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An Anomaly Detection Approach to Monitor the Structured-Based

Navigation in Agricultural Robotics

Hassan Nehme1,2, Clément Aubry1, Romain Rossi2 and Rémi Boutteau3

Abstract— Local perception navigation methods allow agri-
cultural robots to accurately track crop row structures while
performing automated farming tasks. The integration of these
methods as a part of a fully autonomous navigation solution
requires continuous assessment of their reliability since they
rely solely on sensor data in a changing and unpredictable
environment. This paper presents a data-driven monitoring ap-
proach for the task of structure-based navigation in agriculture.
The proposed method applies semi-supervised anomaly detec-
tion, aiming to learn a model of normal scene geometry that
characterizes a domain of reliable execution of the considered
task. To this end, a convolutional neural network was trained
in one-class classification fashion on Hough representations of
LiDAR point clouds. In experimentation, the learned normal

model was used to derive a confidence measure for a LiDAR-
based tracking algorithm allowing its integration as a part of
a hybrid navigation solution in vineyards for a commercial
robotic platform.

I. INTRODUCTION

Autonomous robots are essential for improving farming

productivity, with autonomous navigation being a key fea-

ture in their design for precision agriculture applications.

Automated farming tasks are generally performed while

accurately tracking parallel crop rows. A current research

interest is to develop hybrid navigation methods [1] that

integrate local perception systems (e.g., LiDAR, vision)

along with Global Navigation Satellite Systems (GNSS).

In this setup, local perception exploits geometric patterns

and provides accurate tracking with respect to the perceived

structure in the field e.g. crop rows. Therefore, a hybrid

navigation method reduces the accuracy requirements of

global navigation systems that will manage global aspects of

the task such as transitioning from one row to another, while

leaving accurate structure tracking for local perception.

Local perception navigation methods are interesting since

they eliminate the effort of creating a predefined path while

providing local awareness and responsiveness with respect to

the actual structure. However, this increased flexibility means

that the structure-based navigation function will rely solely

on sensor data acquired in an unpredictable environment

under uncontrolled conditions. This raises concerns about

the viability of local perception methods as a whole solution

for near production robots since a perception algorithm is

as reliable as its input data. A way to respond to these
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concerns is by providing an assessment of input data quality

through data-driven monitoring. Such an assessment avoids

failures due to the application of a perception algorithm in

anomalous situations: ranging from low level anomalies such

as corrupted data due to poor acquisition conditions (e.g.,

low light, shadows, a leaf covering the sensor) to high level

anomalies caused by the perceived scene not complying with

the base assumptions of the tracking algorithm. Moreover,

a quantitative assessment providing a confidence measure

defines guidelines for integrating the perception algorithm

as a part of a complex or hybrid solution with deliberation

and planning functions.

This work proposes a monitoring method for the general

local structure-based navigation task in agriculture. As a

main contribution, we show that the Hough transform rep-

resentation of LiDAR point clouds can be exploited as an

abstraction of the field’s geometry that allows a convolutional

neural network model to capture a normal1 criterion about

the traversability of the structure. The monitoring is done

through anomaly detection on the Hough representation

of input data. A fully convolutional one-class classifier is

trained on data acquired during normal execution of the task.

The goal of the classifier is to provide an anomaly score

reflecting the conformity of a test observation with a learned

model of normal execution. The anomaly score can be treated

as a confidence measure to be used to decide whether to rely

on the execution of the monitored task or to switch to another

behavior and report an error.

The proposed method was illustrated in experimentation

where monitoring the task of structure-based navigation of an

agricultural robot in vineyards was considered. The monitor-

ing provided a fusion rule defining the integration guideline

of a LiDAR-based structure tracking method as a part of a

hybrid navigation solution. The derived fusion rule defined

the domain of application of the LiDAR-based method based

on pure assessment of input data quality. Moreover, the

fusion rule provided a smooth transition to GNSS-based U-

turns near the end of each vine row where less information

about the structure is available for the perception algorithm

impacting the quality of its tracking signals.

