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Periodic stacking of topologically trivial and non-trivial layers with opposite symmetry of the valence 

and conduction bands induces topological interface states that, in the strong coupling limit, hybridize 

both across the topological and normal insulator layers. Using band structure engineering, such 

superlattices can be effectively realized using the IV-VI lead tin chalcogenides. This leads to emergent 

minibands with a tunable topology as demonstrated both by theory and experiments. The topological 

minibands are proven by magneto-optical spectroscopy, revealing Landau level transitions both at the 

center and edges of the artificial superlattice mini Brillouin zone. Their topological character is 

identified by the topological phase transitions within the minibands observed as a function of 

temperature. The critical temperature of this transition as well as the miniband gap and miniband 

width can be precisely controlled by the layer thicknesses and compositions. This witnesses the 

generation of a new fully tunable quasi-3D topological state that provides a template for realization of 

magnetic Weyl semimetals and other strongly interacting topological phases. 

 

I. INTRODUCTION 

Heterostructures of quantum materials lead to new emergent states of matter beyond what is possible 

in their bulk form [1–6]. In the case of topological insulators (TIs), theoretical calculations have shown 

that Dirac, Weyl and nodal line fermions can be artificially created by periodically stacking a TI and a 

normal insulator (NI) on top of each other [3,7,8]. These superlattices (SL) have been theoretically 

proposed as novel templates for realization of magnetic Weyl semimetals [3], Weyl superconductors [9], 

the quantum anomalous Hall phase [8,10–13], flat band superconductivity [5] and strongly interacting 

topological phases [14]. Experimental realization of TI/NI superlattice structures, however, has posed a 

formidable challenge. This is mainly due to the limitations in material combinations that are 

topologically different but well compatible in terms of crystal structures and heteroepitaxial 

growth [15,16]. As a result, up to now most of the novel phases have been only theoretically predicted, 

and only recently first experiments have started to explore these effects [17–23]. 

Here we show that the IV-VI lead tin chalcogenides (Pb,Sn)(Se,Te) topological crystalline insulators 

(TCIs) [24–26] provide an excellent platform for the realization of artificial TI/NI superlattice structures. 

This is because their topology [27–30], anisotropy [31,32], band alignment [33,34] and crystal 
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symmetry [35–38] can be controlled on demand by composition, temperature, strain, and/or 

ferroelectric phase transitions. As a result, band structure engineering of heterostructures can be easily 

achieved, as has been demonstrated for mid-infrared device applications [39]. In the (Pb,Sn)(Se,Te) TCIs, 

the non-trivial band topology arises from the band inversion between the 𝐿6
+ and 𝐿6

− bands appearing at 

sufficiently high Sn contents. This leads to the formation of Dirac cone topological surface, respectively,  

interface states (TIS) that are protected by crystal symmetries [24,25] rather than by time reversal 

symmetry as in conventional topological insulators [40]. In ultra-thin films and quantum wells, the 

interface states at the upper and lower film boundaries hybridize, which leads to a gapping of the Dirac 

cone [27,41,42] as experimentally demonstrated in our previous work [19]. 

Here, we study TCI/NI superlattice structures with ultra-thin barriers where the topological interface 

states are not only coupled across the TI quantum wells but also across the normal insulator barrier 

layers. Using magneto-optical Landau level spectroscopy and envelope function calculations, we 

demonstrate that due to this coupling, extended topological minibands emerge that can be precisely 

controlled by growth, temperature, layer thicknesses and compositions. The minibands are directly 

evidenced by observation of two sets of magnetooptical transitions occurring at the center and edge of 

the mini Brillouin zone (BZ) imposed by the artificial periodicity of the SL structure. In this way, we reveal 

that their dispersion, gap size and miniband width can be perfectly controlled by tuning of the coupling 

constants. The non-trivial miniband topology is experimentally proven by the observation of the 

topological phase transitions as a function of temperature used as a tuning knob for the band inversion. 

From our data, we construct for the first time the experimental non-magnetic Burkov-Balents phase 

diagram [3] predicted for such non-trivial systems. Our results thus represent a text-book topological 

superlattice system supporting topological minibands artificially designed for various device 

applications. 

 

II. GROWTH AND CHARACTERIZATION 

Artificial TI/NI superlattice heterostructures were created by molecular beam epitaxy of non-trivial Pb1-

xSnxSe TI layers (quantum wells) with inverted band gap, alternating with trivial NI Pb1-y-xEuySnxSe barrier 

layers. For the topologically non-trivial Pb1-xSnxSe, 𝑥𝑆𝑛 > 0.21 was chosen to obtain a negative gap of 

2∆𝑄𝑊< −20 meV at 4 K. Alloying of europium into the barrier, on the other hand, turns the band gap 

positive [11], rendering Pb1-y-xEuySnxSe topologically trivial with a gap 2∆𝐵~+ 150𝑚𝑒𝑉 for 𝑦𝐸𝑢~0.05. 

Molecular beam epitaxy of Pb1−xSnxSe/Pb1-y-xEuySnxSe superlattices on BaF2 (111) was carried out at a 

substrate temperature of 360°C under ultra-high vacuum conditions of 5×10−10 mbar using a RIBER 1000 

MBE system. PbSe, SnSe, Eu and Se effusion sources were used for growth, and a Bi2Se3 source for 

tuning of the carrier concentration to low 1018 cm-3 as determined by Hall effect measurements. The 

superlattice stacks were grown on a 50 nm Pb1-yEuySe buffer layer pre-deposited on the BaF2 substrate 

and a 50 nm Pb1-yEuySe on top as a capping layer. 

Perfect 2D growth was achieved, evidenced by streak reflection high energy electron diffraction patterns 

observed throughout superlattice growth. This yields perfect multilayer structures as evidenced by high 

resolution x-ray diffraction shown in Fig. 1, showing sharp superlattice satellite peaks for all samples. In 

reciprocal space maps shown in Fig. 1(a,b) theses satellite peaks are perfectly aligned along the Q[111] 
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growth direction, evidencing the very high quality of the samples and full coherency of the interfaces. 

The resulting superlattice parameters for the investigated samples are listed in Tab. 1. 

 

Figure 1. High resolution x-ray characterization of the TCI/NI superlattice structures. (a,b) Reciprocal 

space maps of Pb1-xSnxSe / Pb1-y-xEuySnxSe SLs around the symmetric (222) and asymmetric (153) Bragg reflection 

evidencing perfect pseudomorphic growth. (c) Radial diffraction scans along Q[111] normal to the surface for 

samples SL27-1.5 and SL9-3.5. The satellite peaks are labelled as SLx and the diffraction peaks of the BaF2 substrate 

and Pb1-yEuySe capping layer are also indicated. The sample parameters obtained are listed in Tab. 1. 

