A framework is outlined in [1] for the proof of convergence of monotone schemes. The following
fundamental result follows directly from the proof of [1, Theorem 2.1]:

Theorem 2.7. Assume that there exist a sequence (hn)n∈N of discretization steps hn > 0
converging to zero and a sequence (un)n∈N of solutions un : Ghn → R to (35) with h = hn such
that un[x] is bounded, uniformly over n ∈ N and x ∈ Ghn . If (35) is monotone and consistent
with equation (31), then functions u, u : X → R defined by

u(x) := lim sup
n∈N, n→+∞
x′∈Ghn , x

′→x

un[x′], u(x) := lim inf
n∈N, n→+∞
x′∈Ghn , x

′→x

un[x′], (36)

are respectively a viscosity subsolution and supersolution to (31).
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The definition of consistency in Definition 2.5 is slightly simpler than the one in [1], due to
the assumption that operators Sh are additively invariant. In the framework of [1], in which the
left-hand side in (31) may also depend on u(x), a strong comparison principle, that is, a result
stating that viscosity subsolutions to (31) are always less than viscosity supersolutions, is used
after applying Theorem 2.7 to prove that u ≤ u, which allows to conclude that u = u, since u ≥ u
by definition. Obviously, no strong comparison principle may hold if the set of viscosity solutions
is nonempty and stable by addition of a constant. In our proof of convergence in the setting of
quadratic optimal transport, we use Theorems 5.11 and 5.12 as a substitute to this comparison
principle.

An important difficulty that we encounter is that numerical schemes of the form (35) typically
have no solutions.

Example 2.8. Let X = [−1, 1]. For any h > 0, we let h̃ := dh−1e−1, Gh := [−1, 1] ∩ h̃Z, and we
define the additively invariant operator Shex : RGh → RGh by

Shexu[x] :=


(u[−1]− u[−1 + h̃])/h̃ if x = −1,

(u[1]− u[1− h̃])/h̃ if x = 1,

ψ(x)− (u[x+ h̃] + u[x− h̃]− 2u[x])/h̃2 else.

Then the scheme
Shexu[x] = 0 in Gh

is monotone and consistent with equation (33). Solving this scheme is equivalent to solving a
square linear system, since the scheme operator Shex : RGh → RGh is an affine map. However, this
linear system is noninvertible, since all constant functions belong to the kernel of the associated
linear operator.

To get around this difficulty, we add a parameter α ∈ R to the equation (31), yielding a new
equation

Fα(x,Du(x), D2u(x)) = 0 in X, (37)

where for any α ∈ R, Fα : X × Rd × Sd → R is a given operator, typically degenerate elliptic.
The idea is to choose Fα so that F 0 = F and (37) has no viscosity subsolutions when α > 0 and
no viscosity supersolutions when α < 0.

Example 2.9. For any α ∈ R, we define Fαex : [−1, 1]× R× R→ R by

Fαex(x, p,m) :=


−p if x = −1,

p if x = 1,

ψ(x)−m+ α else.

Then equation
Fαex(x, u′(x), u′′(x)) = 0 in X

coincides with (33) when α = 0, and only has solutions (respectively subsolutions, supersolutions)
if
∫ 1

−1 ψ(x) dx = −2α (respectively ≤ −2α, ≥ −2α). Recall that we assumed that
∫ 1

−1 ψ(x) dx = 0.

Accordingly, we add an unknown α ∈ R to the numerical scheme. For any h > 0 and α ∈ R,
we let Sh,α : RGh → RGh be an additively invariant operator, and we consider the scheme

Sh,αu[x] = 0 in Gh. (38)
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Example 2.10. In the setting of Example 2.8, for any h > 0 and α ∈ R, we define Sh,αex : RGh → RGh
by

Sh,αex u[x] :=


(u[−1]− u[−1 + h̃])/h̃ if x = −1,

(u[1]− u[1− h̃])/h̃ if x = 1,

ψ(x)− (u[x+ h̃] + u[x− h̃]− 2u[x])/h̃2 + α else

(recall that h̃ := dh−1e−1). Then a solution (α, u) ∈ R× RGh to the scheme

Sh,αex u[x] = 0 in Gh

may easily be constructed explicitly.
The definition of solutions (α, u) ∈ R× RGh to (38) is obvious, but we will also need a notion

of subsolutions (we could define supersolutions similarly, but this will not be needed):

Definition 2.11 (Subsolution). Let h > 0. A pair (α, u) ∈ R× RGh is a subsolution to (38) if
Sh,αu[x] ≤ 0 in Gh.

Since α is an unknown of the scheme, and not simply a fixed parameter, Definition 2.5 needs
to be adapted to this new setting. We also define some other properties that the scheme (38)
may satisfy. Conceptually, the following definition is intended for schemes such that Sh,αu[x] is
nondecreasing with respect to α.

Definition 2.12. The scheme (38) is:

• Monotone if for any α ∈ R, the scheme (35) with Sh = Sh,α is monotone in the sense of
Definition 2.5.

• Consistent with the parametrized equation (37) if for any family of real numbers (αh)h>0

converging to some α ∈ R as h approaches zero, the scheme (35) with Sh = Sh,αh is
consistent with equation (37) in the sense of Definition 2.5.

• Continuous if for any small h > 0, the map R × RGh → RGh , (α, u) 7→ Sh,αu takes finite
values and is continuous.

• Stable if the following properties hold:

(i) For any small h > 0, there exists a subsolution (α, u) ∈ R× RGh to (38).
(ii) There exists a nonincreasing function ω : R→ R+ such that for any small h > 0, any

subsolution (α, u) ∈ R× RGh to (38), and any x1, x2 ∈ Gh, one has

|u[x1]− u[x2]| ≤ ω(α).

(iii) There exists α0 ∈ R such that for any small h > 0 and any subsolution (α, u) ∈ R×RGh
to (38), one has α ≤ α0.

(iv) There exists α1 ∈ R such that for any small h > 0 and any solution (α, u) ∈ R× RGh
to (38), one has α ≥ α1.

• Equicontinuously stable if it satisfies all items in the definition of stability above, with (ii)
replaced by the following:

(ii’) There exists a function ω : R×R+ → R+, nonincreasing with respect to its first variable
and satisfying limt→0 ω(α, t) = 0 for any α ∈ R, such that for any small h > 0, any
subsolution (α, u) ∈ R× RGh to (38), and any x1, x2 ∈ Gh, one has

|u[x1]− u[x2]| ≤ ω(α, |x1 − x2|).
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Note that the value α = 0 does not play a special role in Definition 2.12. The role of the
functions ω in the definitions of stability and equicontinuous stability is to allow schemes to
become unstable when α→ −∞.

Obviously, if (38) is equicontinuously stable, then it is stable. In the case of the scheme
considered in this paper for the Monge-Ampère equation, subsolutions will be established to
be uniformly Lipschitz continuous, which is stronger than equicontinuity, see the proof of
Proposition 3.6. In particular, the boundary condition u(x)−∞ = 0 on ∂X (to be understood in
the viscosity sense, as mentioned in section 1) does not induce a boundary layer.

Theorem 2.7 is easily adapted to the scheme (38):

Corollary 2.13. Assume that there exist a sequence (hn)n∈N of discretization steps hn > 0
converging to zero, a sequence (αn)n∈N of real numbers αn converging to some α ∈ R, and a
sequence (un)n∈N of functions un : Ghn → R such that (αn, un) is solution to (38) with h = hn
and un[x] is bounded, uniformly over n ∈ N and x ∈ Ghn . If (38) is monotone and consistent
with (37), then limits superior and inferior u, u : X → R defined as in (36) are respectively a
viscosity subsolution and supersolution to (37) in X.

If (38) is equicontinuously stable, then Corollary 2.13 is simplified by the fact that, by the
Arzelà-Ascoli theorem, sequences (αn)n∈N and (un)n∈N converge uniformly, up to extracting a
subsequence, to some α ∈ R, and to some continuous function u : X → R, which coincides with
the limits superior and inferior u and u for this subsequence.

2.3 Existence
Our main result in this section concerns existence of solutions to the scheme (38). The proof is
an adaptation of discrete Perron’s method to our setting.

Remark 2.14 (Discrete Perron’s method). In the context of this remark, let us consider a scheme of
the form (35) where the operator Sh : RGh → RGh is not necessarily additively invariant. Discrete
Perron’s method states that, if this scheme is monotone in the sense of Definition 2.5 and if, at
some fixed step size h > 0, the map Sh : RGh → RGh takes finite values and is continuous, then
the function ũ : Gh → R defined by

ũ[x] := sup{u[x] | u ∈ RGh , ∀x′ ∈ Gh, Shu[x′] ≤ 0} (39)

is a solution to the scheme, provided that this function takes finite values. While the discrete
version of Perron’s method is not as extensively described in the literature as its continuous
part [16, section 4], some of its variants are stated and proved in [40, Theorem 2.3] and [42,
Theorem 3.5]. Discrete Perron’s method is not directly applicable when the operator Sh is
additively invariant, since in this case one has ũ[x] = +∞ for all x ∈ Gh (unless the scheme does
not admit subsolutions, in which case ũ[x] = −∞ for all x ∈ Gh). In the proof of Theorem 2.15
below, we get around this difficulty by further restricting the set of admissible subsolutions u
considered in the supremum (39).

While we assume in Theorem 2.15 that the scheme (38) is stable in the sense of Definition 2.12,
this assumption may be relaxed, see Remark 2.16 below.

Theorem 2.15 (Existence). Assume that (38) is monotone, continuous, and stable. Then for
small h > 0, there exists a solution to (38).

Proof. We define the set

U := {(α, u) ∈ R× RGh | Sh,αu[x] ≤ 0 in Gh}
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of subsolutions to (38). Since we assumed that (38) is stable, U is nonempty and there exists
α ∈ R defined by

α := sup
(α,u)∈U

α. (40)

Let us show that there exists u : Gh → R such that (α, u) is a subsolution to (38). Let
((αn, un))n∈N be a maximizing sequence in the definition of α, and let α∗ := minn∈N αn. We
may assume, up to adding a constant to un, that un[0] = 0 for any n ∈ N. Then by stability,
|un[x]| = |un[x] − un[0]| ≤ ω(αn) ≤ ω(α∗), for any n ∈ N and x ∈ RGh . This means that the
sequence (un)n∈N is bounded in RGh and thus that it converges, up to extracting a subsequence,
to some function û : Gh → R. By continuity of the scheme, (α, û), as the limit of subsolutions
((αn, un))n∈N, is a subsolution to (38).

Among all functions u : Gh → R such that (α, u) is a subsolution to (38), we choose one which
maximizes the cardinality of the set G∗ := {x ∈ Gh | Sh,αu[x] < 0}. We will show that such a
function u may be turned into another function ũ : Gh → R such that (α, ũ) is a solution to (38),
by a maximization procedure similar to the construction of the function ũ in Remark 2.14.

One important difference between our proof and the classical proof of Perron’s method is that
in the classical proof, no specific subsolution u has to be used as a basis for constructing the
solution ũ. In particular the assumption about the maximal cardinality of the set G∗ is specific to
our setting.

Note that G∗ cannot be equal to Gh, since in this case, by continuity of the scheme, there
would exist α′ > α such that (α′, u) ∈ U (choose α′ close enough to α), and this would contradict
(40).

Knowing that G∗ 6= Gh, and using stability, we may define, for small ε > 0, the function
ũε : Gh → R by

ũε[x] := sup{u[x] | (α, u) ∈ U, u = u in Gh \ G∗, Sh,αu[x] ≤ −ε in G∗}. (41)

To ensure that the supremum above is the one of a nonempty set, we choose ε small enough so
that u itself is suitable choice of function u.

In the following two paragraphs, we show, using arguments from the classical proof of Perron’s
method, that (α, ũε) is a subsolution to (38) and that Sh,αũε[x] = −ε in G∗.

By continuity of the scheme, we may pass to the limit in maximizing sequences and deduce
that for any x ∈ Gh, there exists u : Gh → R such that (α, u) ∈ U , Sh,αu[x] ≤ −ε in G∗, ũε ≥ u in
Gh, and ũε[x] = u[x]. Then by monotonicity, Sh,αũε[x] ≤ Sh,αu[x]. It follows that (α, ũε) is a
subsolution to (38) and that Sh,αũε[x] ≤ −ε in G∗.

Let us show that Sh,αũε[x] = −ε in G∗. Assume that there exists x∗ ∈ G∗ so that Sh,αũε[x∗] <
−ε. For any δ > 0, we define ũε,δ : Gh → R by

ũε,δ[x] :=

{
ũε[x] + δ if x = x∗,

ũε[x] else.

By monotonicity, Sh,αũε,δ[x] ≤ Sh,αũε[x] for any x ∈ Gh \{x∗}, and by continuity, we may choose
δ small enough so that Sh,αũε,δ[x∗] ≤ −ε. This contradicts (41), since ũε,δ is a suitable choice
for u and ũε,δ[x∗] > ũε[x∗].

We now define ũ : Gh → R by
ũ[x] := lim

ε→0
ũε[x].

Note that the right-hand side is the limit of a bounded nondecreasing sequence. By continuity,
Sh,αũ[x] = 0 in G∗ and (α, ũ) is a subsolution to (38). Let us show that it is a solution. If it is not
the case, then there exists x∗ ∈ Gh \ G∗ such that Sh,αũ[x∗] < 0. By continuity, there exists ε > 0
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such that Sh,αũε[x∗] < 0. Since (α, ũε) is a subsolution to (38) and Sh,αũε[x] < 0 in G∗, this
contradicts the assumption that G∗ is of maximal cardinal. Thus (α, ũ) is necessarily a solution
to (38).

Remark 2.16. Since h > 0 is fixed in Theorem 2.15, the subsolution, the function ω, and the
number α0 in (i), (ii), and (iii) in the definition of stability of the scheme (Definition 2.12) only
need to exist for this fixed value of h. Also, (iv) is not needed.

3 Properties of the proposed scheme
In this section, we show that the scheme (30) satisfies the properties we defined in section 2. First
note that for any h > 0 and α ∈ R, the operator Sh,αMABV2 : RGh → RGh is additively invariant.

Proposition 3.1 (Monotonicity). Assume the Lipschitz regularity properties (15) and (16).
Then the scheme (30) is monotone, in the sense of Definition 2.12.

Proof. Let h > 0, α ∈ R, x ∈ Gh, and u, u : Gh → R be such that u[x] = u[x] and u ≥ u in Gh.
We need to show that

Sh,αMABV2u[x] ≤ Sh,αMABV2u[x].

By the definition (29) of the operator Sh,αMABV2, it suffices to prove that both ShMAu[x] ≤ ShMAu[x]
and ShBV2u[x] ≤ ShBV2u[x]. The second inequality follows directly from the definition (28) of ShBV2,
so let us prove the first one.