The remainder of the paper is organized as follows: section

II provides preliminaries on the structure tracking task and

reviews related anomaly detection methods, section III states

the problem and explains the steps of the proposed method,

an evaluation of the proposed method in an experimental

case study is provided in section IV and finally section V

1Throughout the paper, normal means not anomalous.



concludes the paper.

II. PRELIMINARIES AND RELATED WORK

This work proposes a monitoring approach for the gen-

eral structure-based navigation task in agriculture. We are

interested in the viability of methods and how they fit

in the overall solution rather than the specific technique

implemented. The questions to be asked are: how reliable

is the perception-based algorithm and how well does it fit

in a complex solution ready for commercialization (e.g.

integration in a hybrid navigation solution). Not enough

attention is given to these issues in the literature since the

main concern is usually to develop a new tracking technique

or algorithm. Yet, they are important when deciding which

technique to deploy in a production robot. To this end,

integrating a structure tracking algorithm as a navigation

solution in a system requires defining a confidence measure

whether it is implemented as a sole solution or as part of

a hybrid solution (based on sensor fusion). Prior attempts

to define the confidence measure used algorithm-specific [2]

or sensor-specific information [3]. In this work, we follow

a data-driven monitoring paradigm [4], that is performing

anomaly detection on a set of data without the use of explicit

details or knowledge about the navigation algorithm.

This section provides context about the task to be moni-

tored, i.e. structure-based navigation (which is an input not

an element of the solution) and the considered paradigm

considered for the monitoring, i.e. anomaly detection. First,

we review structure tracking using Hough transform since

it is considered as the data representation for the proposed

monitoring approach. Then, we review the anomaly detection

problem in the context of mobile robot navigation with a

focus on one-classification methods.

a) Structure-based navigation and Hough transform:

Local structure-based navigation is the task of tracking crop

rows using local perception sensors (LiDAR scanners and

cameras). The core of the solutions proposed in the literature

is line fitting techniques. Hough transform [5] is one of the

most common line fitting techniques employed for the task

of identifying crop rows; it was applied to identify crop rows

from vision data in [6], [7] and from LiDAR data in [8], [9],

[10]. Hough transform maps input data from their feature

space (image space or 3d metric space for LiDAR scans) to

a parameter space called Hough space. Parametric models,

e.g. a line, can be identified in the parameter space through

a voting procedure. For the task of crop rows detection, the

goal is to search for a pattern of parallel lines in the Hough

space. To facilitate the search, additional hypotheses about

the field have been made such as row spacing [11] or more

generally exploiting row parallelism criterion [7], [12].

The above mentioned hypotheses were made after observ-

ing invariants in the Hough representation of input data.

Therefore, the presence of these invariants is conditioned

to the presence of a parallel pattern in the perceived scene

which is the base assumption of any structure tracking algo-

rithm. The work presented in this paper is a generalization

of this reflection: we assume that these invariants capture

a normal criterion about the perceived structure that can

be modeled through unsupervised representation learning

without the need of explicit hypotheses.

b) Anomaly detection: Anomaly detection is the task

of identifying samples in data that do not conform to a

well-defined notion of normal behavior [13]. Depending

on the task, the notion of normal behavior can be de-

fined by gathering anomaly-free data. In this context, an

anomaly detection algorithm consists of three major steps:

first, modeling an anomaly-free background model from a

representative dataset. Then, defining an anomaly score as

a distance or a measure of deviation from the background

model. Finally, defining an appropriate decision rule based

on the anomaly score for the final binary decision (anomaly

or not). This formalization was synthesized in a recent survey

on image anomalies [14] where anomaly detection methods

were classified based on the assumptions made in each of the

three aforementioned steps. An illustration of a generalized

anomaly detection pipeline is provided in Figure 1.

Background

model
Decision ruleData

Anomaly

score
Decision

Fig. 1: The anomaly detection pipeline considered in this

work.

