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Abstract
The last 25 years have seen immense changes, both in the world generally and in scientific publishing. It is now hard to 
imagine that our original editorial responsibilities included managing filing cabinets full of manuscripts and making frequent 
trips to the post office! In this first Invited Viewpoint, we have invited ourselves to highlight some of the key breakthroughs 
that have been made on topics that are within the scope of Tribology Letters, i.e., breakthroughs in the science of tribology. 
We also bring your attention to some unique, existing features of the journal, as well as new ways in which Tribology Letters 
will be more functional for you in the future. Finally, we share our views on publishing tribology research more generally, 
with the aim of encouraging publication decisions that benefit the tribology community as a whole.
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1  Tribology Letters Scope, History 
and Impact

Tribology Letters recently clocked up its first quarter cen-
tury. During that time, we have published over 3000 articles 
within the general area of “tribological science”—under-
standing the mechanisms that lead to tribological phenom-
ena—on topics ranging from controversies in the tribology 
of curling [1–3] to the tribocorrosion of lollipops [4].

First, what do we mean by tribological science? Tribol-
ogy is the science and engineering of interacting surfaces 
in relative motion and related phenomena, including lubri-
cation, adhesion, friction and wear. At Tribology Letters, 
founded by two surface scientists, we are interested in the 
SCIENCE of tribology, focusing on mechanistic insights and 
the fundamental understanding of tribological phenomena.

Tribology Letters has published many excellent papers 
within the topic of tribological science over the years. Here, 
we would like to highlight just a few of the most impactful 
articles—chosen by the editors as examples of papers that 
have changed the way the community thinks about various 
aspects of tribology.

Over the last two decades, contributions to Tribology 
Letters have helped shape how we understand the physical 
origins of friction and how those insights can be applied to 
practical friction control. Early experimental work showing 
how the stick–slip characteristics of atomic-scale friction 
measurements can map directly to the lattice of model sam-
ples [5] suggested that fundamental interatomic potentials 
are the physical basis of friction. This insight paved the way 
for contact-damping effects [6–9], thermolubricity [10, 11], 
superlubricity [12, 13] and other means of friction control.

This basic science met engineering at the macroscale 
interface. Studies with stable polymer interfaces, for 
example, have shown compelling evidence of macroscale 
thermolubricity [14]. Small-amplitude, high-frequency 
oscillations, the mechanical analog to thermal energy, 
have been used to activate slip and suppress friction of 
many practical materials systems [15]. Diamond-like car-
bons (DLCs) and 2D materials such as single-crystal  MoS2 
and graphene achieve “superlow” friction coefficients by 
effectively flattening the potential-energy (p.e.) landscape 
[16–19]. By manipulating the p.e. landscape in this way, 
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oriented 1D nanotube forests have been used to toggle 
between very high and very low friction [20, 21].

Elastohydrodynamic lubrication (EHL) has long been 
a mystery from the scientific perspective. However, in 
the last fifteen years, new methods, both experimental 
and computational, have started to reveal not only what 
happens in EHL, but how it happens. For example, an 
experimental study that enabled scientists to “see” inside 
an EHL contact showed that EHL friction arises from the 
shear of a highly pressurized and confined “fluid” that is 
trapped between the elastic contact of the two opposing 
surfaces [22]. The relative contributions of the Couette and 
Poiseuille terms to friction were subsequently differenti-
ated for Newtonian fluids [23]. Tribology Letters has also 
hosted a lively and engaging debate [24, 25] over the most 
appropriate rheological models for EHL studies involving 
tribological scientists from around the world.

The journal has published many other studies aimed at 
understanding and controlling friction in the full-fluid-film 
or boundary/mixed lubrication regimes. Such approaches 
consist of modifying the surface topography (see, for 
instance, [26] for full-film regimes and [27] for molecular 
films) and/or the surface chemistry via adsorption of or 
functionalization with appropriate species [28–35].