By the definition (23) of ShMA, it suffices to prove that for any family v = (v1, . . . , vI) of
vectors of Zd and any γ ∈ RI+,

Lv,γ(Bhu[x],∆v
hu[x]−Avhu[x]) ≤ Lv,γ(Bhu[x],∆v

hu[x]−Avhu[x]).

First note that the operator ∆v
h was defined so that ∆v

hu[x] ≥ ∆v
hu[x] elementwise. If Bhu[x] = 0,

then Bhu[x]1/d ≤ Bhu[x]1/d, since Bh is a nonnegative operator. If Bhu[x] > 0 (which, by
definition of Bh, implies that x± hei ∈ Gh for any i ∈ {1, . . . , d}), then, using (16) for the second
inequality,

Bhu[x]1/d −Bhu[x]1/d ≤ B(x,Dhu[x])1/d −B(x,Dhu[x])1/d − h

2
bLF∆h(u− u)[x]

≤ bLF
(
|Dhu[x]−Dhu[x]|1 −

h

2
∆h(u− u)[x]

)
=
bLF
2h

d∑
i=1

(
|(u− u)[x+ hei]− (u− u)[x− hei]|

− (u− u)[x+ hei]− (u− u)[x− hei]
)

≤ 0,

and thus Bhu[x]1/d ≤ Bhu[x]1/d. Similarly, for any e ∈ v, if Aehu[x] = amin|e|2, then Aehu[x] ≤
Aehu[x], and otherwise, using (15),

Aehu[x]−Aehu[x] ≤
〈
e,
(
A(x,Dhu[x])−A(x,Dhu[x])

)
e
〉
− h

2
aLF|e|2∆h(u− u)[x]

≤ aLF|e|2
(
|Dhu[x]−Dhu[x]|1 −

h

2
∆h(u− u)[x]

)
≤ 0,

hence Aehu[x] ≤ Aehu[x]. We easily conclude that ShMAu[x] ≤ ShMAu[x].
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From the grid Gh, we may build a graph whose nodes are the points of Gh and whose edges
are pairs of points that are neighbors on the grid, that is, between whom the Euclidean distance
is equal to h. To prove other properties of the scheme, we need the technical assumption that the
distance on this graph, multiplied by h, is equivalent to the Euclidean distance, uniformly over
small h > 0. Equivalently, we require that there exists some positive constant CG , such that for
any small h > 0 and any function ϕ : Gh → R,

max
x1,x2∈Gh
x1 6=x2

|ϕ[x1]− ϕ[x2]|
|x1 − x2|

≤ CG max
x1,x2∈Gh
|x1−x2|=h

|ϕ[x1]− ϕ[x2]|
h

. (42)

Proposition 3.2 (Continuity). Assume (42). Then the scheme (30) is continuous, in the sense
of Definition 2.12.

Proof. For any x ∈ Gh, the function RGh → R, u 7→ Sh,αMABV2u[x] is a maximum over a compact
set of continuous functions with values in R ∪ {−∞}, see (23), (28), and (29). Hence it is a
continuous function with values in R ∪ {−∞}. It remains to prove that Sh,αMABV2u[x] > −∞.

By (42), there exists e = ±ei, i ∈ {1, . . . , d}, such that x− he ∈ Gh. Therefore

Sh,αMABV2u[x] ≥ ShBV2u[x] ≥ De
hu[x]− σP (x)(e) = −δ−eh u[x]− σP (x)(e) > −∞,

which concludes the proof.

Let us now study the consistency of the scheme (30) with the degenerate elliptic equation

FαMABV2(x,Du(x), D2u(x)) = 0 in X, (43)

where for any α ∈ R, x ∈ X, p ∈ Rd, and M ∈ Sd,

FαMABV2(x, p,M) :=

{
(FMA(x, p,M) + α) ∨ FBV2(x, p) if x ∈ X,
−∞ else,

and FMA(x, p,M) and FBV2(x, p) are defined respectively in (8) and (27). We first prove a
consistency property that is stronger to the one we introduced in Definition 2.12, and that will
be useful in the study of stability of the scheme.

Proposition 3.3 (Consistency). Assume (10), (14), (20), and (21). Let ϕ ∈ C∞(X) and
(αh)h>0 be a family of real numbers converging to some α ∈ R as h approaches zero. Then

Sh,αhMABV2ϕ[x] ≤ FαMABV2(x,Dϕ(x), D2ϕ(x)) + oh→0(1), (44)

uniformly over x ∈ Gh and α ∈ R. Moreover, for any compact subset K of X,

Sh,αhMABV2ϕ[x] ≥ FαMABV2(x,Dϕ(x), D2ϕ(x)) + oh→0(1), (45)

uniformly over x ∈ K ∩ Gh and α ∈ R.

Proof. Let K be a compact subset of X. For convenience, when ah(x) and bh(x) are real numbers
depending on h > 0 and on x ∈ Gh, we write ah(x) 5K bh(x) if ah(x) ≤ bh(x) for any h > 0 and
x ∈ Gh, with equality if x ∈ K. Then it suffices to show that

ShMAϕ[x] 5K FMA(x,Dϕ(x), D2ϕ(x)) + oh→0(1), (46)

ShBV2ϕ[x] 5K FBV2(x,Dϕ(x)) + oh→0(1), (47)
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uniformly over x ∈ Gh.
For any x ∈ Gh and i ∈ {1, . . . , d}, it holds that T±eih ϕ[x] ≥ ϕ(x± hei), and using (10), we

may assume that h is small enough so that the equality T±eih ϕ[x] = ϕ(x± hei) holds whenever
x ∈ K. Then inserting first-order Taylor expansions of ϕ in the definition of ShBV2 yields (47).

If x ∈ Gh is such that ∆hϕ[x] < +∞, then x ± hei ∈ Gh for any i ∈ {1, . . . , d}, and thus
Dhϕ[x] = Dϕ(x) + O(h2) and ∆hϕ[x] = ∆ϕ(x) + O(h2). In particular, ∆hϕ[x] is bounded.
Therefore, using that B1/d is Lipschitz continuous with respect to its last variable, uniformly
with respect to its first variable,

B(x,Dhϕ[x])1/d − h

2
bLF∆hϕ[x] = B(x,Dϕ(x))1/d +O(h).

Since B ≥ 0 and using the definition (18) of Bh, it follows that

Bhϕ[x]1/d = B(x,Dϕ(x))1/d +O(h).

Now if ∆hϕ[x] = +∞ (by (10), for h small, this may only happen if x 6∈ K), it holds that
Bhϕ[x] = 0 ≤ B(x,Dϕ(x)). We deduce that

Bhϕ[x]1/d 5K B(x,Dϕ(x))1/d +O(h)

uniformly over x ∈ Gh. Similarly, for any v ∈ Vh and e ∈ v, we may assume, using (10) and (21),
that h is small enough so that x± he ∈ Gh whenever x ∈ K ∩ Gh, and then, using (14) and the
same reasoning as above,

Aehϕ[x] 5K 〈e,A(x,Dϕ(x))e〉+O(h|e|2),

−∆e
hϕ[x] 5K −〈e,D2ϕ(x)e〉+O(h2|e|4),

uniformly over x ∈ Gh. Then for any v ∈ Vh and γ ∈ Rd(d+1)/2
+ such that Tr(Dv(γ)) =∑d(d+1)/2

i=1 γi|vi|2 = 1, using (21) for the last equality,

−〈γ,∆v
hϕ[x]−Avhϕ[x]〉 = −

d(d+1)/2∑
i=1

γi(∆
vi
h ϕ[x]−Avih ϕ[x])

5K −
d(d+1)/2∑
i=1

γi
〈
vi,
(
D2ϕ(x)−A(x,Dϕ(x))

)
vi
〉

+

d(d+1)/2∑
i=1

γiO(h|vi|2 + h2|vi|4)

= −〈Dv(γ), D2ϕ(x)−A(x,Dϕ(x))〉+O(h+ h2|vi|2)

= −〈Dv(γ), D2ϕ[x]−A(x,Dϕ(x))〉+ oh→0(1),

(48)

uniformly over x ∈ Gh, v, and γ. Thus

ShMAϕ[x] 5K max
v∈Vh

max
γ∈Rd(d+1)/2

+

Tr(Dv(γ))=1

LDv(γ)
(
B(x,Dϕ(x)), D2ϕ(x)−A(x,Dϕ(x))

)
+ oh→0(1).

We deduce (46) using (20) and that the affine map

{D ∈ S+d | Tr(D) = 1} → R, D 7→ LD(b,M) (49)

is continuous, uniformly over b and M belonging to compact sets.
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Remark 3.4 (Order of consistency). Under appropriate assumptions, the order of consistency of
the scheme (30) is easily deduced from the proof of Proposition 3.3. Let ϕ ∈ C∞(X), and let
K ⊂ X be compact. Then, for small h > 0 and uniformly over x ∈ K ∩ Gh,

ShBV2ϕ[x] = FBV2(x,Dϕ(x)) +O(h).

For the operator ShMA, we distinguish two cases:
(General case) If there exist r1 > 0 and r2 ∈ (0, 1) such that the following refinements of (20)

and (21) hold:

dH

(
{Dv(γ) | v ∈ Vh, γ ∈ Rd(d+1)/2

+ , Tr(Dv(γ)) = 1}, {D ∈ S+d | Tr(D) = 1}
)

= O(hr1),

max
v∈Vh

max
e∈v
|e| = O(h−r2),

then, refining the last equality in (48) and using that the map (49) is 1/d-Hölder continuous, one
has, for small h > 0 and uniformly over x ∈ K ∩ Gh,

ShMAϕ[x] = FMA(x,Dϕ(x), D2ϕ(x)) +O(h1∧(2−2r2)∧(r1/d)).

In dimension d = 2, when choosing Vh as in Remark B.9, one has r1 = 2r and r2 = r, hence
ShMA is consistent with FMA to the order 1 ∧ (2− 2r) ∧ r, and the optimal choice for r is r = 2/3,
yielding consistency to the order 2/3.

(Smooth case) The consistency is improved if (2) admits a solution u ∈ C2(X) such that,
uniformly over K, D2u(x)−A(x,Du(x)) ∈ S++

d has condition number less than some constant c >
1. In this setting, the maximum in (8) is attained forD = (D2u(x)−A(x,Du(x)))−1/Tr((D2u(x)−
A(x,Du(x)))−1), which has condition number less than c for all x ∈ K. We thus recommend
choosing the set Vh independently of h, but such that any D ∈ S++

d with condition number less
than c is of the form D = Dv(γ) for some v ∈ Vh and γ ∈ Rd(d+1)/2

+ (see Appendix B for a suitable
construction of Vh in dimension d = 2). Then (20) is not satisfied, but in a neighborhood of the
solution u, the operator ShMA is still consistent with FMA, to the order one, uniformly over x ∈ K.

In practice, one may choose to implement the scheme with Lax-Friedrichs relaxation parameters
aLF = bLF = 0, as we do in section 6. The drawback of doing this is that (15) and (16), and
thus Proposition 3.1, do not hold anymore unless A(x, p) and B(x, p) do not depend on p. The
benefit is that consistency is improved. In the setting of the smooth case described above, if
aLF = bLF = 0, then, in a neighborhood of u and uniformly over x ∈ K, ShMA is consistent with
FMA to the order two.

Note that the order of consistency of the whole scheme (30) is the minimum of the ones
of ShBV2 and ShMA, but for a fixed point x, the order is the one of the operator for which the
maximum is reached in (29), which in practice is Sh,αMA = ShMA + α at most points of the grid.

Corollary 3.5 (Consistency). Assume (10), (14), (20), and (21). Then the scheme (30) is
consistent with equation (43), in the sense of Definition 2.12.

Proof. We have to show that if ϕ, (αh)h>0, and α are as in Proposition 3.3, then for any x ∈ X,

lim sup
h>0, h→0
x′∈Gh, x′→x

Sh,αhMABV2ϕ[x′] ≤ (FαMABV2)∗(x,Dϕ(x), D2ϕ(x)), (50)

lim inf
h>0, h→0
x′∈Gh, x′→x

Sh,αhMABV2ϕ[x′] ≥ (FαMABV2)∗(x,Dϕ(x), D2ϕ(x)). (51)

If x ∈ X, then (50) and (51) follow respectively from (44) and (45), taking first the limit over h
and then the limit over x′. If x ∈ ∂X, then (50) follows from (44) and (51) is always true, since
(FαMABV2)∗(x,Dϕ(x), D2ϕ(x)) = −∞.
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Finally, we establish stability of the proposed scheme.

Proposition 3.6 (Equicontinuous stability). Assume (10), (14) to (16), (20) to (22), and (42).
If there exists a function ϕ ∈ C∞(X) such that for any x ∈ X, Dϕ(x) ∈ P (x), then the scheme
(30) is equicontinuously stable, in the sense of Definition 2.12.

Proof. Let us check all items in the definition of equicontinuous stability.
(i) The function ϕ was chosen so that FBV2(x,Dϕ(x)) < 0, uniformly over x ∈ X. Also, since

A and B are bounded, there exists α1 ≤ 0 such that FMA(x,Dϕ(x), D2ϕ(x)) < −α1, uniformly
over x ∈ X. It follows that (Fα1

MABV2)∗(x,Dϕ(x), D2ϕ(x)) < 0, uniformly over x ∈ X. Then
by Proposition 3.3, for any small h > 0 and any x ∈ Gh, Sh,α1

MABV2ϕ[x] < 0. Hence (α1, ϕ) is a
subsolution to (30) for small h > 0.

(ii’) Let h > 0 be small and let (α, u) ∈ R × RGh be a subsolution to (30). Then for any
x ∈ Gh, ShBV2u[x] ≤ 0. Choosing e = ±ei, i ∈ {1, . . . , d} in the definition of ShBV2, it follows
that −δ±eih u[x] ≤ σP (x)(∓ei). Since the compact set P (x) is continuous with respect to x ∈ X
for the Hausdorff distance, there exists CP ≥ 0 such that for any x ∈ X and i ∈ {1, . . . , d},
σP (x)(±ei) ≤ CP . Hence −δ±eih u[x] ≤ CP . Using (42), we easily deduce that

max
x1,x2∈Gh
x1 6=x2

|u[x1]− u[x2]|
|x1 − x2|

≤ CGCP .

Hence (ii’) holds with ω(α, t) := CGCP t.
(iii) Let h > 0 be small and (α, u) ∈ R× RGh be a subsolution to (30). Then for any x ∈ Gh,

ShMAu[x] ≤ −α. By (22), there exists v ∈ Vh and γ ∈ Rd(d+1)/2
+ such that Dv(γ) = e1 ⊗ e1

(and thus Tr(Dv(γ)) = 1). Choosing v and γ as parameters in the definition of ShMA yields
Ae1h u[x]−∆e1

h u[x] ≤ −α. Since Ae1h u[x] ≥ amin, it follows that ∆e1
h u[x] ≥ amin + α.