For applications in mobile robot navigation, a semi-

supervised anomaly detection approach is often considered.

In such an approach, the background model is learned from a

set of normal data only. This makes semi-supervised anomaly

detection a practical solution since it avoids gathering data

representing all the anomalies that can occur which can be

a dangerous and costly process. This approach was applied

for traversability assessment [15] and rare obstacle detection

in outdoor environments [16] where normal data were fairly

accessible and were gathered from a safe execution of the

navigation task.

Semi-supervised anomaly detection is regarded as one-

class classification. One-class Support-Vector Machine (OC-

SVM) [17] is a classical method that defines the background

model as a domain in feature space where normal data lie.

OC-SVM does not scale well for high dimensional data (such

as images) and large training sets. [18] introduced a deep

one-class classification method called Deep Support Vector

Data Description (Deep SVDD). Deep SVDD is an adapta-

tion of the domain-based training criterion to deep learning

that jointly learns to extract features that are enclosed in a

hypersphere of minimal volume in feature space.

This work adopts a semi-supervised anomaly detection ap-

proach with deep SVDD to monitor the normal execution of

the task of structure-based navigation in agriculture. Hough

transform is considered as the representation of input data.

The assumption is that a background model learned from

Hough space captures specific features defining a normal

criterion of the structure.



III. MATERIALS AND METHODS

The monitoring method presented in this paper is devel-

oped as a part of the navigation solution for Trektor2, a

multi-purpose agricultural robot developed by SITIA. The

robot, shown in two vineyard configurations in Figure 2, is

designed to intervene on different crops with their variety

of features; ranging from tiny plants (e.g. market gardening)

to dense small trees (e.g. viticulture). A parallel structure

is common for all of these fields whether it is provided by

crop rows or man-made structures (e.g wheel tracks). Thus,

it is worthy to study the integration of a structure tracking

algorithm in the overall navigation solution. This section

explains the motivation and development of the anomaly

detection method to monitor an existing structure tracking

algorithm.

(a) Narrow vineyard. (b) Wide vineyard.

Fig. 2: SITIA’s Trektor: the robotic platform used in the

experimentation.

A. Navigation framework

One of the main applications of our robotic platform is

autonomous navigation in vineyards. The task requires global

planning in order to cover the entire field: i.e. a global GNSS

path defining the rows that need to be worked and in what

direction and order. Hence, the robot is equipped with an

accurate global navigation system based on the fusion of

RTK-GNSS and high accuracy inertial navigation systems.

Leveraging this accuracy in practice requires the global path

to be in high resolution which requires a significant effort in

the task preparation phase. Hence comes a compromise with

local perception that significantly reduces the resolution re-

quirements of the global path by providing accurate tracking

with respect to the perceived crop rows. In this setting, only

the start and end points of the desired rows need to be geo-

referenced in order to create the global path that handles the

transition between rows while leaving accurate row tracking

for the local perception algorithm.

Figure 4 provides an illustration of the navigation task in

a vineyard. The local perception for this task is provided by

a 16-channel 3D LiDAR sensor (Ouster OS1-16) mounted

on top of the robot, as shown in Figure 3, which allows the

perception of multiple rows. As the robot approaches the end

of a row, a less portion of the rows is perceived by the LiDAR

sensor making its tracking less reliable; until a location where

no structure information is available (noted as a red cross in

Figure 4), here the transition to global navigation should be

2www.sitia.fr/en/innovation-2/trektor/

triggered in order to handle the U-turn and enter the next

row. This is one of the main scenarios that motivate a data-

driven monitoring of the structure tracking algorithm. By

doing so, a perception-based algorithm becomes more viable

by providing an indicator of its reliability.

Fig. 3: LiDAR-sensor’s position on top of the robot.