 

III. MODELING OF THE MINIBANDS 

For proper sample design, envelope function theory [44–47] was employed to predict and model the SL 

band structure. The periodic superlattice potential shown schematically in Fig. 2(a) implies envelope 

functions satisfying the Bloch theorem with a wave vector 𝑞𝑧 that lies within the artificial superlattice BZ 

reduced within the boundaries [−𝜋 𝐿⁄ ;+𝜋 𝐿⁄ ], determined by the superlattice period 𝐿. Using a 4-band 

𝒌. 𝒑 model, detailed in Appendix A, the topological miniband (𝑇𝑀𝐵) dispersions are calculated versus 𝑞𝑧 

as shown in Fig. 2(b). We find that the electron and hole-like states form mirror-like minibands 𝑇𝑀𝐵(𝑞𝑧) 

and 𝑇𝑀𝐵′(𝑞𝑧), respectively. Their gap are denoted as 2𝛿0 and 2𝛿𝜋 𝐿⁄  at the center and boundaries of 

the mini BZ, respectively. Note that due to the multi valley band structure of the IV-VI 

compounds [34,48–50], the miniband dispersions are slightly different for the oblique and longitudinal 

valleys (solid and dashed lines in Fig. 2(b)) that are tilted, respectively, aligned parallel to the growth 

direction. This originates from the admixture of the anisotropic band dispersion of the barriers to the 

otherwise isotropic Pb1-xSnxSe QWs [31,51], which yields slightly different 𝑣𝑧, the Dirac velocities along 

the z//[111] growth direction for the longitudinal and oblique valleys. Note that we define here the 

Dirac velocity as the slope of the linear part of the 𝐸(𝑘) dispersion. 
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Figure 2. Topological miniband formation in TCI/NI superlattices. (a) Modulation of the conduction and 

valence band edges along the SL structure in the growth direction 𝑧. The envelope wave function of the topological 

miniband concentrated at the interface is illustrated by the red curve, the black arrows indicate the intrawell and 

interwell tunnel coupling 𝜏𝑄𝑊  and 𝜏𝐵, respectively. (b) Miniband dispersion 𝐸(𝑞𝑧) for the longitudinal (solid lines) 

and oblique valleys (dashed lines) derived by 𝒌. 𝒑 theory at 𝑘𝑥 = 𝑘𝑦 = 0 and 4.2 K for the superlattice structure 

SL9-3.5 listed in Tab. 1. The color scale represents the symmetry (𝐿6
+ versus 𝐿6

−) of the minibands (see scale bar in 

(c)). Label numbers denote the 𝐿6
+ proportion. (c) Evolution of the minibands and their symmetry (color scale) in 

the conduction and valence band ((𝑇𝑀𝐵, respectively, 𝑇𝑀𝐵’) as a function of Pb1-xSnxSe thickness 𝑑𝑄𝑊. The 

barrier width is fixed to 𝑑𝐵 = 3.5 nm and the Pb1-xSnxSe composition to 𝑥𝑆𝑛 = 0.27. The corresponding bulk band 

gaps are 2∆𝑄𝑊= −72.5 meV (dashed horizontal lines) and 2∆𝐵= +150 meV. (d) Probability density of the 

topological miniband envelope wave function across the SL structure for different miniband topologies.  Green 

line: Normal superlattice (NSL) with 2𝛿0 = +20 meV and 𝜏𝐵 < |𝜏𝑄𝑊|, blue line: Zero gap SL with 2𝛿0 = 0 and 𝜏𝐵 =

|𝜏𝑄𝑊|, red line: Topological superlattice (TSL) with 2𝛿0 = −47.5 meV and 𝜏𝐵 > |𝜏𝑄𝑊|.  The different character is 

set by changing the Pb1-xSnxSe band gap from 2∆𝑄𝑊= 10, −10, −60 meV.  

 

Solution of the 𝒌. 𝒑 Hamiltonian yields the size of the miniband gaps 2𝛿0 and 2𝛿𝜋 𝐿⁄  as a function of 

layer thicknesses and compositions. The results are exemplified in Fig. 2(c), where the evolution of the 

minibands is shown as a function of QW thickness for a fixed barrier thickness 𝑑𝐵 = 3.5 𝑛𝑚 and bulk 

band gaps set to 2Δ𝑄𝑊 = −72.5 meV and  2Δ𝐵 = +150 meV, respectively. Evidently, the gap between 

the minibands goes to zero at a critical QW thickness (vertical line), indicating that only at sufficiently 

large 𝑑𝑄𝑊 the symmetry of the band edges is inverted. 

Based on the solution of the  𝒌. 𝒑 model, we find that in a good approximation, the 𝛿(𝑞𝑧) dispersion of 

the miniband edges is given by (see Appendix B): 
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𝛿(𝑞𝑧) ≅ √
2ℏ2𝑣𝑧

2[1 − cos(𝑞𝑧𝐿)]

𝐿2
+ 𝛿0

2           (1a) 

𝛿0 = 𝛿(𝑞𝑧 = 0) ≅
𝑑𝑄𝑊∆𝑄𝑊 + 𝑑𝐵∆𝐵

𝐿
            (1b) 

This means that the hybridization gap 2𝛿0 of the superlattice structure is essentially equal to the 

average of QW and barrier band gaps weighted according to their layer thickness. This is due to the 

close similarity of the band parameters of the layers. According to Eq. (1), the minibands can be fully 

designed by the superlattice structure. Most importantly, the gap assumes a negative value only under 

the condition that 𝑑𝐵∆𝐵< |𝑑𝑄𝑊∆𝑄𝑊| and ∆𝑄𝑊 is negative. This means that a non-trivial miniband 

topology is not simply formed when the band gap of the TI well material is inverted. 

We further identify the intrawell and interwell coupling strength 𝜏𝑄𝑊 and 𝜏𝐵 between the TI/NI 

interfaces as  𝜏𝑄𝑊 ≡ −ℏ𝑣𝑧 𝑑𝑄𝑊∆𝑄𝑊⁄  and 𝜏𝐵 ≡ ℏ𝑣𝑧 𝑑𝐵∆𝐵⁄ , respectively. Note that in Dirac matter, the 

penetration depth of the topological state is given by 𝜆𝑄𝑊 = ℏ𝑣𝑧 |∆𝑄𝑊|⁄  or 𝜆𝐵 = ℏ𝑣𝑧 ∆𝐵⁄  in the well 

and in the barrier respectively [19,52,53]. This means that 𝜏𝑄𝑊 = 𝜆𝑄𝑊 𝑑𝑄𝑊⁄  and 𝜏𝐵 = 𝜆𝐵 𝑑𝐵⁄  capture 

the recovery of the topological state wavefunctions coming from two distinct interfaces separated by 

𝑑𝑄𝑊 or 𝑑𝐵. We can then define the strong coupling limit when |𝜏𝑄𝑊,𝐵| > 1, which insures significant 

interactions between interface states. 