Let ` > 0, independent of h, be such that the segment [0, `e1] belongs toX (recall that 0 ∈ X by
assumption), and let nh := d`/he. By (10), we may assume that h is small enough so that ihe1 ∈ X,
for any i ∈ {0, . . . , nh+1}. Then for any i ∈ {1, . . . , nh}, h∆e1

h u[ihe1] = δe1h u[ihe1]+δ−e1h u[ihe1] =
δe1h u[ihe1]− δe1h u[(i− 1)he1], hence δe1h u[ihe1] = δe1h u[(i− 1)he1] + h∆e1

h u[ihe1] and

δe1h u[nhhe1] = δe1h u[0] + h

nh∑
i=1

∆e1
h u[ihe1] ≥ δe1h u[0] + nhh(amin + α).

Since nhh ≥ `, if α ≥ −amin, then

δe1h u[nhhe1] ≥ δe1h u[0] + `(amin + α) = −δ−e1h u[he1] + `(amin + α).

We proved in (ii) that δe1h u[nhhe1] ≤ CP and δ−e1h u[he1] ≤ CP . Therefore

α ≤ 2CP
`
− amin.

(iv) Let h > 0 be small and (α, u) ∈ R×RGh be a solution to (30) (note that in the proof, we
only use that it is a supersolution). Let α1 ≥ 0 be as in (i). Up to adding a constant to u, we may
assume that there exists x ∈ Gh such that u[x] = ϕ[x] and u ≥ ϕ in Gh. Then by Proposition 3.1,
Sh,α1

MABV2u[x] ≤ Sh,α1

MABV2ϕ[x]. We proved in (i) that Sh,α1

MABV2ϕ[x] < 0. Thus Sh,α1

MABV2u[x] < 0, and
by definition of Sh,α1

MABV2, it holds that S
h
BV2u[x] < 0 and ShMAu[x] < −α1. On the other hand,

the equality Sh,αMABV2u[x] = 0 may be expanded as

ShBV2u[x] ∨ (ShMAu[x] + α) = 0.

Since ShBV2u[x] < 0, we deduce that α = −ShMAu[x] > α1.

21



Note that in the proof of item (ii’), we actually proved that solutions to the scheme are
Lipschitz continuous uniformly over small h > 0.

The existence of a suitable function ϕ in Proposition 3.6 is a natural assumption in the setting
of optimal transport. We defer discussion of this assumption to section 5.1, and in particular to
Remark 5.1.

4 Closed-form formula in dimension two
This section is devoted to the proof of Theorem 1.2, whose motivation is to improve the numerical
efficiency of the scheme. Recall that the scheme residues are defined as the value (23) of a
maximization problem. In Remark 4.1, we contrast the numerical cost of computing this maximal
value using the explicit formula of Theorem 1.2 with a more traditional approach based on a
grid search in the parameter space. In practice, and in the numerical experiments section 6, the
objective is to solve the scheme using a Newton method, which requires the following additional
ingredients: (i) generating the sparse Jacobian matrix of the scheme, (ii) solving the linearized
scheme, and (iii) iterating the previous two steps until the residues fall below a given threshold.
Point (i) is addressed using a custom automatic differentiation library1, combining sparse and
dense forward differentiation, and which takes advantage of the envelope theorem [13, Section 6.1]
so as to efficiently differentiate the maximal value (23). Point (ii) relies on the standard SuperLU
sparse direct solver. Point (iii) usually terminates in less than a dozen steps in practice, and the
proposed scheme compares favorably to alternatives in this regard, see section 6.4. Eventually, the
evaluation of the scheme residues nevertheless accounts for a substantial part of the complexity
of the proposed numerical method, and is also its most specific ingredient.

Remark 4.1 (Numerical complexity of the scheme numerical evaluation). Consider a two-
dimensional Cartesian grid Gh with O(N2) points. Assume that at any point x ∈ Gh, one has
to perform respectively MMA and MBV2 operations in order to compute ShMAu[x] and ShBV2u[x].
Then the overall numerical complexity of the scheme on the grid Gh is O(N2(MMA +MBV2)).

When using Theorem 1.2 in the implementation of the scheme, MMA is proportional to the
number of superbases in the set Vh. As in Remark 3.4, we distinguish between the smooth case
and the general case. In the smooth case, Vh does not depend on N , hence MMA = O(1). In the
general case, if Vh is built as in Remark B.9, with r = 2/3 as suggested by Remark 3.4, then by
Proposition B.10, MMA = O(N2/3 logN).

For comparison, one could choose to discretize the parameter set of the maximum in the
definition (8) of the operator ShMA instead of using Theorem 1.2, and in this case MMA would be
proportional to the number of points in this discretization. Since the set of symmetric positive
semidefinite matrices of size two and of unit trace has dimension two, in order to guarantee
consistency of the scheme to some order r > 0, one should choose at least MMA = O(N2r). This
is more costly than using Theorem 1.2, both in the smooth case (in which the desired order,
according to Remark 3.4, is r = 1, or even r = 2 if aLF = bLF = 0) and in the general case (in
which the desired order is r = 2/3).

There is also a maximum in the definition (28) of ShBV2 which, depending on the expression of
the set-valued function P in (24), either admits a closed-form formula or needs to be discretized.
If it admits a closed-form formula, then MBV2 does not depend on N . If it needs to be
discretized, then MBV2 is proportional to the number of points in the discretization and, in
order to guarantee consistency of the operator ShBV2 with FBV2 at some order r > 0, one should
choose MBV2 = O(Nr), since the parameter set is one-dimensional. The numerical cost of this
discretization is negligible in the general case, but not in the smooth case. In practice, in many

1See https://github.com/Mirebeau/AdaptiveGridDiscretizations.
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applications, the maximum in (29) is only attained by ShBV2u[x] at points x ∈ Gh that are close
to ∂X. A perspective for future research would be to prove that one may use a variant of the
scheme (30) which would only require computing ShBV2u[x] at such points, reducing the numerical
cost of handling the boundary condition (24).

In dimension d = 2, choosing V h as a family of superbases of Z2 (see Definition 1.1) is
motivated by Selling’s formula [43]: for any family v = (v1, v2, v3) of vectors of Z2, recall that we
defined γ : R3 → S+2 by

Dv(γ) :=

3∑
i=1

γivi ⊗ vi,

and let us also define γv : S2 → R3 by

γv(D) := (−〈v⊥i+1,Dv⊥i+2〉)1≤i≤3, (52)

where we consider the indices of the elements of v modulo three, and where if e = (a, b) ∈ R2, we
denote e⊥ := (−b, a).

Proposition 4.2 (Selling’s formula). If v = (v1, v2, v3) is a superbase of Z2, then γv is the
inverse bijection of Dv: for any D ∈ S2, D = Dv(γv(D)).

Proof. It suffices to show that for any 1 ≤ i ≤ j ≤ 2,

〈v⊥i ,Dv⊥j 〉 = 〈v⊥i ,Dv(γv(D))v⊥j 〉.

This is easily verified using the properties of superbases of Z2 and the fact that for any {i, j} ⊂
{1, 2, 3}, 〈v⊥i , vj〉 = det(vi, vj).

Proof of Theorem 1.2. We prove separately the two statements of the theorem.
Case of bases. Let v = (v1, v2) be a basis of Z2, b ≥ 0, and m = (m1,m2) ∈ R2. Note that

{γ ∈ R+
2 | Tr(Dv(γ)) = 1} =

{(
1 + t

2|v1|2
,

1− t
2|v2|2

)
| t ∈ [−1, 1]

}
,

is the segment of endpoints (1/|v1|2, 0) and (0, 1/|v2|2). Then

max
γ∈R2

+

Tr(Dv(γ))=1

Lv,γ(b,m)

= max
t∈[−1,1]

(
2b1/2

(
detDv

((
1 + t

2|v1|2
,

1− t
2|v2|2

)))1/2

− 1 + t

2|v1|2
m1 −

1− t
2|v2|2

m2

)
.

We compute that for any t ∈ [−1, 1],

detDv
((

1 + t

2|v1|2
,

1− t
2|v2|2

))
= det

(
(1 + t)

2|v1|2
v1 ⊗ v1 +

(1− t)
2|v2|2

v2 ⊗ v2
)

=
1

4
(1− t2)

det(v1, v2)2

|v1|2|v2|2
=

(1− t2)

4|v1|2|v2|2
,

using the definition of Dv for the first equality, that det(a ⊗ a + b ⊗ b) = det(a, b)2 for any a,
b ∈ R2 for the second equality, and that det(v1, v2) = ±1 for the third equality. After defining
ω
(0)
v ∈ R and ω(1)

v , ω(2)
v ∈ R2 by

ω(0)
v :=

1

|v1|2|v2|2
, ω(1)

v :=
1

2

(
1/|v1|2
−1/|v2|2

)
, ω(2)

v :=
1

2

(
1/|v1|2
1/|v2|2

)
,
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it follows that

max
γ∈R2

+

Tr(Dv(γ))=1

Lv,γ(b,m) = max
t∈[−1,1]

(
(ω(0)
v )1/2b1/2(1− t2)1/2 − 〈ω(1)

v ,m〉t− 〈ω(2)
v ,m〉

)
.

This is the maximum of a concave function over [−1, 1]. Writing the first order optimality
condition yields that the optimal t must satisfy

t2 =
〈ω(1)
v ,m〉2

ω
(0)
v b+ 〈ω(1)

v ,m〉2
,

from which we deduce the expected formula

max
γ∈R2

+

Tr(Dv(γ))=1

Lv,γ(b,m) = (ω(0)
v b+ 〈ω(1)

v ,m〉2)1/2 − 〈ω(2)
v ,m〉 = H̃v(b,m).

Case of superbases. We use that in the space of symmetric matrices size two equipped with
the Frobenius norm, the set of symmetric positive semidefinite matrices of unit trace is a disk.
More precisely, let us define the affine map D : R2 → S2 by

D(ρ) =
1

2

(
1 + ρ1 ρ2
ρ2 1− ρ1

)
. (53)

Note that the above definition is closely related to Pauli matrices in quantum mechanics. It is
easily proved that

{D ∈ S+2 | Tr(D) = 1} = {D(ρ) | |ρ| ≤ 1}. (54)

Moreover, for any ρ ∈ Rd such that |ρ| ≤ 1,

detD(ρ) =
1

4
(1− |ρ|2), Cond(D(ρ)) =

1 + |ρ|
1− |ρ|

. (55)

Let v = (v1, v2, v3) be a superbase of Z2, b ≥ 0, and m ∈ R3. The Minkowski determinant
inequality states, in any dimension d ∈ N, the function det(·)1/d is concave over S+d . Hence the
function

{γ ∈ R3 | Dv(γ) � 0, Tr(Dv(γ)) = 1} → R, γ 7→ Lv,γ(b,m)

is concave too. Recall that Dv(γ) � 0 whenever γ ∈ R3
+. Let

γ∗v(b,m) ∈ argmax
γ∈R3

Dv(γ)�0
Tr(Dv(γ))=1

Lv,γ(b,m).

If the strict elementwise inequality γ∗v(b,m) >vec 0 is not satisfied, then

max
γ∈R3

+

Tr(Dv(γ))=1

Lv,γ(b,m) = max
1≤i<j≤3

max
γ∈R2

+

Tr(Dv(γ))=1

L(vi,vj),γ(b,m) = max
1≤i<j≤3

H̃(vi,vj)(b,m),

since the maximum in the left-hand side is attained on the boundary of the parameter set. Thus
it suffices to prove that

Hv(b,m) =

{
Lv,γ∗v (b,m)(b,m) if γ∗v(b,m) >vec 0,

−∞ else.
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Let us prove the above. If γv : S2 → R3 and D : R2 → S2 are functions defined respectively by
(52) and (53), then, by (54) and Selling’s Formula (Proposition 4.2), it holds that

max
γ∈R3

Dv(γ)�0
Tr(Dv(γ))=1

Lv,γ(b,m) = max
|ρ|≤1

Lv,γv(D(ρ))(b,m),

and there exists
ρ∗v(b,m) ∈ argmax

|ρ|≤1
Lv,γv(D(ρ))(b,m)

such that
γ∗v(b,m) = γv(D(ρ∗v(b,m))).

Let

Wv :=
1

2

v2,1v3,1 − v2,2v3,2 v2,1v3,2 + v2,2v3,1
v1,1v3,1 − v1,2v3,2 v1,1v3,2 + v1,2v3,1
v1,1v2,1 − v1,2v2,2 v1,1v2,2 + v1,2v2,1

 .

Recall that Qv ∈ S3 and wv ∈ R3 were defined in the statement of the theorem, and note that
Qv = WvW

>
v . It is easily computed that for any ρ ∈ R2,

γv(D(ρ)) = Wvρ− wv,

and thus, using also (55), that

Lv,γv(D(ρ))(b,m) = b1/2(1− |ρ|2)1/2 − 〈Wvρ− wv,m〉.

Therefore, ρ∗v(b,m) is the argmax of a concave function over the unit disk, and writing the
first-order optimality condition yields

ρ∗v(v,m) = − W>v m

(b+ |W>v m|2)1/2
= − W>v m

(b+ 〈m,Qvm〉)1/2
.

Thus
γ∗v(b,m) = γv(D(ρ∗v(b,m))) = − Qvm

(b+ 〈m,Qvm〉)1/2
− wv

and
Lv,γ∗v (b,m)(b,m) = Lv,γv(D(ρ∗v(b,m)))(b,m) = (b+ 〈m,Qvm〉)1/2 + 〈wv,m〉,

which concludes the proof.

5 Application to quadratic optimal transport
We specialize in this section the proposed scheme to the quadratic optimal transport problem and
provide a convergence proof, taking advantage of specific tools in this setting such as Aleksandrov
solutions and the mass balance equation, in addition to the generic tools introduced in section 3.
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5.1 The quadratic optimal transport problem
Let Y be an open bounded convex nonempty subset of Rd and f : X → R+ and g : Y → R∗+ be
two densities satisfying the mass balance condition∫

X

f(x) dx =

∫
Y

g(y) dy, (56)

f being continuous almost everywhere and bounded and g being Lipschitz continuous. For
convenience, in this paper we extend the function g to the whole domain Rd in such a manner
that g−1/d : Rd → R∗+ is bounded and Lipschitz continuous.