Vine rows

Agricultural robot

Global path

Georeferenced points

LiDAR sensor’s view angle

LiDAR sensor’s dead zone

Fig. 4: Illustration of the navigation task as a sequence of

LiDAR-based structure tracking and GNSS-based U-turns.

Less structure information is perceived by the LiDAR sensor

at row ends where the transition to global navigation should

be triggered (near the red cross).

B. Monitoring via anomaly detection

The goal is to provide an indicator of the reliability of a

structure tracking algorithm based solely on its input. This

can be achieved following an anomaly detection paradigm

(Figure 1) with three major elements: background model,

anomaly score and decision rule. In this setting, the learned

background model will provide an anomaly score reflecting a

deviation of the inputs from its domain of reliable execution.

Learning a background model is followed by an empirical

evaluation of the produced anomaly score’s statistics on a

validation dataset with the goal of deriving the final decision

rule.

As it has been stated in section II, the background model is

conditioned to a notion of normal behavior that is defined by

a set of data. Therefore, it is essential to carefully consider



beforehand an assumption about the definition of the desired

normal behavior and how to represent it with a dataset since

the background model will learn patterns that illustrate this

assumption. The following subsections describe the different

elements of the proposed solution.

1) Data representation: The task to be monitored is the

structure tracking algorithm. This algorithm applies pattern

analysis on the Hough representation of point clouds in order

to identify a pattern of parallel lines. Hough transform maps

input points from their 2D metric space to the parameter

space of the model to be identified; e.g. a line in the

considered application. In details, Hough transform defines

a line using the polar parameters (ρ, θ) where θ ∈ [0, π] is

the normal angle and ρ ∈ R is the signed distance from the

origin [5]. A point (x0, y0) in the input point cloud maps to

the sinusoid:

ρ = x0cosθ + y0sinθ (1)

in the polar parameter space that defines all the possible lines

that pass through it. Thus, each point votes for the parameter

of candidate lines. After considering all points, the Hough

representation of the input cloud is a heatmap in the 2D

parameter space where the coordinates of high heat define

the most likely model candidates.

(a) Sample input point cloud. (b) Corresponding Hough space.

Fig. 5: A sample input point cloud and the corresponding

Hough space.

Figure 5 shows a sample point cloud acquisition of a

vineyard canopy along with the corresponding Hough trans-

form. Four dense sinusoid intersections can be noticed in

the Hough space. These intersections define the parameters

of the four vine rows in the input cloud. This observation

has been studied and it is exploited by most Hough-based

crop rows detection methods [7], [10].

While the raw inputs of the structure tracking algorithm

are point clouds, further preprocessing followed by the ap-

plication of Hough transform are performed prior to pattern

analysis. Hence, the Hough representation of an input point

cloud is the direct input to pattern analysis. Since most crop

rows detection algorithms exploit different properties in the

Hough space in order to detect a pattern of parallel rows, we

consider that Hough transform abstracts defining geometric

features of crop row structures, and thus, it is considered

as the representation of input data to the proposed anomaly

detection method. This consideration is intended to reduce

the capacity requirements of the subsequent background

model by exploiting an already-computed feature extraction.

This results in a light monitoring module that is compatible

with a wide range of Hough-based tracking algorithms.

2) Defining an anomaly - Data collection: The aim is to

learn a model of typical scene structures that characterizes a

known and reliable structure tracking. With Hough transform

as input representation, we collect structure data samples

from previous safe navigation where we ensured that the

field is suitable for structure tracking; meaning that no

obstacles were present and the overall structure was visually

consistent. We collected data from two different vineyards,

each of which has its unique geometric characteristics (e.g.,

row spacing, height, weed pressure). The considered fields

cover two vineyard configurations: narrow vineyard where

the robot is centred on a vine row (Figure 2a) and wide

vineyard where the robot passes between two vine rows

(Figure 2b). This ensures that the collected data samples are

diverse and cover the most likely scenarios that the robot

will face.

The desired normal behavior is when the perceived scene

allows the structure algorithm to provide pertinent results.