Tribology Letters has been home to many papers 
focused on understanding tribofilms. It is well known that 
lubricant additives protect surfaces via films that form, 
wear and reform during operation. However, these pro-
cesses cannot be directly observed. So, tribology scientists 
have developed creative ways to monitor and learn about 
this important process; see, for example, [36–38]. Similar 
methods have been used to study transfer-film formation, 
stability and suppression of friction and wear of high-per-
formance carbon and  MoS2-based solid lubricants [39, 40].

Some of these high-performance solid lubricants were 
tested in low-earth orbit outside the International Space 
Station in one of the most ambitious undertakings in the 
tribology literature [41]; in fact, these were the first active 
experiments in the Materials International Space Station 
Experiments (MISSE) program. A key discovery of that 
effort was the tribochemical and tribological degradation 
of an ultra-low-wear alumina–PTFE composite originally 
chosen for its chemical inertness. This observation moti-
vated follow-up studies showing how tribochemistry, cata-
lyzed by the nanofiller and supported by environmental 
moisture, stabilizes the interface and ultimately enables 
ultra-low wear rates [42, 43]. The absence of environmen-
tal humidity in the space environment precluded these 
favorable tribochemical processes, which disrupted the 
primary wear-reduction mechanism.

Tribology Letters has published influential papers on the 
tribology–biology interface, which have helped us to under-
stand the structure and properties of natural tribological 

structures such as cartilage [44–48], probe the biological 
response of epithelial or endothelial cells to friction [49–52], 
or even describe novel systems with the potential for imi-
tating natural tribological materials [53–55]. Clearly, this 
is a booming field and we expect this to continue to be an 
important part of the journal.

A great debate in the tribology community has to do with 
the meaning of “contact” at the nanoscale. At larger scales, 
real or apparent contact area can be defined and quantified 
relatively easily. However, for single asperities or nanoscale 
devices, where the contact comprises a few to hundreds of 
atoms, the definition of contact is less clear. Many papers 
published in Tribology Letters have tackled this challenge. 
Some of the most impactful papers on this topic were pub-
lished by the late Mark Robbins [35, 56, 57]. Mark, who 
served on the Editorial Board of our journal, was a giant in 
the field of tribology science and he will be missed by us 
all. Tribology Letters is currently preparing a special issue 
“Mark Robbins, in memoriam”—in memory of Mark and his 
contributions to our field and our community.

In addition to the standard article types, Tribology Letters 
has published many impactful Methods papers. Such papers 
focus on new experimental or data-analysis methods, testing 
procedures or theoretical approaches that are relevant to the 
field of tribology. Methods papers are an important article 
type because they enable researchers to not only read about 
others’ results, but to reproduce them and learn about best 
practices. Tribology Letters has published Methods papers 
on topics including AFM calibration [58–60], measure-
ment of hydrodynamic oil films using ultrasonic reflection 
[61], measurement of real contact areas [62, 63], analytical 
models (including freely available code for their solution) 
for atomic friction [64] and in situ methods for tribology 
generally [65].

Lastly, Tribology Letters publishes Review articles, by 
invitation, that summarize the state of the art in specific 
aspects of tribological science. The most highly cited paper 
published in Tribology Letters to-date is “The history and 
mechanisms of ZDDP” by Hugh Spikes [66]. The review 
presented this important topic from a scientific perspec-
tive and has shaped the way the tribology community 
thinks about ZDDP and similar additives. A review of ionic 
liquids has also racked up hundreds of downloads in the 
past few years and particularly focused on the fundamen-
tal mechanisms of ionic liquid lubrication at the nanoscale 
[67]. Lastly, a highly cited review focusing on the tribology 
of human skin summarized the history and latest research 
in this close-to-home topic [68]. The best Review papers 
are those that not only summarize a topic, but place it in a 
broader context and then demonstrate how various studies 
complement or contrast with each other.
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2  New Journal Features