In the quadratic optimal transport problem between f and g, one aims to solve the minimization
problem

inf
T#f=g

∫
X

|x− T (x)|2f(x) dx, (57)

where the unknown is a Borel map T : X → Y and the constraint T#f = g means that for any
Borel subset E of Y , ∫

T−1(E)

f(x) dx =

∫
E

g(y) dy. (58)

In the literature, it is typically assumed that:

the set X is convex. (59)

For simplicity, we will sometimes assume instead that:

the set X is strongly convex. (60)

It was proved in [10] (see also [44, Theorem 2.12]) that, under assumption (59), the optimal
transport problem (57) admits a solution T which is the gradient of a convex function u : X → R,
called the potential function of the problem. Then, if u is smooth enough, it may be deduced by
performing the change of variables y = T (x) in the right-hand side of (58) that u is solution to
the Monge-Ampère equation (1), where

A(x, p) = 0, B(x, p) =
f(x)

g(p)
. (61)

Additionally, the constraint that T (x) = Du(x) ∈ Y , for any x ∈ X, may be written as (24),
where for any x ∈ X,

P (x) = Y. (62)

Note that in this setting, a possible choice of function ϕ in Proposition 3.6 is given by
ϕ(x) := 〈x, y0〉, for some y0 ∈ Y .

Remark 5.1 (General optimal transport). In the general optimal transport problem, a cost function
c ∈ C2(Rd × Rd) is given, and one aims to solve

inf
T#f=g

∫
X

c(x, T (x))f(x) dx. (63)

If c is defined by c(x, y) = |x− y|2, this problem reduces to (57). It is also equivalent to (57)
when c(x, y) = −〈x, y〉, as follows directly from the equality |x− y|2 = |x|2 + |y|2 − 2〈x, y〉.
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Under suitable assumptions (see [20, 37]), there exists a solution T : X → Y to (63) of the
form T (x) = c-expx(Du(x)), where for any x ∈ X and p, y ∈ Rd, the function c-expx : Rd → Rd
is such that

y = c-expx(p) ⇐⇒ p = −Dxc(x, y), (64)

and where the function u (called the potential function) is c-convex, in the sense that for any
x0 ∈ X, there exists y0 ∈ Rd and z0 ∈ R such that

u(x0) = −c(x0, y0)− z0, u(x) ≥ −c(x, y0)− z0 in X.

If c(x, y) = −〈x, y〉, c-convexity coincides with the usual notion of convexity. In the general
setting, if u is smooth enough then it may be shown to be a solution to the Monge-Ampère
equation (1), with

A(x, p) = −Dxxc(x, c-expx(p)), (65)

B(x, p) =
f(x)

g(c-expx(p))
|detDxyc(x, c-expx(p))|, (66)

and the constraint that T (x) = c-expx(Du(x)) ∈ Y , for any x ∈ X, may be written as (24), where
for any x ∈ X,

P (x) = −Dxc(x, Y ). (67)

Then a suitable choice of function ϕ in Proposition 3.6 would be ϕ(x) := −Dxc(x, y0) (or a
mollification of it), for some y0 ∈ Y .

5.2 Weak solutions to the Monge-Ampère equation
If the open set X is convex, and if u : X → R is a convex function and E is a subset of X, then
we denote by ∂u(E) the union

⋃
x∈E ∂u(x), where ∂u(x) is the subgradient of u at point x:

∂u(x) := {p ∈ Rd | ∀x′ ∈ X, u(x′) ≥ u(x) + 〈p, x′ − x〉}.

A notion of weak solutions to the Monge-Ampère equation that is directly related to the
optimal transport problem (57) is the one of Brenier solutions.

Definition 5.2 (Brenier solution). Assume (59), (61), and (62). A function u : X → R is a
Brenier solution to (1) and (24) if (i) it is convex and (ii) (Du)#f = g, in the sense that (58)
holds for T = Du. It is a minimal Brenier solution if moreover ∂u(X) is included in Y .

Brenier solutions are a standard notion. Note that their definition allows that Du(x) 6∈ Y ,
typically at points where f(x) = 0. Minimal Brenier solutions were introduced in [4] to prevent
this and to guarantee uniqueness of solutions up to addition of a constant, as explained in the
proof of [4, Proposition 3.1] (the proof uses the assumptions that Y is convex and g is nonnegative
in Y ):

Theorem 5.3 (Adapted from [4, Proposition 3.1]). Assume (59), (61), and (62). If u, v : X → R
are two minimal Brenier solutions to (1) and (24), then there exists ξ ∈ R such that v = u+ ξ.

For any function u : Rd → R, let us denote by uc : Rd → R its Legendre-Fenchel transform,
which we recall is defined by

uc(y) := sup
x∈Rd

(〈x, y〉 − u(x)).
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If u is only defined in X (respectively X), we define uc in the same manner after having extended
u with value +∞ outside X (respectively X). In addition to the convex envelope ucc : Rd × R of
u, let us define the function uccY : Rd → R by

uccY (x) := sup
y∈Y

(〈x, y〉 − uc(y)).

One motivation for the definition of uccY (which is similar to the definition of the function ũn
in [4, section 5.1]) is that under the assumptions (59), (61), and (62), if u : X → R is a Brenier
solution to (1) and (24), then uccY is a minimal Brenier solution to (1) and (24).

Another standard notion of solutions to (1) and (24) is the one of Aleksandrov solutions:

Definition 5.4 (Aleksandrov solution). Assume (59), (61), and (62). A function u : X → R is
an Aleksandrov solution to (1) and (24) if (i) it is convex and (ii) for any Borel subset E of X,∫

E

f(x) dx =

∫
Y ∩∂u(E)

g(y) dy.

It is a minimal Aleksandrov solution to (1) and (24) if moreover ∂u(X) ⊂ Y .

In our setting, Brenier and Aleksandrov solutions coincide, see for instance [24] (noting that
the relevant part [24, Section 1] is not specific to the dimension two):

Proposition 5.5. Assume (59), (61), and (62). Then u : X → R is a Brenier solution (re-
spectively minimal Brenier solution) to (1) and (24) if and only if it is an Aleksandrov solution
(respectively minimal Aleksandrov solution) to (1) and (24).

This is related to the fact that Y is convex and g is nonnegative in Y , and that this does not
remain true in more general settings.

We will also need to use the notion of Aleksandrov solution to the Monge-Ampère equation
equipped with the Dirichlet boundary condition

u(x) = ψ(x) on ∂X. (68)

Definition 5.6 (Aleksandrov solution to the Dirichlet problem). Assume (59) and (61). A
function u : X → R is an Aleksandrov solution to (1) and (68) if (i) it is convex continuous with
u(x) = ψ(x) on ∂X and (ii) for any Borel subset E of X,∫

E

f(x) dx =

∫
∂u(E)

g(y) dy.

If u : X → R is continuous and is a minimal Aleksandrov solution to (1) and (24), then it is
an Aleksandrov solution to (1) and (68) with ψ = u|∂X ; however, this does not remain true if u is
not minimal.

Below is the adaptation of [29, Theorem 1.6.2] to our setting. For simplicity, it is assumed that
g(p) = 1 for any p ∈ Rd, which turns (1) into the basic Monge-Ampère equation det+(D2u(x)) =
f(x). Note however that we only use Theorem 5.7 as an intermediary result and that our
convergence result, Theorem 5.25, is not limited to the case g(p) = 1.

Theorem 5.7 (Adapted from [29, Theorem 1.6.2]). Assume (61), that X is strictly convex,
g(p) = 1 for any p ∈ Rd, and ψ : ∂X → R is continuous. Then there exists a unique Aleksandrov
solution u : X → R to (1) and (68).
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5.3 Reformulation of the Monge-Ampère equation
Let us now study the reformulation of the Monge-Ampère equation (1) in the form (2), in the
setting of quadratic optimal transport. We sum up the idea of the reformulation in the following
proposition:

Proposition 5.8. Let b ≥ 0 and M ∈ S+d . Then

max
D∈S+

d

Tr(D)=1

LD(b,M) ≤ 0 ⇐⇒ b ≤ detM, (69)

max
D∈S+

d

Tr(D)=1

LD(b,M) ≥ 0 ⇐⇒ b ≥ detM. (70)

Proof. We refer to [35, Lemma 3.2.2] for the proof of the equivalence

max
D∈S+

d

Tr(D)=1

LD(b,M) = 0 ⇐⇒ b = detM. (71)

Also, the first equality in (5) is proved in [35, Lemma 3.2.1] (it is related to the inequality of
arithmetic and geometric means applied to eigenvalues of the product D1/2MD1/2), while the
second one follows from the identity

{D ∈ S++
d | detD = 1} = {(detD)−1/dD | D ∈ S++

d , Tr(D) = 1}.

From (5), we deduce that

b ≤ detM ⇐⇒ db1/d − d(detM)1/d ≤ 0

⇐⇒ sup
D∈S++

d

Tr(D)=1

(db1/d − (detD)−1/d〈D,M〉) ≤ 0

⇐⇒ sup
D∈S++

d

Tr(D)=1

(db1/d(detD)1/d − 〈D,M〉) ≤ 0

⇐⇒ sup
D∈S++

d

Tr(D)=1

LD(b,M) ≤ 0.

Then (69) follows from the continuity of LD(b,M) with respect to D ∈ S+d , and (70) follows from
(69) and (71).

First we prove that Aleksandrov solutions to the Monge-Ampère equation are viscosity
solutions to its reformulation.

Proposition 5.9. Assume (59) and (61). If, for some function ψ ∈ C(∂X), u : X → R is an
Aleksandrov solution to (1) and (68), then u is a viscosity solution to (2).

The proof is an adaptation of the one of [29, Proposition 1.3.4]. It uses [29, Lemma 1.4.1],
which we recall below in our setting:

Lemma 5.10 (Adapted from [29, Lemma 1.4.1]). Assume (59). Let u, v : X → R be convex and
let E be an open set such that E ⊂ X. If u ≤ v in E and u = v on ∂E, then ∂v(E) ⊂ ∂u(E).
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Proof of Proposition 5.9. We adapt the proof of [29, Proposition 1.3.4], which is a particular case
of this proposition.

First let us show that u is a viscosity subsolution to (2). Let ϕ ∈ C2(X), and let x0 ∈ X be
a local maximum of u − ϕ. Since u is convex, D2ϕ(x) must be positive semidefinite. We may
assume without loss of generality that ϕ is convex, that ϕ(x0) = u(x0), and that x0 is a strict
local maximum. For any small ε > 0, there exists an open set Sε such that Sε ⊂ X, ϕ ≤ u+ ε
in Sε, ϕ = u + ε on ∂Sε, and limε→0 dH(Sε, {x0}) = 0 (see [29] for detail). By Lemma 5.10,
∂u(Sε) = ∂(u+ ε)(Sε) ⊂ ∂ϕ(Sε). Thus, since u is an Aleksandrov solution,∫

Sε

f(x) dx =

∫
∂u(Sε)

g(y) dy ≤
∫
∂ϕ(Sε)

g(y) dy =

∫
Sε

g(Dϕ(x)) detD2ϕ(x) dx.

Passing to the limit in ε, we deduce that f∗(x0) ≤ g(Dϕ(x0)) detD2ϕ(x0). By Proposition 5.8, it
follows that (FMA)∗(x0, Dϕ(x0), D2ϕ(x0)) ≤ 0, and thus that u is a viscosity subsolution to (2).

Now let us show that u is a viscosity supersolution to (2). Let ϕ ∈ C2(X), and let x0 ∈ X be
a local minimum of u− ϕ. If there exists a unit vector e ∈ Rd such that 〈e,D2ϕ(x0)e〉 ≤ 0, then
choosing D = e⊗ e in the maximum in the definition (8) of the operator FMA yields

(FMA)∗(x0, Dϕ(x0), D2ϕ(x0)) ≥ −〈e,D2ϕ(x0)e〉 ≥ 0.

If on the contrary D2ϕ(x0) is positive definite, then we may assume without loss of generality that
ϕ is convex, that ϕ(x0) = u(x0), and that x0 is a strict local minimum. By the same reasoning
as above, we prove that f∗(x0) ≥ g(Dϕ(x0)) detD2ϕ(x0), and we deduce using Proposition 5.8
that (FMA)∗(x0, Dϕ(x0), D2ϕ(x0)) ≥ 0. Therefore u is a viscosity supersolution to (2).

In order to prove convergence of a family of monotone numerical schemes for the Monge-
Ampère equation, we need to study under which conditions viscosity solutions to (43) are minimal
Aleksandrov solutions to (1) and (24), and in particular what happens when α 6= 0. Thus the
remaining part of section 5.3 is devoted to the proof of the two following theorems:

Theorem 5.11. Assume (59), (61), and (62). If u : X → R is a viscosity subsolution to (43)
with α ≥ 0, then α = 0 and u is a minimal Aleksandrov solution to (1) and (24).

Theorem 5.12. Assume (60) to (62). If u : X → R is a viscosity supersolution to (43) with
α ≤ 0, then α = 0 and uccY is a minimal Aleksandrov solution to (1) and (24).

Note also those two theorems are particularly strong results, since they apply to viscosity
subsolutions and supersolutions and not only to viscosity solutions as one would have expected.
In the particular case of viscosity solutions, one has the following immediate corollary, which is
also particularly strong since it does not assume that α = 0, but instead proves this equality:

Corollary 5.13. Assume (60) to (62). If u : X → R is a viscosity solution to (43) for some
α ∈ R, then α = 0 and u is a minimal Aleksandrov solution to (1) and (24).

Proof. Since u is a viscosity solution, it is both a viscosity subsolution and supersolution. By
Theorem 5.12, if α ≤ 0, then α = 0. This means that in any case α ≥ 0. Therefore Theorem 5.11
applies, and concludes the proof.

Corollary 5.13 is the main original argument that we use in the proof of our convergence result
Theorem 5.25, in combination with standard arguments [1] about the convergence of monotone
schemes for degenerate elliptic equations.

Note that in the proof of Corollary 5.13, we did not use the part of Theorem 5.12 about uccY
being a minimal Aleksandrov solution to (1) and (24). We mention this fact nevertheless in the
statement of Theorem 5.12 since it is a direct consequence of our proof that α = 0.
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Remark 5.14 (Sketch of proof of Theorems 5.11 and 5.12). The rigorous proofs of Theorems 5.11
and 5.12 are delayed to the end of section 5.3, but let us first explain the main arguments that
we use in those proofs. In this remark we will only discuss the proof that u (respectively uccY ) is a
minimal Aleksandrov solution to (1) and (24); in order to prove that α = 0 one just needs to
sufficiently refine the arguments below.

Theorem 5.11 is very close to [26, Theorem 2.1] (although the considered reformulation of the
Monge-Ampère equation is not the same) and thus we follow the same sketch of proof. If u is a
viscosity subsolution to (43) with α ≥ 0, then it is a viscosity subsolution to both (2) and (26).
From the fact that u is a subsolution to (2), we deduce that it is a convex function, see Lemma 5.16.
The fact that u is a subsolution to (24) means that the optimal transport boundary condition
∂u(X) ⊂ Y is satisfied, see Lemma 5.17. We deduce from the optimal transport boundary
condition the inequality

∫
∂u(X)

g(y) dy ≤
∫
Y
g(y) dy =

∫
X
f(x) dx. On the other hand, we are

able to deduce from the fact that u is a viscosity subsolution to the (reformulated) Monge-Ampère
equation (2) that for any Borel set E ⊂ X, one has the inequality

∫
∂u(E)

g(y) dy ≥
∫
E
f(x) dx,

which is the inequality variant of the equality in the definition of Aleksandrov solutions. Observe
that the two previous inequalities are in competition with each other. Thus we are able to show
that they are actually equalities and that u is therefore a minimal Aleksandrov solution to (1)
and (24).