Therefore, we define the normal behavior with samples col-

lected in the in-row portion of the field (as opposed to the U-

turn portion where no structure information is available). We

used location information along with the global path (Figure

4) to annotate the collected data. The normal data zones

were defined by shifting the geo-referenced end-points by 5

meters; this ensured that normal data do not include samples

from the transition between structure tracking and U-turns

as these samples contain little to no structure information.

Data samples are collected as 128×128 Hough images.

Figure 6 shows examples of normal and anomalous data

samples. The normal sample was collected in the in-row

portion of the field and it shows clearly the sinusoid inter-

sections pattern discussed in subsection III-B.1. Whereas the

anomalous sample collected during a U-turn does not show

this pattern, and, consequently, it does not contain structure

information. The collected dataset is split into a training set

that contains 14K normal samples, and a validation set that

contains equally 4K of normal and anomalous samples. The

aim of the balanced validation set is to monitor the evolution

of the learned model using binary classification metrics such

as the area under the receiver operating characteristic curve

(ROC-AUC). The validation set will also be used to derive

statistics about the learned model that are useful to define a

decision rule in the consequent step of the anomaly detection

pipeline.

3) Background model: After collecting training data, the

next step in the anomaly detection pipeline (Figure 1) is

learning a background model that captures the notion of

normal behavior. We employ the background model as a one-

class classifier to be learned from the set of normal Hough

images. The considered classifier follows the approach pro-

posed by Ruff et al. [18]. In this approach, the one-class

classifier is considered to be a neural network φ(.;ω) with



(a) Normal sample. (b) Anomalous sample.

Fig. 6: Hough space for normal and anomalous samples from

the collected dataset.

weights ω that transforms input images to feature vectors.

The model is trained to produce feature vectors that are

enclosed in a hypersphere of minimal volume in the feature

space. The volume of the hypersphere is jointly minimized

along with learning the neural transformation weights ω. We

adopt the One-Class Deep SVDD training loss proposed in

the original paper [18]:

L = ‖φ(X;ω)− c‖
2
+ λ ‖ω‖

2
(2)

where X is an input image, c is the hypersphere center

and ω represents the network weights. The second term

in the training loss is a regularizer on network weights

which is controlled by a hyperparameter λ. This training

criterion forces the learned feature vectors of normal samples

to be enclosed in a hypersphere of minimal volume. The

hypersphere center c is set arbitrarily from an initial forward

pass of the untrained network and it is fixed during training.

This initialization technique follows the recommendation of

Ruff et al. [18] to choose an arbitrarily center c 6= 0 in

order to avoid trivial solutions (in which, the network weights

collapse to zero).

The proposed method is designed to monitor a real-time

navigation application. Moreover, the representation of input

clouds as Hough images reduces the capacity requirements

of the background model φ(.;ω). These reasons motivate

the choice of a light convolutional network. To this end, we

propose a light fully convolutional network architecture with

seven downsampling convolutional blocks. The proposed

architecture is illustrated in Figure 7; it produces a 1×1×128
feature vector as an output for a 128× 128× 1 input image.

Each downsampling block consists of a convolutional layer

followed by batch normalization and leaky ReLU activation

function (with leakiness α = 0.2). All the layers are defined

with no bias term since it was shown in [18] that networks

with bias term collapse to a constant function mapping when

trained to minimize the deep SVDD loss.

4) Anomaly score: As an anomaly score for the model, we

use the distance ‖φω(Xtest) − c‖2 between the transformed

features of a test sample Xtest and the hypersphere center

c of the learned model. Since the deep SVDD training

criterion forces the learned feature vectors of normal samples

to be enclosed in a hypersphere, anomalous samples will be

mapped to a location in the feature space that is at a larger

distance from the hypersphere center than the mapping of

normal samples.
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Fig. 7: The light fully convolutional network architecture

adopted for the background model.