Using the expression of 𝜏𝑄𝑊 and 𝜏𝐵, Eq. (1b) simplifies to 𝛿0 = ℏ𝑣𝑧(𝜏𝐵
−1 − 𝜏𝑄𝑊

−1 ) 𝐿⁄ . The topological 

phase transition where 𝛿0 is zero then occurs under the condition that: 

𝑑𝑄𝑊∆𝑄𝑊 + 𝑑𝐵∆𝐵= 0   or   𝜏𝐵 = 𝜏𝑄𝑊           (2) 

This leads to a change of the symmetry of the miniband states (𝐿6
+ versus 𝐿6

−) that is represented by the 

color scale in Fig. 2(c) as further detailed in the Appendix C. This shows that indeed above a critical 

thickness where 𝜏𝐵 > |𝜏𝑄𝑊|, the character of the minibands is inverted, i.e., the SLs become 

topologically non-trivial [3,7]. The topological character is thus encoded in the |𝜏𝑄𝑊 𝜏𝐵⁄ | ratio that is  < 

1 for the nontrivial, but  > 1 for trivial structures. 

The pronounced effect of the band topology on the wave functions of the minibands is demonstrated by 

Fig. 2(d), where the wave function probability density across the QW and barriers is depicted for three 

cases, i.e., a normal SL (NSL) with 2𝛿0 > 0 , a zero gap SL and a topological superlattice (TSL) with 2𝛿0 <

0. Whereas, for the NSL with 𝜏𝐵 < |𝜏𝑄𝑊| (green line in Fig. 2(d)), the probability density is maximal in 

the center of the QW as it is generic for conventional semiconductor superlattices, this is exactly 

opposite for the TSL with 𝜏𝐵 > |𝜏𝑄𝑊| (red line), where the probability density is minimal in the QW and 

high in the barriers. This remarkable difference is a clear signature of the topological character of the 

structure. At the phase transition between the NSL and TSL cases, the miniband gap is zero and 𝜏𝐵 =

|𝜏𝑄𝑊|. As a result, the average probability density is the same in the QWs and barriers (blue line in Fig. 

2(d)), i.e., the electrons/holes are evenly distributed over the QWs and barriers and thus most 

delocalized in the SL structure. 



6 
 

The coupling strengths 𝜏𝑄𝑊 and 𝜏𝐵  directly control the miniband widths ∆𝑀𝐵 (shaded regions in Fig. 

2(c)). Accordingly, when layer thicknesses are reduced to few nanometers, a strong coupling regime 

emerges witnessed by a drastic widening of the minibands. Conversely, when the wells and/or barriers 

are thick, the coupling between the interfaces is diminished, narrowing the minibands as seen in Fig. 

2(c). In the thick barrier limit, uncoupled quantum wells are formed in which the interface states do no 

longer hybridize across the barrier layers [19]. Accordingly, not only the band gaps but also miniband 

widths can be engineered by control of the layer thicknesses. 

For our magneto-optical experiments, two types of samples were prepared, namely, TSL designated to 

exhibit a negative miniband gap and nontrivial topology (samples SL9-3.5 and SL27-1.5, see Tab. 1), and 

NSL with reduced Sn content. The Sn content is a crucial parameter that controls the well potential 

depth. It is reduced for SL15-3.5, rendering the SL gap positive. SL15-3.5 is therefore a control sample 

with trivial topology. In the samples, the QW and barrier thicknesses were varied to yield different 

coupling strengths and miniband widths. The miniband gaps 2𝛿0 and coupling ratios |𝜏𝑄𝑊 𝜏𝐵⁄ | at 4 K are 

also listed in Tab. 1, where |𝜏𝑄𝑊 𝜏𝐵⁄ | < 1  for topological SL9-3.5 and SL27-1.5, but > 1 for the trivial 

SL15-3.5 reference sample. It is noted that due to the small lattice mismatch between the QW and 

barrier materials, a small tensile strain is imposed in the QWs and the barriers are slightly compressed. 

This leads to small deviations in the band gaps ∆𝑄𝑊 and ∆𝐵 with respect to the unstrained bulk 

material [31,34]. 

Table 1. Sample parameters of the investigated TCI/NI superlattice structures, composed of Pb1-xSnxSe TCI QWs 

alternating with trivial NI Pb1-y-xEuySnxSe barriers, repeated 𝑁 times. Also listed are the effective miniband gaps 

2𝛿0 and coupling ratios |𝜏𝑄𝑊 𝜏𝐵⁄ | (Eq. (1)) for 𝑇 = 4.2 K. 2𝛿0 < 0 and |𝜏𝑄𝑊 𝜏𝐵⁄ |  < 1 indicate non-trivial topology, 

whereas for 2𝛿0 > 0 and |𝜏𝑄𝑊 𝜏𝐵⁄ |  > 1, the superlattices are topologically trivial. The well and barrier material 

band gaps 2Δ𝑄𝑊 and 2Δ𝐵  are obtained from the fits of the magneto-optical data, which are shown later.  

Parameter  SL9-3.5 SL27-1.5 SL15-3.5 

TCI:  𝑑𝑄𝑊  [nm] 9 ± 0.2 27 ± 0.2 15 ± 0.2 

       𝑥𝑆𝑛 in Pb1-xSnxSe  0.27 ± 0.01 0.26 ± 0.01 0.22 ± 0.01 

       Band gap 2Δ𝑄𝑊 at 4 K [meV] −72.5 −60 −20 

NI:  𝑑𝐵  [nm] 3.5 ± 0.2 1.5 ± 0.2 3.5 ± 0.2 

       𝑦𝐸𝑢  in Pb1-y-xEuySnxSe 0.05 0.05 0.05 

       Band gap 2Δ𝐵  at 4 K [meV] 150 140 150 

SL: Number 𝑁 of periods 40 20 30 

      Miniband gap 2𝛿0 at 4 K [meV] -10 -47.5 +10 

      |𝜏𝑄𝑊 𝜏𝐵⁄ | at 4 K 0.80 0.14 1.75 

 

IV. LANDAU LEVEL SPECTROSCOPY OF TOPOLOGICAL MINIBANDS 

To assess the topological minibands magneto-optical spectroscopy was performed in Faraday geometry 

at magnetic fields up to 15 T [19,43]. The results for SL9-3.5 and SL15-3.5 are shown in Fig. 3 for 𝑇 = 4.2 

and 160 K. In both cases, a large number of Landau level transitions are observed (arrows in Fig. 3(a,b)), 
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shifting to higher energies as the magnetic field increases. From this we construct fan charts shown in 

Fig. 3(c,d), where each data point corresponds to a minimum in the transmission spectra in (a,b). The fan 

charts are analyzed using Landau level transitions obtained from 𝒌. 𝒑 calculations presented in the 

Appendix D (solid and dashed lines) and fitted to the experimental data. From the analysis, we 

unambiguously identify the existence of two individual subsets of transitions, indicated in Fig. 3 by the 

red and blue colors. These are identified to occur at the miniband extrema at 𝑞𝑧 = 0 (red) and 𝑞𝑧 =

±𝜋/𝐿 (blue), respectively, where the joint density of states of the minibands is maximal. Each 

extrapolates to a different energy at 𝐵 = 0, corresponding to the miniband gaps 2𝛿0 and 2𝛿𝜋 𝐿⁄  at the 

center and edge of the superlattice BZ respectively – in perfect agreement with the 𝒌. 𝒑 calculations. 