Contrary to Theorem 5.11, no counterpart to Theorem 5.12 is established in [26]. The proof
of Theorem 5.11 does not translate directly to the setting of Theorem 5.12. This is because, for
an arbitrary viscosity supersolution u to (43) with α ≤ 0, on the one hand one cannot expect u to
be a viscosity supersolution to (2) (contrary to the case of subsolutions), and on the other hand
u is not even guaranteed to be convex, so for instance the optimal transport boundary condition
∂u(X) ⊂ Y does not make sense. We get around those difficulties by considering the modified
convex envelope uccY instead of the function u itself. By construction, uccY is guaranteed to be
convex and to satisfy the optimal transport boundary condition ∂uccY (X) ⊂ Y . By analyzing
the meaning of the Dirichlet boundary condition u−∞ ≥ 0 in the viscosity sense, we are able
to prove the converse inclusion Y ⊂ ∂uccY (X), see Lemma 5.19. We are also able to show that,
contrary to u, uccY is guaranteed to be a viscosity supersolution to (2), see Lemma 5.21. From
this point the proof of Theorem 5.12 is similar to the one of Theorem 5.11, although the rigorous
proof of the inequality

∫
∂u(E)

g(y) dy ≤
∫
E
f(x) dx, for Borel sets E ⊂ X, is a bit more technical

than its counterpart in the setting of Theorem 5.11 and involves Lemma 5.22 in addition to
Proposition 5.8 and Lemma 5.24.

Let us now turn to the intermediary results needed in the proofs of Theorems 5.11 and 5.12
We will need the following comparison principle for equation (2). The assumptions that we

make on the function B are more restrictive than in the rest of the paper, but this does not affect
the generality of our main results since we will only need to apply this comparison principle to
the case of a constant function B, see Lemma 5.22.

Proposition 5.15 (Comparison principle). Assume that B1/d is continuous, in addition to being
Lipschitz continuous with respect to its second variable, uniformly with respect to its first variable.
Then there exists r > 0 such that the following holds: for any open subset E of X such that
diam(E) ≤ r and for any respectively upper and lower semicontinuous functions u, u : E → R, if
u and u are respectively a viscosity subsolution and a viscosity supersolution to

FMA(x,Du(x), D2u(x)) = 0 in E,

and if u ≤ u on ∂E, then u ≤ u in E.
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Proof. Let x0 ∈ E. For any ε > 0, let uε : E → R be defined by

uε(x) := u(x) +
ε

2
|x− x0|2 −

ε

2
diam(E)2,

so that uε ≤ u ≤ u on ∂E. Let x1 ∈ E, ϕ ∈ C2(E), and ϕε := ϕ + (ε/2)| · −x0|2. Then x1 is
a local maximum of uε − ϕε if and only if it is a local maximum of u − ϕ. For some constant
C > 0 and for r = 1/(2C), using that |Dϕε(x1)−Dϕ(x1)| ≤ rε and D2ϕε(x1) = D2ϕ(x1) + εId,
it holds for any D ∈ S+d satisfying Tr(D) = 1 that

LD
(
B(x,Dϕε(x)), D2ϕε(x)−A(x,Dϕε(x))

)
= dB(x,Dϕε(x))1/d(detD)1/d − 〈D, D2ϕε(x)−A(x,Dϕε(x))〉
≤ dB(x,Dϕ(x))1/d(detD)1/d − 〈D, D2ϕ(x)−A(x,Dϕ(x))〉+ Crε− ε
= LD

(
B(x,Dϕ(x)), D2ϕ(x)−A(x,Dϕ(x))

)
+ Crε− ε

≤ LD
(
B(x,Dϕ(x)), D2ϕ(x)−A(x,Dϕ(x))

)
− ε/2.

Thus if x1 is a local maximum of uε − ϕε,

FMA(x1, Dϕε(x1), D2ϕε(x1)) ≤ FMA(x1, Dϕ(x1), D2ϕ(x1))− ε/2 ≤ −ε/2.

Then by [16, Theorem 3.3 and section 5.C], uε ≤ u in E, and we conclude by letting ε approach
zero.

Notice that we did not need to assume (61); however, if (61) holds, it may be shown that the
assumption that diam(E) ≤ r is not necessary, see [32, Theorem V.2] for the argument.

We will also need the following lemmas.

Lemma 5.16. Assume (59) and (61). If u : X → R is a viscosity subsolution to (2), then it is
convex.

Proof. Let ϕ ∈ C2(X) and x0 be a local maximum of u−ϕ in X. Then, using that u is a viscosity
subsolution and choosing D = e⊗ e in the maximum in the definition of FMA,

0 ≥ (FMA)∗(x0, Dϕ(x0), D2ϕ(x0)) ≥ − min
|e|=1
〈e,D2ϕ(x0)e〉.

Thus u is a viscosity subsolution to

− min
|e|=1
〈e,D2u(x0)e〉 = 0 in X.

By [41, Theorem 1], it follows that u is convex.

Lemma 5.17. Assume (59) and (62). If u : X → R is a convex viscosity subsolution to (26),
then ∂u(X) ⊂ Y .

The proof of Lemma 5.17 is a direct transposition to our setting to the one of [26, Lemma 2.5],
so we do not reproduce it here.

Lemma 5.18. Assume (60), i.e. that X is strongly convex. Then for any x0 ∈ ∂X and C, ε > 0,
there exists a convex function ψ ∈ C2(X) such that x0 is a local maximum of ψ and |Dψ(x0)| ≤ ε,
detD2ψ(x0) ≥ C.
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Proof. Since X is strongly convex, there exists r > 0 and a unit vector e ∈ Rd, |e| = 1, such that
X ⊂ Bd(x0 − re, r). Then for any x ∈ X, one has |x− (x0 − re)|2 ≤ r2. Since |x− (x0 − re)|2 =
|x−x0+re|2 = |x−x0|2+2r〈e, x−x0〉+r2, we deduce that |x−x0|2+2r〈e, x−x0〉 ≤ 0. Thus x0 is a
local maximum of |·−x0|2+2r〈e, ·−x0〉 inX. Therefore, using that 〈e, x−x0〉 ≤ −|x−x0|2/(2r) < 0
for any x ∈ X, x0 is also a local maximum in X of the convex function ψ ∈ C2(X) defined by

ψ(x) :=
ε

4r
|x− x0|2 + ε〈e, x− x0〉+ C̃〈e, x− x0〉2

=
ε

4r

(
|x− x0|2 + 2r〈e, x− x0〉

)
+
ε

2
〈e, x− x0〉+ C̃〈e, x− x0〉2,

where C̃ ∈ R is an arbitrary constant. We compute that |Dψ(x0)| = ε and detD2ψ(x0) =
(ε/(2r))d−1(ε/(2r) + 2C̃). Choosing C̃ := (C/2)(2r/ε)d−1, we conclude the proof.

Lemma 5.19. Assume (60) to (62). If u : X → R is a viscosity supersolution to (43) with α ≤ 0,
then Y ⊂ ∂uccY (X) ⊂ Y .

Proof. By definition of uccY , one has ∂uccY (X) ⊂ Y , and more precisely ∂uccY (X) = ∂ucc(X) ∩ Y .
Therefore, it suffices to prove that Y ⊂ ∂ucc(X).

Let y0 ∈ Y . Since u is lower semicontinuous, there exists x0 ∈ X such that y0 ∈ ∂ucc(x0)
(meaning that x0 is a local minimum of ucc − 〈·, y0〉) and ucc(x0) = u(x0). Let us show that
x0 ∈ X.

Since ucc ≤ u in X, x0 is a local minimum of u− 〈·, y0〉. If x0 ∈ ∂X, then for any ε > 0, we
may build using Lemma 5.18 a convex function ϕε ∈ C2(X) such that x0 is a local minimum of
u− ϕε and

|Dϕε(x0)− y0| ≤ ε, detD2ϕε(x0) > sup
y∈Rd

f∗(x0)

g(y)
≥ f∗(x0)

g(Dϕε(x0))

(choose ϕε = 〈·, y0〉+ ψ where ψ is from Lemma 5.18). Then by Proposition 5.8,

(FMA)∗(x0, Dϕε(x0), D2ϕε(x0)) < 0.

We may choose ε small enough so that Dϕε(x0) ∈ Y , and thus FBV2(x0, Dϕε(x0)) < 0. Then

(FαMABV2)∗(x0, Dϕε(x0), D2ϕε(x0)) < 0,

which is impossible since u is a viscosity supersolution to (43). Therefore x0 may not belong to
∂X.

Lemma 5.20. Assume (59). Let u : X → R be a convex function satisfying ∂u(X) ⊂ Y , and
let ϕ ∈ C2(X). If x0 is a local minimum of u− ϕ in X and if D2ϕ(x0) is positive definite, then
Dϕ(x0) ∈ Y .

Proof. Let e ∈ Rd be a unit vector and let t > 0 be small enough so that u(x0) − ϕ(x0) ≤
u(x0 + te)−ϕ(x0 + te) and ϕ(x0 + te) > ϕ(x0) + t〈e,Dϕ(x0)〉. Combining those two inequalities,
we get u(x0) − ϕ(x0) < u(x0 + te) − ϕ(x0) − t〈e,Dϕ(x0)〉, which simplifies to 〈e,Dϕ(x0)〉 <
(u(x0 + te)− u(x0))/t.

Let y ∈ ∂u(x0 + te). By definition of ∂u(x0 + te), one has u(x0) ≥ u(x0 + te) − t〈e, y〉.
Therefore 〈e, y〉 ≥ (u(x0 + te)− u(x0))/t > 〈e,Dϕ(x0)〉.

Since ∂u(X) ⊂ Y , one has y ∈ Y . Thus we showed that for any unit vector e ∈ Rd, there
exists y ∈ Y such that 〈e, y〉 > 〈e,Dϕ(x0)〉. Since Y is convex, it follows that Dϕ(x0) ∈ Y .
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Lemma 5.21. Assume (59), (61), and (62). If u : X → R is a viscosity supersolution to (43)
with α ≤ 0, then uccY is a viscosity supersolution to (2). Moreover, if α < 0, ϕ ∈ C2(X), x0 is a
local minimum of uccY − ϕ in X, and f∗(x0) > 0, then

(FMA)∗(x0, Dϕ(x0), D2ϕ(x0)) > 0.

Proof. Let ϕ ∈ C2(X), and let x0 be a local minimum of uccY − ϕ in X. Note that Dϕ(x0) ∈
∂uccY (x0) ⊂ Y .

First we consider the case where uccY (x0) = u(x0) and Dϕ(x0) ∈ Y . Since uccY ≤ u in X, x0 is
a local minimum of u− ϕ in X. Thus

(FαMABV2)∗(x0, Dϕ(x0), D2ϕ(x0)) ≥ 0.

Since Dϕ(x0) ∈ Y , one has
FBV2(x0, Dϕ(x0)) < 0.

It follows that
(FMA)∗(x0, Dϕ(x0), D2ϕ(x0)) ≥ 0,

with a strict inequality if α < 0.
Now we consider the case where either uccY (x0) < u(x0) or Dϕ(x0) ∈ ∂Y . In this case,

there exists a unit vector e ∈ Rd such that 〈e,D2ϕ(x)e〉 ≤ 0 (using Lemma 5.20 for the case
Dϕ(x0) ∈ ∂Y ). Choosing D = (1− ε)e⊗ e+ (ε/d)Id in the definition of FMA yields

(FMA)∗(x0, Dϕ(x0), D2ϕ(x0)) ≥ d f∗(x0)1/d

g(Dϕ(x0))1/d

(
1− d− 1

d
ε

)1/d

ε(d−1)/d − ε

d
Tr(D2ϕ(x0)).

If f∗(x0) > 0, we conclude by choosing ε small enough so that the right-hand side is positive. If
f∗(x0) = 0, we conclude by letting ε approach zero.

Lemma 5.22. Assume (59) and (61). If u : X → R is a convex viscosity supersolution to (2),
then for any Borel subset E of X of Lebesgue measure zero, ∂u(E) has Lebesgue measure zero.

Proof. Let K > 0, and let E be a subset of X of Lebesgue measure zero. Then for any ε > 0,
there exists an open set G ⊂ X such that E ⊂ G and Ld(G) ≤ ε. For any x ∈ G, let r(x) > 0
and S(x) := Bd(x, r(x)), choosing r(x) small enough so that S(x) ⊂ G. By Theorem 5.7, there
exists an Aleksandrov solution v ∈ C(S(x)) to{

det+D
2v(x) = K in S(x),

v(x) = u(x) on ∂S(x).

By Proposition 5.9, v is a viscosity solution to (2) with A(x, p) replaced by zero, B(x, p) replaced
by K, and X replaced by E. Choosing K large enough, it is easily verified that u is a viscosity
supersolution to (2) with the same parameters. Then by Proposition 5.15, up to choosing r(x)
smaller, v ≤ u in S(x). Since u = v on ∂S(x), Lemma 5.10 shows that ∂u(S(x)) ⊂ ∂v(S(x)).
Thus

Ld(∂u(S(x))) ≤ Ld(∂v(S(x))) = KLd(S(x)).

Let δ < 1/5 (for instance δ = 1/6) and for any x ∈ G, let Sδ(x) ⊂ G be defined by Sδ(x) :=
Bd(x, δr(x)). Then by Vitali’s covering theorem [22, Theorem 1.5.1], there exists a countable family
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(xi)i∈N of points of G such that
⋃
x∈G Sδ(x) ⊂

⋃
i∈N S(xi) and balls of the family (Sδ(xi))i∈N are

all disjoint. Since E ⊂ G =
⋃
x∈G Sδ(x), we deduce that ∂u(E) ⊂

⋃
i∈N ∂u(S(xi)) and thus

Ld(∂u(E)) ≤
∑
i∈N
Ld(∂u(S(xi))) ≤ K

∑
i∈N
Ld(S(xi)) = Kδ−d

∑
i∈N
Ld(Sδ(xi)) ≤ Kδ−dLd(G)

≤ Kδ−dε.

We conclude by letting ε approach zero that Ld(∂u(E)) = 0.

Lemma 5.23. Assume (59). If u : X → R is convex, then the set

{y ∈ Rd | ∃x1, x2 ∈ X, x1 6= x2 and y ∈ ∂u(x1) ∩ ∂u(x2)}

has Lebesgue measure zero.