5) Decision rule: After training, the learned background

model will produce a raw anomaly score whose scale is

not easily interpreted. This motivates the derivation of a

decision rule, the final part of the anomaly detection pipeline.

The decision rule aims to interpret raw anomaly scores as

meaningful scalars that meet the requirements of the con-

sidered application. Hence, the decision rule is application

specific. In the following, we explain the derivation of a

decision rule for the application of monitoring the LiDAR-

based structure tracking algorithm; allowing its integration,

along with GNSS-based navigation, in the hybrid navigation

setup introduced in Figure 4.

In practice, each of the two navigation algorithms eventu-

ally guide the robot by delivering tracking signals to a control

law as lateral deviation ∆l and angular deviation ∆γ. The

anomaly score produced by the learned background model

can be used to define a fusion rule of the tracking signals by

attributing a confidence measure δ ∈ [0, 1] to the structure

algorithm. Hence, the fusion rule for the lateral deviation is:

∆l = δ∆lLiDAR + (1− δ)∆lGNSS (3)

and the same applies for the angular deviation. A confidence

measure of 1 means that the tracking relies solely on the

LiDAR-based algorithm. This is the desired case when the

robot is between crop rows; the opposite is true when

the robot is in the overhead performing U-turn where the

tracking should rely solely on the GNSS. Therefore, the

confidence measure is an inverse of the notion of anomaly

assumed by the proposed anomaly detection algorithm. To

this end, the decision rule should define the transformation

of raw anomaly scores into the desired confidence measure

δ.

A simple, yet effective, decision rule consists of defining

a suitable threshold th for the anomaly score. This can

be achieved empirically from the ROC curve evaluation

of the learned background model on the validation set.

However, this rule results in hard transitions between the

final binary decision for samples with an anomaly score



varying around the threshold, which is not suitable for the

considered application. To overcome the hard transitioning

issue, we propose a soft decision rule as a generalization

of binary thresholding. The desired output is a normalized

anomaly score s ∈ [0, 1] where the value of s for samples

with an anomaly score near the threshold th should be around

0.5. Figure 8 illustrates the definition of the soft decision

rule that takes into account the standard-deviations σn and

σa of the distribution3 of raw anomaly scores on normal

and anomalous validation samples The soft decision rule

is a saturation function, the limits of saturation and the

function slopes are defined empirically using the standard-

deviations σn and σa. Specifically, the saturation limits are

set to th−0.5σn and th+0.5σa respectively and the function

slope is set to 1

σn

for s < th and to 1

σa

for s > th.

1

0

normalized score

Raw anomaly
score

Fig. 8: Deriving an anomaly decision rule empirically. The

rule is a saturation function that transforms a raw anomaly

score into a meaningful decision metric s ∈ [0, 1]. Saturation

limits and the function slopes depend on the standard-

deviations σn and σa of raw anomaly scores on normal (blue

distribution) and anomalous (red distribution) validation sam-

ples.

Finally, the confidence measure δ can be defined as 1− s

where s ∈ [0, 1] is the normalized anomaly score produced

by the soft decision rule.

IV. EXPERIMENTAL EVALUATION

As a case study, we consider evaluating the proposed

monitoring approach in the hybrid navigation setup, intro-

duced in Figure 4, that combines LiDAR-based structure

tracking along with GNSS-based navigation. The goal is to

deploy the proposed anomaly detection method to handle

the transition between the two navigation algorithms based

on the assessment of the Hough representation of input point

clouds. To this end, the background model was trained on

the collected dataset of normal Hough images and validated

on the validation set using ROC-AUC binary classification

metric.