The validity of the assignment is evidenced by the perfect fit obtained in each case, with the fit 

parameters listed in the Supplementary Material [54]. Most importantly, the observation of the two 

independent series of transitions directly proves the miniband formation in our strongly coupled 

superlattice structures. 

 

Figure 3. Magnetooptical spectroscopy. (a,b) Normalized transmission spectra of the superlattice samples 

SL9-3.5 and SL15-3.5 at 4.2 and 160 K at different magnetic fields of up to 𝐵 =15 T. The minima are due to Landau 

level transitions between the minibands at 𝑞𝑧 = 0 and 𝑞𝑧 = 𝜋 𝐿⁄ , marked by red and blue arrows, respectively. 

(c,d) Magnetooptical fan charts derived from the experiments (red/blue dots) compared to the calculations by the 

𝒌. 𝒑 model for the longitudinal and oblique valleys (solid and dashed lines, respectively). The extrapolated 

transition energies 2𝛿0  and 2𝛿𝜋/𝐿  at 𝐵=0 of the two transition sets are indicated by the arrows and in the insert. 

The green shaded regions indicate the experimentally non-accessible energy range blocked by the reststrahlen 

band of the substrate and window cut-offs.  
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For the superlattice SL9-3.5, the extrapolation of the data points yields a miniband gap of |2𝛿0| = 10 ±

5 meV at 4.2 K, whereas the second set of transitions yields a gap of |2𝛿𝜋/𝐿| = 95 ± 5 meV at the 

boundary of the BZ. Both values perfectly agree with the calculated values in Fig. 2(c) for the given TI/NI 

layer thicknesses. Using ∆𝑀𝐵= |𝛿0 − 𝛿𝜋/𝐿|, a miniband width of 42.5 ± 10 meV is derived for this 

sample. According to the 𝒌. 𝒑 calculations (cf. Fig. 2(c)), the miniband gap is inverted, i.e., the minibands 

are topologically non-trivial at 4.2 K. This is supported by the fact that the in-plane Dirac velocities, 

determined from the fits for the longitudinal and oblique valleys (𝑣∥
𝑙 = 4.40x105 m/s and 𝑣∥

𝑜 =

4.10x105 m/s) are below the critical values where the band gap is inverted [32]. It is noted that the 

small difference in the in-plane miniband dispersion for the longitudinal and oblique valleys arises from 

the admixture of the band anisotropy of the Pb1-y-xEuySnxSe barriers to that of the QWs caused the large 

extent of the wave function across the SL period, as the bulk bands of Pb1-xSnxSe with 0.21 < 𝑥𝑆𝑛 < 0.29 

are otherwise isotropic. This is particularly pronounced for topological superlattices because the 

probability density of the wave function is strongly enhanced within the barriers as shown by Fig. 2(d). 

For the second SL sample SL15-3.5 with lower Sn content, the same analysis yields  2𝛿0 = +10 ± 5 meV 

and  2𝛿𝜋/𝐿 = 74 ± 5meV, rendering the gap positive and the minibands topologically trivial. Moreover, 

due to the increased QW thickness of 𝑑𝑄𝑊 = 15 nm, the miniband width is reduced to ∆𝑀𝐵= 32 ± 10 

meV, following nicely the trend of Fig. 2(c). 

We highlight that the observed magnetooptical transitions occur both at 𝑞𝑧 = 0 and 𝑞𝑧 = 𝜋/𝐿 where 

the joint density of states for optical transitions is largest. The fact that both transitions are 

simultaneously observed and precisely fit to the calculations evidences the existence of minibands in the 

superlattice structures. To this end, we emphasize that the higher energy transitions (marked in blue) 

cannot be interpreted as transitions between higher energy excited states or higher order minibands. 

Indeed, for the samples in Fig. 3, these would lie in the continuum above the band gap 2∆𝐵 of the 

barrier material, as shown in the supplementary material. Consequently, we safely attribute the 

observed absorptions to the emergent minibands caused by the hybridization of interface states. To the 

best of our knowledge, this type of artificial energy bands TI/NI multilayer structures has not been 

realized before and in any topological material system. 

 

V. EXPERIMENTAL DEMONSTRATION OF SYMMETRY INVERSION 

The topological character of the superlattice structures is directly revealed by magnetooptical 

measurements at varying temperatures in which the fundamental band gaps of the QW and barrier 

materials are tuned [27,31,32]. First, we focus on the superlattice SL27-1.5 that displays the largest 

negative miniband gap at 4.2 K and is thus, most deeply in the inverted topological region. The 

magnetooptical fan chart of the sample shown in Fig. 4(a) yields a miniband gap of 2𝛿0 = −47.5 ± 2.5 

meV and 2𝛿𝜋/𝐿 = −75 ± 5 meV at 4.2 K as indicated by the solid lines extrapolated to 𝐵 = 0. Figure 

4(b) displays the corresponding transmission spectra at a fixed magnetic field of 15 T as a function of 

temperature from 4.2 to 225 K. Clearly, the first interband transition occurring at 𝑞𝑧 = 0, highlighted by 

the red dots, exhibits a non-monotonic behavior in its position, shifting initially to lower energies as the 

temperature increases, but then reverses and shifts in the opposite direction above 160 K. 
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Figure 4. Temperature dependence of the miniband gap. (a) Magnetooptical fan chart of superlattice SL27-

1.5 at 4.2 K, showing the ground transitions between the minibands at 𝑞𝑧 = 0 (red) and |𝑞𝑧| = 𝜋 𝐿⁄  (blue) on an 

enlarged scale. (b) Temperature dependence of the far-infrared transmission spectra at 𝐵 = 15 T in which the 

lowest energy transition is indicated by the red dots. The energy position of this transition is shown in (c) as a 

function of temperature together with the theoretical fit (solid line) obtained by the 𝒌. 𝒑 model. The critical 

temperature 𝑇𝑐 ≅ 130 K, indicated by the blue arrow, separates the TSL from the NSL phases and where 

𝜕|𝛿0| 𝜕𝑇⁄  changes sign. Note that transitions below 70 meV are masked by the reststrahlen band of the substrate. 