Proof. This standard result follows directly from the facts that uc is not twice differentiable at
points of this set (since {x1, x2} ⊂ ∂uc(y)) and that uc, as a convex, hence locally Lipschitz
function, is differentiable almost everywhere, by Rademacher’s theorem [22, Theorem 3.1.2].

In the lemma below, the right-hand side in (72) is to be understood as the integral of function
which coincides almost everywhere with g(Du(·)) detD2u(·). Indeed, the convex function u
is twice differentiable almost everywhere by Aleksandrov’s theorem [22, Theorem 6.4.1]. In
particular, points where u is not twice differentiable do not contribute to the integral in the
right-hand side, while they do contribute to the one in the left-hand side.

Lemma 5.24. Assume (59). If u : X → R is convex, then for any Borel subset E of X,∫
∂u(E)

g(y) dy ≥
∫
E

g(Du(x)) detD2u(x) dx. (72)

If moreover ∂u(E′) has Lebesgue measure zero for any subset E′ of X of Lebesgue measure zero,
then the above inequality is an equality.

Proof. Since u is convex, its gradient Du belongs to BVloc(X;Rd), see [22, Theorem 6.3.3].
By [22, Theorem 6.6.2], for any k ∈ N∗, there exists a subset Ek of E such that Du is Lipschitz
continuous in Ek and Ld(E \ Ek) ≤ 1/k. We define Ẽ :=

⋃∞
k=1Ek and, for any k ∈ N∗,

Ẽk := Ek \ (
⋃k−1
i=1 Ei).

Using Lemma 5.23,∫
∂u(E)

g(y) dy ≥
∫
∂u(Ẽ)

g(y) dy =

∞∑
k=1

∫
∂u(Ẽk)

g(y) dy =

∞∑
k=1

∫
Du(Ẽk)

g(y) dy

=

∞∑
k=1

∫
Rd

 ∑
x∈(Du)−1({y})

1Ẽk(x)g(Du(x))

 dy
(here (Du)−1({y}) is a singleton for almost every y), with equality if ∂u(E \ Ẽ) has Lebesgue
measure zero (note that E \ Ẽ always has Lebesgue measure zero).

By the change of variables formula [22, Theorem 3.3.2], which is a corollary of the area formula
of geometric measure theory, for any k ∈ N∗,∫

Rd

 ∑
x∈(Du)−1({y})

1Ẽk(x)g(Du(x))

 dy =

∫
Ẽk

g(Du(x)) detD2u(x) dx.
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It follows that∫
∂u(Ẽ)

g(y) dy =

∞∑
k=1

∫
Ẽk

g(Du(x)) detD2u(x) dx =

∫
E

g(Du(x)) detD2u(x) dx,

which concludes the proof.

Let us now prove the main Theorem 5.11 and Theorem 5.12.

Proof of Theorem 5.11. If u : X → R is a viscosity subsolution to (43) with α ≥ 0, it is both a
viscosity subsolution to (2) and (26). Thus by Lemma 5.16 and Lemma 5.17, it is convex in X
and ∂u(X) ⊂ Y .

By Aleksandrov’s theorem [22, Theorem 6.4.1], u is twice differentiable almost everywhere.
Thus it is almost everywhere a classical subsolution to (43). It follows that for almost every
x ∈ X, FMA(x,Du(x), D2u(x)) ≤ 0, with a strict inequality if α > 0. Then, using Proposition 5.8,
for any Borel subset E of X,∫

E

f(x) dx ≤
∫
E

g(Du(x)) detD2u(x) dx,

with a strict inequality if α > 0 and E has positive Lebesgue measure.
By Lemma 5.24, we deduce that∫

E

f(x) dx ≤
∫
∂u(E)

g(y) dy,

with a strict inequality if α > 0 and E has positive Lebesgue measure. The same is true when
replacing E by X \E, and by Lemma 5.23, ∂u(E)∩ ∂u(X \E) has Lebesgue measure zero. Thus∫
X

f(x) dx =

∫
E

f(x) dx+

∫
X\E

f(x) dX ≤
∫
∂u(E)

g(y) dy +

∫
∂u(X\E)

g(y) dy =

∫
∂u(X)

g(y) dy,

with a strict inequality if α > 0, since at least one of the sets E and X \E has positive Lebesgue
measure. On the other hand, since ∂u(X) ⊂ Y , one has the converse inequality∫

∂u(X)

g(y) dy ≤
∫
Y

g(y) dy =

∫
X

f(x) dx.

Therefore the case α > 0 cannot happen, and moreover∫
E

f(x) dx =

∫
∂u(E)

g(y) dy,

∫
X\E

f(x) dx =

∫
∂u(X\E)

g(y) dy,

from which it follows that u is a minimal Aleksandrov solution to (1) and (24).

Proof of Theorem 5.12. When applicable, we follow the same sketch of proof as for Theorem 5.11.
Let u : X → R be a viscosity supersolution to (43) with α ≤ 0. By Aleksandrov’s theorem [22,
Theorem 6.4.1], uccY is twice differentiable almost everywhere. Then by Lemma 5.21, for almost
every x ∈ X, one has FMA(x,DuccY (x), D2uccY (x)) ≥ 0, with a strict inequality if α < 0 and
f(x) > 0. Using Proposition 5.8, for any Borel subset E of X,∫

E

f(x) dx ≥
∫
E

g(DuccY (x)) detD2uccY (x) dx,
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with a strict inequality if α < 0 and Ld({x ∈ E | f(x) > 0}) > 0.
By Lemma 5.22 and Lemma 5.24, we deduce that∫

E

f(x) dx ≥
∫
∂uccY (E)

g(y) dy,

with a strict inequality if α < 0 and Ld({x ∈ E | f(x) > 0}) > 0. The same is true when replacing
E by X \ E, thus∫
X

f(x) dx =

∫
E

f(x) dx+

∫
X\E

f(x) dX ≥
∫
∂uccY (E)

g(y) dy+

∫
∂uccY (X\E)

g(y) dy ≥
∫
∂uccY (X)

g(y) dy.

Also note that at least one of the two conditions Ld({x ∈ E | f(x) > 0}) > 0 and Ld({x ∈ X \E |
f(x) > 0}) > 0 is satisfied, thus one has a strict inequality if α < 0. On the other hand, since by
Lemma 5.19 Y ⊂ ∂uccY (X) ⊂ Y , one has the equality∫

∂uccY (X)

g(y) dy =

∫
Y

g(y) dy =

∫
X

f(x)dx.

Therefore the case α < 0 cannot happen, and moreover∫
E

f(x) dx =

∫
∂uccY (E)

g(y) dy,

∫
X\E

f(x) dx =

∫
∂uccY (X\E)

g(y) dy,

from which it follows that uccY is a minimal Aleksandrov solution to (1) and (24).

5.4 Convergence
We are now able to prove convergence of a family of numerical schemes (which includes the
scheme (30), see section 3) for the Monge-Ampère equation, in the setting of quadratic optimal
transport.

Theorem 5.25 (Convergence). Assume (60) to (62). If the scheme (38) is monotone, consistent
with equation (43), and equicontinuously stable (in the sense of Definition 2.12), and if for
any small h > 0, there exists a solution (αh, uh) ∈ R × RGh to (38) satisfying uh[0] = 0, then
as h approaches zero, αh converges to zero and uh converges uniformly to the unique minimal
Aleksandrov solution (or equivalently minimal Brenier solution) u : X → R to (1) and (24)
satisfying u(0) = 0.

Proof. Let (hn)n∈N be a sequence of small discretization steps hn > 0 converging to zero. Since
(38) is equicontinuously stable, the sequence (αhn)n∈N is bounded, and (uhn)n∈N is uniformly
bounded and uniformly equicontinuous. Then by the Arzelà-Ascoli theorem, up to extracting
a subsequence, αhn converges to some α ∈ R and uhn converges uniformly to some continuous
function u : X → R, satisfying u(0) = 0. By Corollary 2.13, u is a viscosity solution to (43). By
Corollary 5.13, α = 0 and u is the minimal Aleksandrov solution to (1) and (24), which concludes
the proof.

6 Numerical experiments
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Figure 1: Image of a Cartesian grid by the approximated optimal transport maps, for the quadratic
optimal transport problem with some given source and target densities.

6.1 Approximation of optimal transport maps for some quadratic opti-
mal transport problems

We apply the scheme (30) to the numerical resolution of some problems of the form (57), see
Figure 1. The problems considered are inspired by the numerical experiments in [4]. The
source and target domains X and Y are chosen as the unit disk B2(0, 1). The source density
f : B2(0, 1)→ R+ is chosen among the ones depicted in the top row of Figure 1 and may have
a non-convex or non-connected support, while the target density g : B2(0, 1) → R∗+ (extended
to all of R2 for numerical purposes, as explained in section 5.1) is either the uniform density
g : y 7→ 1/π or the following combination of Gaussian densities and of a small uniform density:

g : y 7→
ρ+

∑3
i=1 exp

(
− |y−ŷi|

2

2σ2

)
∫
B2(0,1)

ρ+
∑3
i=1 exp

(
− |y−ŷi|

2

2σ2

)
dy
, (73)

where ρ := 0.1, σ := 0.1, ŷ1 := (0, 0.6), ŷ2 := (−0.6,−0.1), and ŷ3 := (0.6,−0.1).
In all our numerical experiments, we choose the discretization step h > 0 as h = 2/N , for

some N ∈ 2N∗, so that the Cartesian grid [−1, 1]2 ∩ hZ2 contains exactly (N + 1)2 points. We
define the Cartesian grid Gh := X ∩ hZ2, as well as the smaller grid

G̃h := {x ∈ Gh | ∀i ∈ {1, 2}, x+ hei ∈ Gh and x− hei ∈ Gh}.

In Figure 1, we choose N = 128. Following Appendix B and in particular Table 1, we choose
Vh = V µ with µ = 2 +

√
5 ≈ 4.236. We solve the numerical scheme (30) on the grid Gh, in the

setting described by (61) and (62), and we denote by (αh, uh) ∈ R × RGh the solution to the
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scheme. We approximate the optimal transport map T : X → Y by Dhuh : G̃h → Rd, where Dh

is the centered finite difference operator defined in (13). The grids displayed in Figure 1 are the
image of G̃h (coarsened for readability) by the approximate transport map Dhuh in each of the
settings considered.

Remark 6.1 (Difference between the theoretical and experimental settings). In the definitions
(17) and (18) of the discrete operators Aeh and Bh, the scheme (30) involves some parameters
amin ≤ 0 and aLF, bLF ≥ 0. Although they do not fit in the theoretical setting, we use in all
our experiments the values amin = −∞ and aLF = bLF = 0, which simplify the expression of the
scheme and improve its consistency, see Remark 3.4. We did not observe any practical difficulties
related to this choice in the experiments that we considered.

Remark 6.2 (Solving the numerical scheme). We solve the scheme (30) using the Newton method.
In practice, in all our numerical experiments instead of solving

Sh,αMAu[x] ∨ ShBV2u[x] = 0 in Gh,

we solve the equivalent scheme

Sh,αMAu[x] ∨ κShBV2u[x] = 0 in Gh

with κ = 20, since we observe that better convergence of the Newton method tends to be achieved
when rescaling the contribution of the discretization of the optimal transport boundary condition
with respect to the one of the discretization of the Monge-Ampère equation. The Newton method
is applied to finding a zero of the function (α, u) 7→ Sh,αMAu[x] ∨ κShBV2u[x] over the hyperplane
{(α, u) ∈ R × RGh | u[0] = 0}. In Figure 1, we display the number of iterations required in
order to achieve convergence of the Newton method for each of the problems considered, with
initialization u[x] = |x|2 and with the stopping criterion

max
x∈Gh

|Sh,αMAu[x] ∨ κShBV2u[x]| < 10−8.

We observe that more iterations seem to be required when the size of the support of the source
density f is small comparatively to the source domain X.

6.2 Numerical convergence analysis
In Figures 2 and 3, we display the approximation errors obtained when using the recommended
scheme in order to solve some Monge-Ampère problems whose solution u : X → R is known
exactly.

According to Remark 3.4, the discretization of the Monge-Ampère operator by the operator
ShMA defined in (23) is expected to achieve second-order consistency in favorable cases. However,
consistency to an order higher than one cannot be expected for the whole scheme (30) due to the
fact that the discretization (28) of the optimal transport boundary condition is only first-order
consistent. In order to study separately the errors stemming from the discretizations of the
Monge-Ampère operator and of the optimal transport boundary condition, we consider both
the second and the first boundary value problems for the Monge-Ampère equation. We use the
scheme (30) in order to approximate the solution to the second boundary value problem. The
first boundary value problem involves a Dirichlet boundary condition; the variant (82) of our
numerical scheme devoted to this setting is described in Appendix C.
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Figure 2: Numerical approximation error with respect to the grid size, with the optimal transport
boundary condition.

Figure 3: Numerical approximation error with respect to the grid size, with the Dirichlet boundary
condition.
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We design our test cases by first choosing the domain X and the exact solution u as follows:

(Quartic problem) X := B2(0, 1), u(x) :=
|x|4

4
,

(C1 problem) X := B2(0, 1), u(x) := (0 ∨ (|x| − 1/2))2,

(Singular problem) X := Rπ/3]− 1, 1[2, u(x) := −
√

2− |x|2,

where Rθ :=
(
cos θ − sin θ
sin θ cos θ

)
. The quartic problem is inspired by the numerical experiments in [23],

while the C1 and singular problems are inspired by the ones in [25]. The role of the rotation
Rπ/3 is to prevent the domain of the singular problem from being axis-aligned, which otherwise
provides an unfair advantage to schemes defined on Cartesian grids such as ours.

We only consider Monge-Ampère equations whose coefficients are in the form (61), as in the
quadratic optimal transport problem. We choose the target density g : R2 → R∗+ according to
(73), and we choose the other parameters of each of the problems considered (the source density
f : X → R+ and the function ψ : ∂X → R in the case of the Dirichlet boundary condition; the
source density f : X → R+ and the target domain Y ⊂ R2 in (62) in the case of the optimal
transport boundary condition) appropriately so that the function u is the solution to the problem.
For the quartic and C1 problem, the target domain is Y = B2(0, 1). For the singular problem,
we only consider the Dirichlet boundary condition, since with the optimal transport boundary
condition the target domain Y would be unbounded and non-convex, which does not fit in our
framework.

We define the l∞ approximation error between the exact solution u and the numerical solution
uh as

‖uh − u‖∞,h := max
x∈Gh

|uh[x]− u(x)|.

We also display the error

‖Dhuh −Du‖∞,h := max
x∈G̃h

|Dhuh[x]−Du(x)|

between Du and its approximation obtained by applying to uh the centered finite difference
operator Dh defined in (13).