Preprint sharing is already an important part of the pub-
lication process in many fields, especially in the physics 
community, which started the arXiv in 1991. The fields of 
biology and medicine have also established their own pre-
print sharing servers in the meantime. We are pleased to 
announce that Springer Nature is now offering In Review 
to Tribology Letters authors. Manuscripts from authors 
who opt in will be publicly accessible as preprints via 
Research Square, a platform designed to promote open 
research discussions before and after publication. This ser-
vice accelerates visibility among funders and colleagues, 
enables citation during peer review and offers commu-
nity-wide feedback and discussion both prior to and after 
publication. The use of In Review is, of course, optional 
and authors will be asked during the submission process 
whether they want their preprint to be shared using this 
service.

Another benefit of publishing with Tribology Letters is 
SharedIt, which is a Springer Nature content-sharing ini-
tiative that allows you to post unique links to your article 
anywhere for non-commercial, personal use, including on 
social-media platforms, your own websites, or an institu-
tional repository. SharedIt enables authors to share their 
work with their friends, colleagues, students and social 
media followers. These links provide free full-text view-
only access to all Tribology Letters articles by anyone from 
anywhere. To share any Tribology Letters paper, simply 
locate the paper on our website, scroll to the bottom of the 
page and press the ‘Get shareable link’ button.

3  Innovative Manuscript Types

You probably saw our first “Challenge” article on contact 
mechanics [69], in which a number of tribologists, world-
wide, were asked to predict adhesion between two surfaces 
of defined topographies. The resulting article, with its 35 
authors, as well as a series of nine articles [70–78] that 
go into more detail in the methods involved and discuss 
some related controversies, constitutes a tremendously 
instructive insight into the state of the art of the contact 
mechanics field, contrasting the strengths and weaknesses 
of a wide variety of approaches. We are open to your sug-
gestions for further challenge articles!

Data Notes are a new type of article that focuses on big 
datasets that are generally difficult to obtain, but of inter-
est to the community for further interpretation, analysis or 
application. These might be, for example, obtained with a 
unique instrument or collected from a one-time event such 

as a space mission or an earthquake. The data have to be 
of interest to the community, unique and deemed by the 
reviewers to be reliable. More information can be found 
in our instructions for authors [79]. Our first Data Note 
has just appeared [80], and the corresponding 150 + sets 
of friction data are available free-of-charge on the data 
repository Dryad [81].

Lastly, this paper is the first example of a new arti-
cle type, Invited Viewpoint [82]. This type of article is 
intended to provide authors with a means of expressing a 
scientific opinion, with the goal of encouraging communi-
cation within the tribology community. Invited Viewpoint 
articles need not report new data or methods, but should be 
focused on some aspect, or perhaps controversy, within the 
scope of tribological science. Invited Viewpoint articles 
are by invitation only.

4  Why Publish in Tribology Journals?

Our focus is on the science of tribology, rather than on 
purely engineering topics, which are the specialties of 
other journals. We thus aim to publish papers that move 
forward our understanding of tribology fundamentals, 
whether this be in friction, lubrication, wear, or the con-
tact interface itself. One challenge that authors face is that 
there are so many different tribology journals available. It 
is therefore important that journals clarify their scope or 
at least their emphasis areas within tribology. Understand-
ing the emphases of the many different tribology journals 
can both help authors place their papers appropriately and 
guide readers in their literature searches.

A related challenge within the tribological community 
is that higher-impact journals in other fields such as phys-
ics or surface chemistry solicit tribology-themed papers. 
These journals have attracted and received the credit for 
some of our best tribology research. The net result is 
reduced impact factors for tribology journals, which then 
increases the pressure on us to publish our best tribol-
ogy research elsewhere. However, by taking advantage of 
the new initiatives reviewed here and submitting our best 
tribological science papers to Tribology Letters, we can 
reverse this negative cycle and benefit the entire tribology 
community. Tribological science has a bright future and 
we look forward to working with you to publish your latest 
and most significant research in this exciting field!
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