 

The shifts are summarized in Fig. 4(c), where the experimental data (red dots) is compared with the 𝒌. 𝒑 

calculations (red line). Evidently, the non-monotonic shift is perfectly reproduced by our model. The 

effect originates from the anomalous temperature dependence of the band gaps of IV-VI materials in 

which the TCI band inversion is induced by the 𝑠𝑝 repulsion between the 𝐿 bands and lower lying 𝑆 

bands rather than by spin-orbit coupling [55]. This repulsion decreases with increasing interatomic 

distances, which lifts the band inversion and renders the material trivial as the temperature is increased. 

The same also occurs in our TCI/NI structures, albeit at a different critical temperature 𝑇𝑐 because the 

superlattice miniband inversion is not only governed by the bulk bands, but also by the thicknesses of 

the well and barrier materials (Eq. (1)). Most importantly, the abrupt sign change of 𝜕|𝛿| 𝜕𝑇⁄  of the TSL 

structure is a clear evidence for the occurrence of this topological phase transition, with a critical 

temperature 𝑇𝑐 ≈ 130 K in this sample, below which 𝜕|𝛿| 𝜕𝑇⁄  is negative. This is the hallmark for the 

topological nature of our TCI/NI superlattice system. 

The non-monotonic behavior is to be contrasted with our previous observations for TCI multi quantum 

well structures [19], where due to an order of magnitude wider barriers (𝑑𝐵 > 35 nm) the coupling 

between the topological interface states across the barriers is negligible (𝜏𝐵 ≈ 0). As a result, no 

minibands are formed and the hybridization gap of TIS states only monotonically increases with 

temperature and thus, no sign changes occurs. In contrast, for the presently studied strong coupled 

structures, our experiments reveal that extended minibands are formed due to the strong interwell 

hybridization 𝜏𝐵 > 0, inducing an emergent topological phase transition. 
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The complete data set for all superlattice samples is summarized in Fig. 5(a-c), which shows the 

evolution of the miniband gaps 2𝛿0 and 2𝛿𝜋/𝐿  (red and blue dots) as a function of temperature together 

with the 𝒌. 𝒑 calculations (solid lines). For all cases, theory and experiments perfectly fit to one another. 

The bulk band gaps Δ𝑄𝑊(𝑥, 𝑇) and Δ𝐵(𝑦, 𝑇) obtained from the magnetooptical fits are shown as well for 

comparison by the open circles in Fig. 5(a-c), and they agree very well with the empirical expressions 

(dashed lines) derived in our previous works [31,34]. For the two superlattices SL9-3.5 and SL27-1.5, the 

minibands are inverted at cryogenic temperatures and thus, they are topological non-trivial. Their 

absolute miniband gap value of |2𝛿0| decreases with temperature and turns to positive values when the 

critical temperature 𝑇𝑐, indicated by the vertical dashed lines, is reached. This marks the topological 

phase transition from a TSL to an NSL structure. 

 

Figure 5. Demonstration of topological phase transitions. (a-c) Temperature dependence of the superlattice 

miniband gaps 2𝛿0 (red) and 2𝛿𝜋 𝐿⁄  (blue) at 𝑞𝑧 = 0 and ±𝜋/𝐿 obtained by experiments (dots) and 𝒌. 𝒑 model 

(solid lines). The region of the miniband band inversion is highlighted in yellow. The vertical dashed lines indicate 

the critical temperature 𝑇𝑐  below which the SLs are nontrivial. Above 𝑇𝑐  they are trivial. This transition is due to a 

symmetry inversion which changes the sign of the miniband gaps. The blue shaded area represents twice the 

miniband width 2∆𝑀𝐵. Also shown is the temperature dependence of the band gaps of the QW (2∆𝑄𝑊(𝑥, 𝑇), black 

circles) and the barriers (2∆𝐵(𝑦, 𝑇), green circles) obtained from the fits that nicely agree with our previous work 

(dashed lines) [31,34]. (d,e) Topological phase diagrams of the SL structures as a function of temperature and Pb1-

xSnxSe composition for fixed barrier thickness of  𝑑𝐵 = 3.5 nm (d) and 1.5 nm (e). The solid lines represent the 

phase boundaries for different QW thicknesses 𝑑𝑄𝑊  and the shaded regions indicate TSL phases. The black dots in 

the phase diagrams mark the experimental phase transitions observed for our samples. (f) Temperature 

dependence of the miniband width ∆𝑀𝐵  derived from experiments (symbols) and the 𝒌. 𝒑 model (solid lines). The 

cusps mark the topological-to-normal insulator superlattice phase transition as indicated by the arrows. 
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The derived 𝑇𝑐 values are 40 K and 130 K, respectively, which nicely agrees with the 𝒌. 𝒑 calculations 

(solid lines). The difference in 𝑇𝑐 is mainly due to the different barrier thicknesses (see Tab. 1), for which 

reason the ratio |𝜏𝑄𝑊 𝜏𝐵⁄ | of SL9-3.5 is closer to 1 at 4.2 K than the one of SL27-1.5. The resulting 

weaker interwell coupling in SL9-3.5 makes it closer to the topological phase transition. For the third 

sample SL15-3.5 (Fig. 5(c)), the topological phase transition does not occur because it remains in the NSL 

phase down to 4.2 K, where 2𝛿0 = +10 meV is still positive. Thus, it serves as a control sample that 

unequivocally reveals that the topological nature of the TSL is intrinsically coupled with the temperature 

dependent topological phase transition. Moreover, it shows that the SL structures can be topologically 

trivial even if the quantum wells are in the topological crystalline insulator state.  

Finally, we want to highlight that the topological character of the SL system is also encoded in the 

miniband widths ∆𝑀𝐵 represented by the shaded regions in Fig. 5(a-c). For the TSLs in (a,b), the 

miniband width increases with increasing temperature, displaying a maximum at the TSL/NSL transition 

(arrows Fig. 5(a,b)) and thereafter again decreasing, whereas for the NSL (SL15-3.5, Fig. 5(c)) the 

minibands width only monotonically decreases. Accordingly, for the TSL, ∆𝑀𝐵(𝑇) displays a cusp at the 

topological phase transition as shown in Fig. 5(f), both in theory (solid lines) and experiments (dots). This 

observation is therefore another clear-cut criterion for a topological phase transition in SLs. The cusp 

arises from the fact that the intra- and interwell coupling strengths are equal when the gap 2𝛿0 = 0 and 

thus, the miniband wave functions are maximally delocalized, maximizing the miniband width. To this 

end, we refer to Fig. 2(d), which illustrates the calculated probability density of SL27-1.5 𝑇𝑀𝐵 at 4.2 K 

(in red), 𝑇𝐶 = 130 K (in blue) and 200 K (olive). In fact, at the topological phase transition where 2𝛿0 =

0, the miniband width scales as ∆𝑀𝐵≅ 2ℏ𝑣𝑧 𝐿⁄  following Eq. (1a). Remarkably, it is essentially 

independent of the QW and barrier thicknesses. 