It may be of practical interest to approximate Du by Dhuh since, at least in the setting of the
second boundary value problem, Du coincides with the optimal transport map for the associated
optimal transport problem, see section 5.1. Note however that theoretical guarantees on the
convergence of Dhuh towards Du are unreachable using the techniques developed in this paper.

In the case of the singular problem, convergence of Dhuh towards Du is not observed in the
l∞ norm, which is expected since Du is unbounded in X. For this reason, we display instead the
l1 error

‖Dhuh −Du‖1,h := h2
∑
x∈G̃h

|Dhuh[x]−Du(x)|.

According to Appendix B and Table 1, we choose the set of superbases Vh in (23) as Vh = V µ

for some µ > 1. In Figure 2, we use the value µ = 1 +
√

2. According to Proposition B.8 larger
values of µ may need to be used for small discretization steps h in order to observe convergence.
This is illustrated in Figure 3, where the values µ = 2 +

√
5 and µ = 3 +

√
10 are also considered.

6.3 Effect of the set of superbases on the pointwise approximation error
In order to describe more visually the effect of the choice of the parameter µ on the numerical
solution to the Monge-Ampère problem, we display in Figure 4 the solution to the scheme (82),
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Figure 4: Effect of the choice of the parameter µ on the reconstruction of u(x) = |〈e, x〉|, where
e := (1, 1/

√
10). Top: finite difference stencil. Bottom: numerical solution.

used with N = 128 and Vh = V µ, for several choices of µ, in order to approximate the solution
u : x 7→ |〈e, x〉| to the Dirichlet problem{

det+D
2u(x) = 0 in B2(0, 1),

u(x) = |〈e, x〉| on ∂B2(0, 1),

with e := (1, 1/
√

10). We observe as expected that the solution is better reconstructed, especially
near its singularity, for larger values of µ, which correspond to wider finite difference stencils.

6.4 Comparison between the recommended scheme and the MA-LBR
scheme

We study the behavior of the Newton method applied to the resolution of the recommended
scheme (82) and the MA-LBR scheme (83), in the setting of the Dirichlet problem{

det+D
2u(x) = 1 in X,

u(x) = 0 on ∂X,

on domains X = B2(0, 1)∪]−1, 1[2 and X = B2(0, 1)\ [−1, 1]2. While the second of those domains
does not fit in standard theoretical frameworks for the Monge-Ampère equation due to being
non-convex, this choice has to be considered as a stress test for the considered numerical methods.

Let us denote by u0 : Gh → R our initial guess in the Newton method. The iterates of the
Newton method are defined as un := un−1 + 2−kndn, where dn is the Newton descent direction
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Figure 5: The far field refractor problem. In practice only the shape of the upper interface of the
lens has to be approximated numerically. The lower interface, represented by the dashed curve,
can be chosen as a portion of a sphere so that it does not refract light rays emanating from the
origin.

and kn ∈ N is a damping parameter. In the case of the recommended scheme (82), no damping is
required, so we always choose kn = 0. In the case of the MA-LBR scheme (83), one has to use
damping so that the constraint (84) remains satisfied along the iterates, as discussed in section 1.3.
More precisely, let us introduce the following quantitative variant of the constraint (84):

Λ̃hun[x] ≥ B̃hun[x]/2, ∀x ∈ Gh (74)

(in the setting of our experiments, one has B̃hu[x]/2 = 1/2). Following [3,39], and in the spirit
of [33], we assume that (74) is satisfied for u0 and at each iteration we let kn be the smallest
natural number such that (74) holds.

We use the grid size N = 120 and the set of superbases Vh = V µ, µ = 2 +
√

5. We initialize
the Newton method with u0[x] := |x|2 − 2 (since the simpler initialization u0[x] := |x|2 does not
satisfy (74) close to ∂X, in view of the boundary condition u = 0 on ∂X) and we use the stopping
criterion

max
x∈Gh

|Shu[x]| < 10−8,

where either Sh = ShMABV1 or Sh = ShMA-LBR-BV1 as appropriate.
On the domain X = B2(0, 1)∪] − 1, 1[2, the Newton method for the recommended scheme

(82) converges in 9 iterations without damping. The Newton method for the MA-LBR scheme
converges in 47 iterations and the largest observed value for kn is kn = 4, corresponding to a
damping step 2−kn = 0.0625.

On the domain X = B2(0, 1) \ [−1, 1]2, the Newton method for the recommended scheme
converges in 7 iterations without damping. The Newton method for the MA-LBR scheme
converges in 52 iterations and the largest observed value for kn is kn = 5, corresponding to a
damping step 2−kn = 0.03125.

6.5 Application of the scheme to the far field refractor problem in
nonimaging optics

We apply the scheme (30) to the far field refractor problem [30] in nonimaging optics. Various
numerical methods for solving this problem, and some of its variants such as the reflector problem,
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Figure 6: Top left: target image in the far field refractor problem. Bottom left: approximation of
the height field v. Bottom right: approximation of the pointwise Gaussian curvature of v. Top
right: simulation of the scene (for ` large but finite), using the appleseed® rendering engine and
the shape computed numerically for the lens.
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have been previously studied in the literature [6,11,18,19,28]. We illustrate the refractor problem
in Figure 5. Light rays emanate from a point source of light located at the origin, in directions
belonging to some subset of the upper hemisphere {x ∈ S2 | x3 > 0} of the unit sphere S2. In
our experiments we assume that the intensity of those light rays is constant with respect to their
direction. The rays propagate in the ambient medium, whose index of refraction we denote by
n1 > 0, until they hit a lens, which is located at distance `0 from the origin and whose index of
refraction we denote by n2 > 0. The rays are refracted by the lens, then continue to propagate
in the ambient medium until they hit a screen, represented by the plane R2 × {`}, where ` > `0
denotes the distance from the screen to the origin. The aim is to find a suitable shape for the
lens that refracts the light rays so that a given target image is reconstructed on the screen.

The far field refractor problem is studied in the limit ` → ∞. In this limit, it has been
shown [30] to be equivalent to an optimal transport problem with a specific, non-quadratic cost,
and thus to reduce to the second boundary value problem for the Monge-Ampère equation (1)
with coefficients of the form (65) to (67) (as opposed to (61) and (62)). In the above-mentioned
optimal transport problem, the source and target densities, which may be exchanged up to an
appropriate transformation of the transport map, are the density describing the image that has
to be reconstructed in the refractor problem and the one describing the intensity of light rays
depending on their initial direction of emission.

Remark 6.3. The problem with finite ` is called the near field refractor problem and has been
shown [31] to reduce to a generated Jacobian equation of the form

det+
(
D2u(x)−A(x, u(x), Du(x))

)
= B(x, u(x), Du(x)) in X. (75)

The difference between (75) and (1) is that in (75) the coefficients A and B depend on the values
of the function u and not only on its derivatives. The study of the extension of the scheme (30) to
generated Jacobian equations is outside the scope of this paper and is an opportunity for future
research.

We approximate the solution to the far field refractor problem by solving the scheme (30) on
the unit disk X = B2(0, 1), choosing as the source density f the one describing the target image
in the problem. We use the grid size N = 120 and the set of superbases Vh = V µ, µ = 2 +

√
5 (see

Table 1). We choose the indices of refraction n1 = 1 and n2 = 1.5, corresponding to a glass-air
interface. Eleven iterations of the Newton method are needed in order to solve the scheme. Up to
an appropriate postprocessing of the solution to the scheme (30), we obtain an approximation of
the height map v : B2(0, r)→ R+ describing the upper interface {(x, v(x)) | x ∈ B2(0, r)} of the
lens, where r > 0 denotes the radius of the lens.

We display our numerical results in Figure 6. On the representation of the approximation of
the pointwise curvature of v, we observe that the parts of the refractor corresponding to dark
areas of the image have a small area, compared to the ones corresponding to bright areas. This
is consistent with the fact that the total intensity of the light traversing them should be low,
in order for the image to be properly reconstructed. In order to validate our results, we inject
the shape that we obtain for the lens in a simulation of the scene that we perform using the
appleseed®2 rendering engine.

7 Conclusion and perspectives
We were able to adapt Perron’s method in order to prove the existence of solutions to a class of
monotone numerical schemes whose sets of solutions are stable by addition of a constant. We

2https://appleseedhq.net/
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designed a finite difference scheme for the Monge-Ampère equation that belongs to this class,
and proved convergence of the scheme in the setting of quadratic optimal transport. We showed
that in dimension two, the discretization of the Monge-Ampère operator admits a closed-form
formulation, and thus yields a particularly efficient numerical method, when carefully choosing
its parameters using Selling’s formula. We validated the method by numerical experiments in the
context of the far field refractor problem in nonimaging optics.

A natural perspective is the adaptation of the proof of convergence of the scheme to the
setting of more general optimal transport problems. The extension of the scheme to generated
Jacobian equations such as (75) could also be studied. This would require adapting both the
proof of convergence and the one of existence of solutions to the scheme, since the invariance in
the set of solutions would not be the same in this case.

Another perspective is the extension of this work to higher dimensions. While our existence
and convergence results are valid in any dimension, the closed-form formula that we obtain for
the maximum in the discretized Monge-Ampère operator is specific to the dimension two. In
higher dimensions, this maximum could be approximated either by sampling the parameter set or
by resorting to a numerical optimization procedure, since (23) is an instance of a semidefinite
program. We expect the second approach to be more efficient, but developing such an optimization
procedure is still an open research direction. The design of this procedure could be made easier
by an appropriate choice of the set Vh in (23). In dimension three, one could choose it as a set of
superbases of Z3, benefiting from the fact that Selling’s formula (described in Proposition 4.2 in
dimension two) also holds in dimension three; in this case, which superbases exactly the set Vh
should contain is an open question, since the selection criterion based on the Stern-Brocot tree
and presented in Appendix B is two-dimensional only. In dimensions four and higher, one could
resort to Voronoi’s first reduction of quadratic forms [15], which generalizes Selling’s formula to
those dimensions.
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A Relation to the MA-LBR scheme
The MA-LBR scheme, introduced in [3], is a discretization of the two-dimensional Monge-Ampère
equation. Its natural extension to the generalized equation (1) may be described by a discrete
operator ShMA-LBR : RGh → RGh , which is an alternative to the operator ShMA defined in (23). The
operator ShMA-LBR is defined as follows:

ShMA-LBRu[x] := Bhu[x]− Λhu[x], (76)

where
Λhu[x] := min

v∈Vh
G(∆v

hu[x]−Avhu[x]). (77)

We denoted by Vh a given set of superbases of Z2, by ∆v
h the second order finite differences

defined in (13) and (19), and by Avh and Bh the first order finite difference operators defined in
(17) to (19). Finally, for any m ∈ (R ∪ {+∞})3,

G(m) := G0((0 ∨m1, 0 ∨m2, 0 ∨m3)),

G0(m̃) :=



m̃2m̃3 if m̃1 ≥ m̃2 + m̃3,

m̃1m̃3 if m̃2 ≥ m̃1 + m̃3,

m̃1m̃2 if m̃3 ≥ m̃1 + m̃2,
1
2 (m̃1m̃2 + m̃1m̃3 + m̃2m̃3)

− 1
4 (m̃2

1 + m̃2
2 + m̃2

3) else.

(78)

Contrary to the operator ShMA, the operator ShMA-LBR is only intended to be applied to
functions u : Gh → R satisfying the constraint

Λhu[x] > 0, ∀x ∈ Gh, (79)

which is a discrete counterpart to the strict variant of the admissibility constraint (4). If this
condition fails, then the Jacobian matrix of the scheme is not invertible [39], which breaks the
Newton method relied upon.

Lemma A.1. Let u : Gh → R be a function satisfying (79). Then for any x ∈ Gh and v ∈ Vh,
letting m := ∆v

hu[x]−Avhu[x], one has G(m) = G0(m) > 0 and m > 0 elementwise.

Proof. Let m̃ := (0 ∨m1, 0 ∨m2, 0 ∨m3), so that G(m) = G0(m̃). By (79), one has G(m) > 0.
Thus G0(m̃) = G(m) > 0, from which it is easy to deduce that m̃ > 0 elementwise. Therefore
m = m̃, hence m > 0 elementwise and G(m) = G0(m).

Recall that, for any superbase v ∈ Vh and any γ ∈ R3, one has Dv(γ) :=
∑3
i=1 γivi ⊗ vi. The

following proposition shows that the MA-LBR scheme may be seen as a discretization of the
reformulation (6) of the Monge-Ampère equation:
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Proposition A.2. Let u : Gh → R be a function satisfying (79). Then for any x ∈ Gh,

ShMA-LBRu[x] = Bhu[x]− min
v∈Vh

inf
γ∈R3

+

detDv(γ)=1

〈γ,∆v
hu[x]−Avhu[x]〉2

4
.

Proof. It suffices to show that for any superbase v ∈ Vh, if m := 〈γ,∆v
hu[x]−Avhu[x]〉, then

G(m) = inf
γ∈R3

+

detDv(γ)=1

〈γ,m〉2

4
.

By Lemma A.1, one has G(m) = G0(m) and m > 0 elementwise. Using that v is a superbase
of Z2, and that therefore det(vi, vj) = ±1 for any 1 ≤ i < j ≤ 3, one can compute that for any
γ ∈ R3

+,

detDv(γ) =

(
3∑
i=1

γiv
2
i,1

)(
3∑
i=1

γiv
2
i,2

)
−

(
3∑
i=1

γivi,1vi,2

)2

=

3∑
i=1

3∑
j=1

γiγjv
2
i,1v

2
j,2 −

3∑
i=1

3∑
j=1

γiγjvi,1vi,2vj,1vj,2

=

3∑
i=1

3∑
j=1

γiγjvi,1vj,2 det(vi, vj)

=
∑

1≤i<j≤3

γiγjvi,1vj,2 det(vi, vj) +
∑

1≤i<j≤3

γjγivj,1vi,2 det(vj , vi)

=
∑

1≤i<j≤3

γiγj det(vi, vj)
2

=
∑

1≤i<j≤3

γiγj .

Thus it remains to prove that

G0(m) = inf
γ∈R3

+

γ1γ2+γ1γ3+γ2γ3=1

〈γ,m〉2

4
,

or equivalently that
inf
γ∈R3

+

γ1γ2+γ1γ3+γ2γ3=1

〈γ,m〉 = 2
√
G0(m). (80)

The infimum in (80) is attained at some γ ∈ R3
+, fixed in the following, since the objective

function γ 7→ 〈γ,m〉 is coercive in R3
+ and since the constraint γ1γ2 + γ1γ3 + γ2γ3 = 1 is closed.