The fully convolutional network (Section III-B.3) was

trained from randomly initialized weights to minimize the

deep SVDD training loss using the Adam optimizer with

a learning rate of 10−5. The training was implemented in

Tensorflow and we trained for 100 epochs. Figure 9 shows

3 for illustration, gaussian distributions are assumed which is not neces-
sary the case in practice, Nevertheless, this assumption holds true since we
only use standard-deviations from empirical evaluation

the results of the training as the evolution of the training loss

and the evaluation of the ROC-AUC metric on the validation

set per epoch. The ROC curve is obtained by evaluating the

true positive and false positive rates for different thresholds

on the anomaly score; an anomaly score above a given

threshold means that the sample is classified as an anomaly

(i.e. positive in the notation of binary classification). The

network achieved a final AUC of 0.988 on the validation

dataset, this value indicates that the validation samples are

highly separable (between normal and anomalous) thanks to

the anomaly score of the learned model.

Fig. 9: The evolution of the SVDD loss on the training set

and the ROC-AUC metric on the validation set during 100

training epochs.

Raw anomaly scores, on the validation set, of the learned

background model were used to derive the decision rule as

discussed in Section III-B.5. Finally, the complete anomaly

detection method delivered the desired monitoring via the

confidence measure δ that defines the fusion rule of Equation

3.

We tested this confidence measure during the navigation

on a test vine row that was not covered by the training nor

the validation datasets. The background model was deployed

to provide estimations in real-time (the model ran at the same

10 Hz frequency as the LiDAR sensor). The localization

module of the robot provided a reference for the evaluation

as a flag indicating when the robot enters the row. Figure 10

shows the results of this evaluation as the evolution of the

confidence measure, the in-row flag and the raw anomaly

score during the navigation. Before entering the row, the

LiDAR perceived a crop row structure that is relatively

far ahead, this resulted in a zero confidence measure that

gradually increased as the robot approached the row and

perceived a more complete structure that complies with the

learned background model. The confidence measure was then

saturated at 1 a few seconds before the in-row flag, this is

logical since the in-row flag is based on the position of the

robot’s center knowing that the LiDAR sensor is mounted at

the front meaning that it will perceive a complete structure

before entering the row. The same logic applies near the row-

end where the confidence measure transitions before the in-

row flag; since at this position, structure perception begins

to be incomplete. The figure also shows the evolution of

the raw anomaly score (scaled up for visualization) which

is consistent with the previous explanation and shows that

the learned anomaly detection method performs well in real

experimental scenarios allowing reliable integration of a



structure-based navigation algorithm.

Fig. 10: The results of the evaluation in a hybrid navigation

scenario as the evolution of the raw anomaly score (scaled

up for visualization), the derived confidence measure of the

LiDAR-based algorithm and the in-row flag provided by

the GNSS system during the navigation on a vine row.

The produced confidence measure saturates a few seconds

before entering and exiting the row which correlates with

positioning of the LiDAR sensor on the robot.

V. CONCLUSION

This paper presented a data-driven monitoring approach

for the task of structure-based robot navigation in agricul-

tural fields. The proposed method follows a semi-supervised

anomaly detection paradigm in order to provide a quantitative

assessment of the reliability of a LiDAR-based structure

tracking algorithm. Hough transform was shown to be an ef-

fective abstraction of the field’s geometry, from which a light

fully convolutional background model capturing a normal

criterion about the structure was learned. The background

model was trained on a dataset of normal Hough images

collected during previous safe navigation in vineyard fields.

Field experimentations considered the case of hybrid robot

navigation in vineyards. The learned background model was

used to derive a fusion rule that handles the transition

between the structure-based and GNSS-based algorithms. A

decision rule was derived empirically by considering the

statistics of anomaly scores produced by the background

model on a validation dataset. The overall anomaly detection

method was validated in a real navigation scenario where it

was shown that it defines guidelines for the integration of a

perception-based navigation algorithm as a viable part of a

complete autonomous navigation solution.

Future work would consider studying the transfer of the

proposed anomaly detection algorithm to different agricul-

tural structures such as wheel tracks for market gardening.

Another long-term goal is to consider modeling a more

complex definition of anomalies that includes obstacles. This

requires the investigation of an anomaly detection approach

on different input modalities such as images, which motivates

background modeling with generative adversarial networks.
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