The topological phase transitions are put into broader perspective by the topological phase diagrams of 

Fig. 5(d,e). These display the topological state and the phase boundaries between the TSL and NSL 

structures as a function of QW composition and temperature for different QW thicknesses (solid lines) 

but fixed barrier thickness 𝑑𝐵 = 3.5 and 1.5 nm. As indicated by the experimental data points (black 

dots) obtained from Fig. 5(a,b), these phase diagrams are in excellent agreement with our experiments. 

Therefore, they accurately describe the topological character of the system and serve as guides for 

engineering the miniband properties for a given application. 

 

VI. CONCLUSION 

Using Landau level spectroscopy, we have demonstrated the formation of topological minibands in 

artificial TCI/NI superlattices obtained by molecular beam epitaxy and band structure engineering of IV-

VI semiconductor heterostructures. By envelope function calculations we revealed that the minibands 

are the offspring of the hybridized topological interface states that tunnel couple both across the normal 

insulator barrier layers as well as across the TI quantum wells. In the topological SL state, this gives rise 

to a pronounced shift of the wave function envelope from the quantum wells to the barriers, which 

discriminates the TSL from NSL structures. As a result, the topological phase as well as miniband gap 

dispersions can be perfectly controlled by the layer thicknesses and compositions, and tunable miniband 

gaps and miniband widths are attained. The temperature-induced phase transition of the miniband 
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topological character is in perfect agreement with our theoretical model. Thereby, we experimentally 

demonstrate for the first time the recently predicted Burkov-Balents phase diagram [3]. Accordingly, our 

TI/NI superlattices provide a new quasi-3D topological state that can be engineered over a wide range, 

which offers new avenues towards non-zero dissipation less spin Hall currents [3]. Moreover, by 

breaking time reversal symmetry using magnetic doping [38,56–58], magnetic topological superlattices 

with tunable Weyl, or even line node semimetal phases [3,7,8] can be reached. 
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APPENDIX A: 𝒌. 𝒑 MODEL FOR SUPERLATTICES 

The stacking of Pb1-xSnxSe and Pb1-y-xSnxEuySe layers makes 𝑧-dependent 𝐿6
− and 𝐿6

+ band edges, where 𝑧 

is the growth axis. At the interfaces between two layers, the bands of same symmetry must be 

connected [44] thus, leading to a potential that inverses the conduction and valence band at each 

interface. As the system is considered electron-hole symmetric [34], this potential can be modelled by a 

𝑧-dependent energy gap ∆(𝑧) that changes sign across each interface. Due to confinement, 𝑘𝑧 is not a 

good quantum number and is replaced by its operator value −𝑖 𝜕 𝜕𝑧⁄ . The 𝑘2-terms coming from the 

interactions between 𝐿6
− or 𝐿6

+ with other bands located at much higher or lower energies are 

neglected [59]. We also consider a magnetic field along the 𝑧-axis. In this way, for 𝑛 > 0 (𝑛 being the 

Landau level index) the Hamiltonian of the SL system can be written in the basis 𝐿6
+𝛼 |𝑛 −

1⟩; 𝐿6
+𝛽|𝑛⟩ ; 𝐿6

−𝛼|𝑛 − 1⟩ ; 𝐿6
−𝛽|𝑛⟩ (|𝑛⟩ being the harmonic oscillator functions) as [19,48,60]: 

(

 
 
 
 
 
 

−∆(𝑧) 0 −𝑖ℏ𝑣𝑧
𝜕

𝜕𝑧
𝑣∥√2𝑒ℏ𝐵𝑛

0 −∆(𝑧) 𝑣∥√2𝑒ℏ𝐵𝑛 𝑖ℏ𝑣𝑧
𝜕

𝜕𝑧

−𝑖ℏ𝑣𝑧
𝜕

𝜕𝑧
𝑣∥√2𝑒ℏ𝐵𝑛 ∆(𝑧) 0

𝑣∥√2𝑒ℏ𝐵𝑛 𝑖ℏ𝑣𝑧
𝜕

𝜕𝑧
0 ∆(𝑧) )

 
 
 
 
 
 

 (A1) 

where 𝛼 and 𝛽 are the spins with underlying spin-orbit coupling; 𝑣𝑧 and 𝑣∥ are the electron velocities 

respectively along and perpendicular to the growth direction. The 𝑗-th energy and wavefunctions of the 

confined states at 𝑘𝑥 = 𝑘𝑦 = 0 are calculated by reducing the Hamiltonian (A1) accordingly. This yields 

two spin-decoupled equations: 

(
−∆(𝑧) − 𝐸𝑗 𝜉𝑖ℏ𝑣𝑧

𝜕

𝜕𝑧

𝜉𝑖ℏ𝑣𝑧
𝜕

𝜕𝑧
∆(𝑧) − 𝐸𝑗

)(
𝐹1
(𝑗)

𝜉𝐹2
(𝑗)
) = 0 
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where 𝜉 = ± represents the spins and 𝐸𝑗  denotes the spin-degenerated energy of the 𝑗-th confined 

states and goes along with their two-component spinor envelope wavefunctions. The envelope 

wavefunction of the 𝑗-th confined states have a 𝐿6
+ and a 𝐿6

− component: 𝐹1
(𝑗)

 and 𝐹2
(𝑗)

 respectively. 

In order to calculate each component of each envelope function, the current probability continuity 

conditions are applied at each interface for the 𝐿6
+ component 𝐹1

(𝑗)
. Therefore, at the interface between 

the well and the barrier,  𝐹1
(𝑗)

 must be continuous as well as the quantity [45,46]: 

1

∆(𝑧) − 𝐸𝑗

𝜕𝐹1
(𝑗)

𝜕𝑧
 (A2) 

𝐹2
(𝑗)

 is then deduced from 𝐹1
(𝑗)

 by: 

𝐹2
(𝑗)(𝑧) =

𝑖ℏ𝑣𝑧
∆(𝑧) − 𝐸𝑗

𝜕𝐹1
(𝑗)

𝜕𝑧
 

The SL periodicity implies that 𝐹1
(𝑗)

 can be written as a Bloch wave: 𝐹1
(𝑗)(𝑧 + 𝐿) = 𝐹1

(𝑗)
(𝑧)𝑒𝑖𝑞𝑧𝐿 with 

−𝜋 𝐿⁄ < 𝑞𝑧 < +𝜋 𝐿⁄ .  If |𝐸𝑗| < |∆𝑄𝑊|, the continuity of 𝐹1
(𝑗)

 and (A2) at 𝑧 = 𝑑𝑄𝑊 and 𝑧 = 𝐿 yields a 

four-equation system giving the following secular equation: 

cos(𝑞𝑧𝐿) = cosh(𝜅𝑑𝑄𝑊) cosh(𝜌𝑑𝐵) −
1

2
(𝛾 +

1

𝛾
) sinh(𝜅𝑑𝑄𝑊) sinh(𝜌𝑑𝐵) (A3) 

with 𝛾 = −
𝜅

𝜌

𝐸𝑗−∆𝐵

𝐸𝑗−∆𝑄𝑊
; 𝜅 =

1

ℏ𝑣𝑧
√∆𝑄𝑊

2 − 𝐸𝑗
2; and 𝜌 =

1

ℏ𝑣𝑧
√∆𝐵

2 − 𝐸𝑗
2.  