If γ3 = 0, then by elimination of γ2 = 1/γ1, the optimization problem becomes min{m1γ1 +
m2/γ1 | γ1 ≥ 0}, whose solution is 2

√
m1m2 attained for γ1 =

√
m2/m1, consistently with (78)

and (80). Likewise if γ1 = 0 or γ2 = 0 instead of γ3 = 0.
Consider now the case where γ > 0 elementwise. Then by the KKT conditions for the

optimization problem in the left-hand side of (80), there exists a Lagrange multiplier λ ≥ 0 such
that m = (λ/2)(γ2 + γ3, γ1 + γ3, γ1 + γ2). Equivalently,

λγ = (m2 +m3 −m1,m1 +m3 −m2,m1 +m2 −m3). (81)
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In particular, we obtain that the elementwise positiveness of γ cannot hold if m1 ≥ m2 + m3,
m2 ≥ m1 + m3, or m3 ≥ m1 + m2, as announced in the expression (78) of G0. Replacing
the elements of γ with their expressions in terms of λ and of the elements of m, see (81), and
performing straightforward simplifications, we obtain new expressions of the objective and the
constraint of the optimization problem in (80):

〈γ,m〉 = ∆/λ, 1 = γ1γ2 + γ1γ3 + γ2γ3 = ∆/λ2,

where ∆ := 2(m1m2 +m1m3 +m2m3)− (m2
1 +m2

2 +m2
3). The constraint yields λ =

√
∆, and

the objective value is thus ∆/λ =
√

∆ = 2
√
G0(m) as announced.

B Choosing the set of superbases in dimension two
In this appendix, we explain how one may choose, in dimension d = 2 and for any h > 0, a finite
set Vh of superbases of Z2 satisfying (20) to (22). The motivation is to use this set Vh in (23).
The construction of Vh is based on the Stern-Brocot tree of bases of Z2 (see [9] for a similar
approach in the setting of Hamilton-Jacobi-Bellman equations):

Definition B.1. A pair (u, v) of vectors of Z2 is a direct basis of Z2 if det(u, v) = 1.

Definition B.2. The Stern-Brocot tree T is the collection of direct bases of Z2 defined inductively
as follows: (i) the canonical basis belongs to T , and (ii) for any (u, v) ∈ T , one has (u, u+ v) ∈ T
and (u+ v, v) ∈ T .

Remark B.3. In classical descriptions of the Stern-Brocot tree, the vector u = (p, q) is often
identified with the ratio p/q, which is a nonnegative rational, or with +∞, and likewise for
v = (r, s) (note that p and q are nonnegative and coprime by construction).

For any (u, v) ∈ T , the scalar product 〈u, v〉 is a nonnegative integer, as follows from an
immediate induction. The set Ts := {(u, v) ∈ T ; 〈u, v〉 < s} is a finite subtree which can be
generated by exploration with the obvious stopping criterion, since min{〈u, u+ v〉, 〈u+ v, v〉} =
〈u, v〉+ min{|u2|, |v|2} ≥ 〈u, v〉+ 1.

Lemma B.4. Let µ > 1 and (u, v) ∈ T(µ−µ−1)/2. Then

max{|u|, |v|} < µ+ µ−1

2
< µ.

Proof. It holds that

|u|2 ≤ |u|2|v|2 = det(u, v)2 + 〈u, v〉2 < 1 +

(
µ− µ−1

2

)2

=
µ2 + µ−2 + 2

4
=

(
µ+ µ−1

2

)2

,

and similarly for v.

For any D ∈ S++
2 , we define

µ(D) :=
√
|D||D−1|, s(D) :=

1

2
(µ(D)− µ(D)−1).

Note that µ(D) is the square root of the condition number of D.

Lemma B.5. Let (u, v) ∈ T and D ∈ S++
2 . If 〈u, v〉 ≥ s(D), then 〈u,Dv〉 ≥ 0.
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Proof. Denote by ^(u, v) ∈ [0, π] the unoriented angle between two vectors, defined by

cos^(u, v) :=
〈u, v〉
|u||v|

.

On the one hand one has

sin^(u, v) =
det(u, v)√

〈u, v〉2 + det(u, v)2
= (1 + 〈u, v〉2)−1/2.

On the other hand on can show [21, Corollary B.4] that for any vector v,

(µ(D) + µ(D)−1) cos^(v,Dv) ≥ 2.

If 〈u, v〉 ≥ (µ(D)−µ(D)−1)/2, then one obtains sin^(u, v) ≤ cos^(v,Dv), and therefore ^(u, v)+
^(v,Dv) ≤ π/2. By subadditivity of angles, ^(u,Dv) ≤ π/2, which is the announced result.

Definition B.6. Let D ∈ S+2 . A superbase v = (v1, v2, v3) of Z2 is D-obtuse if 〈vi,Dvj〉 ≤ 0, for
any 1 ≤ i < j ≤ 3.

Corollary B.7. For any D ∈ S++
2 , there exists (u, v) ∈ T such that 〈u, v〉 ≤ s(D) and, denoting

ũ := (u1,−u2) and ṽ := (v1,−v2), either (u, v,−u− v) or (ũ, ṽ,−ũ− ṽ) is a D-obtuse superbase.

Proof. We can assume that the nondiagonal coefficient of D is negative, up to reversing the
orientation of one axis, and removing the trivial case of diagonal matrices. Let (u, v) ∈ T be
such that 〈u,Dv〉 < 0 and 〈u, v〉 is maximal. Such an element exists since the canonical basis
obeys the condition 〈u,Dv〉 < 0, since 〈u, v〉 is a nonnegative integer, and since 〈u,Dv〉 ≥ 0 when
〈u, v〉 ≥ s(D), by Lemma B.5. Then, by construction, 〈u,D(u + v)〉 ≥ 0 and 〈u + v,Dv〉 ≥ 0,
which shows that (u, v,−u− v) is a D-obtuse superbase.

For any µ > 1, we define

V µ :=
⋃

(u,v)∈T(µ−µ−1)/2

{(−u⊥,−v⊥, u⊥ + v⊥), (−ũ⊥,−ṽ⊥, ũ⊥ + ṽ⊥)},

where ũ := (u1,−u2) and ṽ := (v1,−v2). The construction of the set V µ is motivated by
the following observation: if D ∈ S++

d obeys µ(D) < µ, then, using Corollary B.7 and that
s(D) < (µ − µ−1)/2, there exists a superbase v = (v1, v2, v3) ∈ V µ such that (v⊥1 , v

⊥
2 , v

⊥
3 ) is

D-obtuse.
Note that by construction, there exist countably many values 1 = µ0 < µ1 < µ2 < · · · such

that the map µ 7→ V µ, defined on (1,+∞), is constant on each interval (µn, µn+1], n ∈ N, and
satisfies V µn ( V µn+1 , for any n ∈ N∗. We display in Table 1 the values of µn for small n ∈ N∗,
as well as some properties of the associated sets of superbases V µn .

One may choose a sequence (µh)h>0 of parameters µh > 1, and let Vh = V µh .

Proposition B.8. For any h > 0, let µh > 1 be such that

lim
h→0

µh = +∞, lim
h→0

hµh = 0,

and let Vh = V µh . Then (20) to (22) are satisfied.
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n µn µ2
n #(V µn) maxv∈V µn maxe∈v |e| additional superbases

(up to transformations)
1 1 +

√
2 ≈ 2.414 ≈ 5.828 2

√
2 ≈ 1.414

((
0
−1
)
,
(−1

0

)
, ( 1

1 )
)

2 2 +
√

5 ≈ 4.236 ≈ 17.944 6
√

5 ≈ 2.236
((

0
−1
)
,
(−1
−1
)
, ( 1

2 )
)

3 3 +
√

10 ≈ 6.162 ≈ 37.974 10
√

10 ≈ 3.162
((

0
−1
)
,
(−1
−2
)
, ( 1

3 )
)

4 4 +
√

17 ≈ 8.123 ≈ 65.985 18
√

17 ≈ 4.123
((

0
−1
)
,
(−1
−3
)
, ( 1

4 )
)
,((−1

−2
)
,
(−1
−1
)
, ( 2

3 )
)

5 5 +
√

26 ≈ 10.099 ≈ 101.99 22
√

26 ≈ 5.099
((

0
−1
)
,
(−1
−4
)
, ( 1

5 )
)

Table 1: Properties of V µ for µ ≤ 5 +
√

26. In the rightmost column, we display for each n
the elements of a set of superbases V̂n such that V µn =

⋃
1≤i≤n

⋃
v∈V̂i{(v1, v2, v3), (v⊥2 , v

⊥
1 , v

⊥
3 ),

(ṽ⊥2 , ṽ
⊥
1 , ṽ

⊥
3 ), (−ṽ1,−ṽ2,−ṽ3)}, where ẽ := (e1,−e2) denotes the reflection with respect to the

horizontal axis, as in Corollary B.7. For the first three values of n, the points of the finite
difference stencils

⋃
v∈V µn

⋃
e∈v{±e} are displayed in Figure 4.

Proof. For fixed h > 0, let D ∈ S++
2 be such that µ(D) < µh. Then there exists a superbase v =

(v1, v2, v3) ∈ Vh = V µh such that (v⊥1 , v
⊥
2 , v

⊥
3 ) is D-obtuse. By Selling’s formula Proposition 4.2,

there exists γ ∈ R3
+ such that D = Dv(γ) (choose γ = γv(D)). It follows that

{D ∈ S++
2 | Tr(D) = 1, µ(D) < µh} ⊂ {Dv(γ) | v ∈ Vh, γ ∈ R3

+, Tr(Dv(γ)) = 1}.

Therefore

lim
h→0

dH({Dv(γ) | v ∈ Vh, γ ∈ R3
+, Tr(Dv(γ)) = 1}, {D ∈ S+2 | Tr(D) = 1})

≤ lim
h→0

dH({D ∈ S++
2 | Tr(D) = 1, µ(D) ≤ µh}, {D ∈ S+2 | Tr(D) = 1})

= 0,

which proves (20).
Let v = (v1, v2, v3) be a superbase belonging to Vh. By Lemma B.4, max1≤i≤3 |vi| ≤ 2µh, and

(21) follows.
Finally, (22) is satisfied since the subtree T(µh−µ−1

h )/2 always contains the canonical basis
(e1, e2), hence (−e2, e1, e2 − e1) = (−e⊥1 ,−e⊥2 , e⊥1 + e⊥2 ) ∈ Vh.

Remark B.9. Let c > 0, r ∈ (0, 1), and, for sufficiently small h > 0, choose Vh = V µh where
µh := ch−r. Then the proof of Proposition B.8 yields the following refinements of (20) and (21):

dH
(
{Dv(γ) | v ∈ Vh, γ ∈ R3

+, Tr(Dv(γ)) = 1}, {D ∈ S+2 | Tr(D) = 1}
)

= O(h2r),

max
v∈Vh

max
e∈v
|e| = O(h−r),

where the exponent in the first formula may be obtained by rewriting the relevant part of (55) as
1− |ρ| = 2/(Cond(D(ρ))− 1) = 2/(µ(D(ρ))2 − 1) = O(µ(D(ρ)))−2.

Let us give the following upper bound on the cardinal of the set V µ:

Proposition B.10. There exists C > 0 such that for any µ > 1, one has #(V µ) ≤ Cµ(1 + logµ).

Proof. By [38, Lemma 2.7], there exists C > 0 such that for any s > 1, one has #(Ts) ≤
Cs(1 + log s). The stated result follows, since #(V µ) = 2#(T(µ−µ−1)/2) and T(µ−µ−1)/2 ⊂ Tµ.
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C Scheme for the Dirichlet problem
In some numerical experiments of sections 6.2 to 6.4, we consider the Monge-Ampère problem
equipped with the Dirichlet boundary condition (68), instead of the optimal transport boundary
condition. Let us describe how we adapt the scheme (30), or at least the discretization (23) of
the Monge-Ampère operator, to this setting.

The function ψ : ∂X → R defining the Dirichlet boundary condition is assumed to be given.
For any x ∈ Gh and e ∈ Zd \ {0}, we define

he(x) := min{h′ > 0 | x+ h′e ∈ Gh ∩ ∂X}.

Similarly to (11), we define the translation operator T̃ eh : RGh → RGh , applied to a function
u : Gh → R, by

T̃ ehu[x] :=

{
u[x+ he] if x+ he ∈ Gh and he(x) = h,

ψ(x+ he(x)) else.

We then define the first- and second-order finite difference operators

δ̃ehu[x] :=
T̃ ehu[x]− u[x]

he(x)
, ∆̃e

hu[x] :=
2

he(x) + h−e(x)
(δ̃ehu[x] + δ̃−eh u[x]),

as well as the approximations of the Laplacian and of the gradient

∆̃hu[x] :=

d∑
i=1

∆̃ei
h u[x], D̃hu[x] :=

(
δ̃eih u[x]− δ̃−eih u[x]

2

)
1≤i≤d

.

Note that, under the assumption (10), the operators T̃ eh , δ̃
e
h, ∆̃e

h, ∆̃h, and D̃h reduce respectively
to the operators T eh , δ

e
h, ∆e

h, ∆h, and Dh defined in (11) to (13) at all points x that are far
enough from ∂X. We previously used the same construction for finite difference operators near
the boundary of the considered domain in [7, 8].

Similarly to (17), (18), and (19), we define

Ãehu[x] := amin|e|2 ∨
(
〈e,A(x, D̃hu[x])e〉 − h

2
aLF|e|2∆̃hu[x]

)
,

B̃hu[x] := 0 ∨
(
B(x, D̃hu[x])1/d − h

2
bLF∆̃hu[x]

)d
,

and, for any family v of vectors of Zd \ {0},

∆̃v
hu[x] := (∆̃e

hu[x])e∈v, Ãvhu[x] := (Ãehu[x])e∈v.

Then the scheme that we use for the Dirichlet problem may be written as

ShMABV1u[x] = 0 in Gh, (82)

where
ShMABV1u[x] := max

v∈Vh
max

γ∈Rd(d+1)/2
+

Tr(Dv(γ))=1

Lv,γ(B̃hu[x], ∆̃v
hu[x]− Ãvhu[x]).

The complete study of the theoretical properties of this scheme, such as monotonicity and
convergence, is outside the scope of this paper.
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In section 6.4, we also apply the MA-LBR scheme, see Appendix A, to the Dirichlet problem.
The scheme The MA-LBR scheme in this setting may be written as

ShMA-LBR-BV1u[x] = 0 in Gh, (83)

where we defined, similarly to (76) and (77),

ShMA-LBR-BV1u[x] := B̃hu[x]− Λ̃hu[x], Λ̃hu[x] := min
v∈Vh

G(∆̃v
hu[x]− Ãvhu[x]).

The operator ShMA-LBR-BV1 is intended to be applied to functions u : Gh → R satisfying the
admissibility constraint

Λ̃hu[x] > 0, ∀x ∈ Gh, (84)

which is the natural counterpart to (79) in the Dirichlet setting.
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