Here, we have written 𝐹1
(𝑗)

 as: 

𝐹1
(𝑗)(𝑧) = {

𝑎 cosh(𝜅𝑧) + 𝑏 cosh(𝜅𝑧) ,                                in the well

𝑐 cosh (𝜌(𝑧 − 𝑑𝑄𝑊)) + 𝑑 cosh(𝜌(𝑧 − 𝑑𝑄𝑊)) ,           in the barrier
 

where 𝑎, 𝑏, 𝑐, 𝑑 are the four eigenvector components of the system. For a negative enough ∆𝑄𝑊, (A3) 

gives two solutions that describe 𝑇𝑀𝐵 and 𝑇𝑀𝐵’ dispersions versus 𝑞𝑧 at 𝑘𝑥 = 𝑘𝑦 = 0, as it is shown in 

Fig. 2(b,c). 𝐹1
(𝑗)

 is then deduced and shown for instance in Fig. 2(d). For miniband with |𝐸𝑗| > |∆𝑄𝑊|, 

(A3) is transformed into: 

cos(𝑞𝑧𝐿) = cos(𝑘𝑑𝑄𝑊) cosh(𝜌𝑑𝐵) −
1

2
(�̃� −

1

�̃�
) sin(𝑘𝑑𝑄𝑊) sinh (𝜌𝑑𝐵) 

with �̃� =
𝑘

𝜌

𝐸𝑗−∆𝐵

𝐸𝑗−∆𝑄𝑊
 and 𝑘 =

1

ℏ𝑣𝑧
√𝐸𝑗

2 − ∆𝑄𝑊
2 . 

 

APPENDIX B: APPROXIMATION OF THE MINIBAND DISPERSION 

Equation (A3) can be approximated if the cosh and sinh functions are developed to the 2nd order. One 

gets with 𝐸𝑗 = 𝛿: 
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cos(𝑞𝑧𝐿) ≅ 1 +
𝜅2𝑑𝑄𝑊

2

2
+
𝜌2𝑑𝐵

2

2
−
1

2
(𝛾 +

1

𝛾
) 𝜅𝑑𝑄𝑊𝜌𝑑𝐵 

⟺ 𝛿(𝑞𝑧) ≅
√2ℏ

2𝑣𝑧
2[1 − cos(𝑞𝑧𝐿)] + (𝑑𝑄𝑊∆𝑄𝑊 + 𝑑𝐵∆𝐵)

2

𝐿2
 

which is Eq. (1a,b). The approximation 𝜌𝑑𝐵~0 is justified as the investigated SL have ultrathin barriers. 

Small values of 𝜅𝑑𝑄𝑊 are obtained if the wells are thin or if 𝛿 is close to ∆𝑄𝑊, which is the case in the 

present work. 

 

APPENDIX C: SYMMETRY INVERSION OF THE MINIBANDS 

A symmetry inversion can be induced by the interwell coupling 𝜏𝐵 in a superlattice. Indeed, one can 

notice that the SL gap 2𝛿0 is vanishing at a certain point (see Fig. 2(c) for instance). Having a bound state 

at the middle of the quantum well energy gap implies that 𝐸𝑗 = 0 and therefore 𝜅 =
|∆𝑄𝑊|

ℏ𝑣𝑧
, 𝜌 =

∆𝐵

ℏ𝑣𝑧
 and 

𝛾 = 1. Equation (A3) thus becomes:  

cos(𝑞𝑧𝐿) = cosh(𝜅𝑑𝑄𝑊) cosh(𝜌𝑑𝐵) − sinh(𝜅𝑑𝑄𝑊) sinh(𝜌𝑑𝐵) = cosh(𝜅𝑑𝑄𝑊 − 𝜌𝑑𝐵) 

We conclude that for 𝑑𝐵∆𝐵= 𝑑𝑄𝑊|∆𝑄𝑊|, or 𝜏𝐵 = 𝜏𝑄𝑊, we have 𝛿0 = 0 and Eq. (2) is retrieved. The 

calculations give an inversion of the minibands. In order to discriminate the topological phase from the 

trivial one, the exact symmetry of the bound states at 𝑞𝑧 = 0 and |𝑞𝑧| = 𝜋 𝐿⁄  have been numerically 

calculated. The 𝐿6
+ symmetry of the 𝑗-th confined states is calculated as ∫𝐹1

(𝑗)
𝐹1
(𝑗)
𝑑𝑧, where the integral 

extends over one SL period: 0 ≤ 𝑧 ≤ 𝐿. One can then deduce the 𝐿6
− parity by 1 − ∫𝐹1

(𝑗)
𝐹1
(𝑗)
𝑑𝑧. A 

symmetry inversion is found when the state with a 𝐿6
+-major component lies above the 𝐿6

−-major state, 

and one can retrieve the Burkov-Balents phase diagram [3]. 

The results of the symmetry calculations are given in Fig. 2(b,c) of the main text. We deduce that at 4.2 

K, both SL9-3.5 and SL27-1.5 display symmetry inverted miniband structure. This inversion is then 

experimentally demonstrated for SL27-1.5 (see Fig. 4). Oppositely, SL15-3.5 presents a normal symmetry 

order mainly because for its given layer thicknesses, 2∆𝑄𝑊= −20 meV is not enough. 

 

APPENDIX D: LANDAU LEVELS OF THE MINIBANDS 

The 𝐵-dependent terms in (A1) are taken into account in a perturbation theory. The perturbative 

Hamiltonian for 𝑛 > 0 is then: 

(

 
 

0 0 0 𝑣∥√2𝑒ℏ𝐵𝑛

0 0 𝑣∥√2𝑒ℏ𝐵𝑛 0

0 𝑣∥√2𝑒ℏ𝐵𝑛 0 0

𝑣∥√2𝑒ℏ𝐵𝑛 0 0 0 )
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We derive an effective Hamiltonian expressed in the basis of the normalized envelope functions of 𝑇𝑀𝐵 

and 𝑇𝑀𝐵’ obtained above at 𝑘𝑥 = 𝑘𝑦 = 0 and for a given 𝑞𝑧. It gives: 

𝐻
𝑇𝑀𝐵−𝑇𝑀𝐵′
𝑒𝑓𝑓 (𝑞𝑧) =

(

 
 

−𝛿(𝑞𝑧) 0 0 𝐴𝑣∥√2𝑒ℏ𝐵𝑛

0 −𝛿(𝑞𝑧) 𝐴𝑣∥√2𝑒ℏ𝐵𝑛 0

0 𝐴𝑣∥√2𝑒ℏ𝐵𝑛 𝛿(𝑞𝑧) 0

𝐴𝑣∥√2𝑒ℏ𝐵𝑛 0 0 𝛿(𝑞𝑧) )

 
 

 

where 𝐴 = ∫ [𝐹1
(𝑇𝑀𝐵)

𝐹2
(𝑇𝑀𝐵′)

+ 𝐹1
(𝑇𝑀𝐵′)

𝐹2
(𝑇𝑀𝐵)

] 𝑑𝑧 = ±𝑖 by parity. Therefore, the twofold degenerated 

Landau levels for 𝑛 > 0 are those of Dirac fermions: 

𝐸𝑛 = ±√𝛿
2(𝑞𝑧) + 2𝑒ℏ𝑣∥

2𝐵𝑛 (E1) 

In this system, the 𝑛 = 0 Landau levels are spin-polarized and non-dispersive in magnetic field. The 

corresponding Landau levels are given in Fig. 6. In the present work, experiments have been performed 

in the Faraday geometry that leads to conventional dipole selection rules. Magneto-optical transitions 

are thus occurring between two Landau levels 𝑛 → 𝑛 ± 1 and at fixed 𝑞𝑧. For instance, the ground 

transition observed in Fig. 4 involves the levels 0 of 𝑇𝑀𝐵’ and 1 from 𝑇𝑀𝐵. 

More subtly, we want to point out that the perturbative Hamiltonian is exact for the longitudinal valley 

whose high symmetry axis is naturally aligned with 𝐵//[111]; however, it is not the case for the oblique 

valleys, which main axis is tilted from 𝑧 by an angle 𝜃 = 70.5°. This anisotropy effect has been 

considered by rotating spin and momentum operators in the Hamiltonian, an operation which is 

detailed in ref. [61]. This result allows us to adopt an empirical approach in this work by modeling the 

anisotropy effect with different valley-dependent fitting parameters 𝑣∥ and 𝑣𝑧 in Eq (E1). 
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Figure 6. Landau levels of the topological minibands. Calculated Landau levels of 𝑇𝑀𝐵 and 𝑇𝑀𝐵’ at 𝑞𝑧 = 0 

(red) and 𝑞𝑧 = ±𝜋 𝐿⁄  (blue). Calculations have been performed with the parameters 𝑑𝑄𝑊 = 9 nm; 𝑑𝐵 = 3.5 nm; 

2∆𝑄𝑊= −72.5 meV; 2∆𝐵= +150 meV and 𝑣∥ = 𝑣𝑧 = 4.40 x 10
5 m/s. Some Landau level indexes 𝑛 are written at 

the right. 
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Parameters determined from magneto-optical experiments 

Table S1. Fitting parameters for the three SL samples at each temperature. N.A is for “Not accessible”. The error 

bars are the following: ±2.5 meV for 2∆𝑄𝑊 ; ±0.05x105 m/s for 𝑣∥
𝑙  ; ±0.05x105 m/s for 𝑣∥

𝑜 ; ±0.10x105 m/s for 𝑣𝑧
𝑙  

; ±0.10x105 m/s for 𝑣𝑧
𝑜. The error bars for 2∆𝐵  are drawn on Fig. 5(a,b,c) of the main text. 

Samples 𝑻 [K] 2ΔQW [meV] 2ΔB [meV] v||
l [m/s] vz

l [m/s] v||
o [m/s] vz

o [m/s] 

SL9-3.5 

4.2 -72.5 150 4.40 4.40 4.10 4.70 

80 -55 165 4.40 4.40 4.10 4.70 

120 -40 190 4.40 4.40 4.10 4.70 

160 -12.5 225 4.45 4.45 4.10 4.70 

200 10 255 4.50 4.50 4.10 4.70 

SL15-3.5 

4.2 -20 150 4.50 4.50 4.10 4.70 

50 -10 155 4.50 4.50 4.10 4.70 

80 -2.5 165 4.50 4.50 4.10 4.70 

120 15 180 4.50 4.50 4.10 4.70 

160 32.5 200 4.50 4.50 4.10 4.70 

200 55 220 4.50 4.50 N.A N.A 

SL27-1.5 

4.2 -60 140 4.45 4.45 4.45 4.45 

20 -57.5 145 4.45 4.45 4.45 4.45 

40 -50 150 4.45 4.45 4.45 4.45 

80 -32.5 155 4.40 4.40 4.40 4.40 

120 -15 175 4.35 4.35 4.35 4.35 

160 0 200 4.35 4.35 4.35 4.35 

200 10 230 4.35 4.35 4.35 4.35 
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Miniband dispersions of SL9-3.5 and SL15-3.5 at T=4.2 K 

 

Figure S1. Miniband dispersions of SL9-3.5 and SL15-3.5 at T=4.2 K. In red are the calculated 𝑇𝑀𝐵 and 𝑇𝑀𝐵’ and 

in black are the higher excited minibands. The grey area indicates the barrier potential height. 

Miniband inversion in the vicinity of the phase transition 

In a simplified picture of a 3D Dirac material, the trivial ordering is restored when ℏ𝑣𝐷𝑘~2|∆|, thus, 

occurring at 𝑘~0.025 Å−1 for 2|∆|~60 meV. In the investigated SLs, the wave vector of the mini BZ is 

limited to π/L which does not exceed 0.025 Å−1 even for the SL9-3.5 with the smallest SL period. Thus, 
the condition of full miniband band inversion is fullfilled for our samples SL9-3.5 and SL27-1.5 at low 
temperature 𝑇 < 𝑇𝐶. At higher temperatures, however, there exists a tiny region of partially inverted 
minibands near the topological phase transition where the miniband gap gets very small, and thus, the 
above-mentioned limiting condition is met before the zone edges. This is illustrated in the Fig. S2 below, 
where we show the partially inverted minibands of the sample SL9-3.5 at ~40 K where the band gap is 
only a few meV. 

 
Figure S2. (a) Miniband dispersion for SL9-3.5 similar as Fig. 2(b) of the main text, but for 𝑇~40 K, where the SL 

gap is negative but nearly zero, illustrating the case where the band inversion does not occur over the whole mini 

BZ but only in a very narrow region around qz =0 (see color scale and labels which denote the 𝐿6
+-parity). (b) 

Calculated 𝐿6
+-parity of TMB and TMB’ shown in (a). The miniband is only partially inverted around qz =0. 


