
HAL Id: hal-03255457
https://hal.science/hal-03255457

Submitted on 11 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variational Fusion of Hyperspectral Data by Non-Local
Filtering

Jamila Mifdal, Bartomeu Coll, Jacques Froment, Joan Duran

To cite this version:
Jamila Mifdal, Bartomeu Coll, Jacques Froment, Joan Duran. Variational Fusion of Hyperspectral
Data by Non-Local Filtering. Mathematics , 2021, 9 (11), pp.1265. �10.3390/math9111265�. �hal-
03255457�

https://hal.science/hal-03255457
https://hal.archives-ouvertes.fr


mathematics

Article

Variational Fusion of Hyperspectral Data by Non-Local Filtering

Jamila Mifdal 1,* , Bartomeu Coll 2, Jacques Froment 3 and Joan Duran 2,*

����������
�������

Citation: Mifdal, J.; Coll, B.;

Froment, J.; Duran, J. Variational

Fusion of Hyperspectral Data by

Non-Local Filtering. Mathematics

2021, 9, 1265. https://doi.org/

10.3390/math9111265

Academic Editor: Daniel Gómez

Gonzalez

Received: 7 April 2021

Accepted: 26 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Φ-Lab, European Space Agency, ESRIN, 00044 Frascati, Italy
2 Department of Mathematics and Computer Science and IAC3, Universitat de les Illes Balears,

Cra. de Valldemossa km. 7.5, E-07122 Palma, Spain; tomeu.coll@uib.es
3 Univ Bretagne-Sud, CNRS UMR 6205 LMBA, Campus de Tohannic, F-56000 Vannes, France;

jacques.froment@univ-ubs.fr
* Correspondence: jamila.mifdal@esa.int (J.M.); joan.duran@uib.es (J.D.)

Abstract: The fusion of multisensor data has attracted a lot of attention in computer vision, partic-
ularly among the remote sensing community. Hyperspectral image fusion consists in merging the
spectral information of a hyperspectral image with the geometry of a multispectral one in order to
infer an image with high spatial and spectral resolutions. In this paper, we propose a variational
fusion model with a nonlocal regularization term that encodes patch-based filtering conditioned to
the geometry of the multispectral data. We further incorporate a radiometric constraint that injects
the high frequencies of the scene into the fused product with a band per band modulation according
to the energy levels of the multispectral and hyperspectral images. The proposed approach proved
robust to noise and aliasing. The experimental results demonstrate the performance of our method
with respect to the state-of-the-art techniques on data acquired by commercial hyperspectral cameras
and Earth observation satellites.

Keywords: data fusion; hyperspectral imaging; multispectral imaging; super-resolution; variational
methods; non-local filtering

1. Introduction

Image fusion has been an active field of research due to the growing availability of
data and the need of gathering information from different imaging sources [1,2]. In this
setting, merging multisensor data in general and images with different spatial and spectral
resolutions in particular has attracted a lot of attention in computer vision.

Hyperspectral (HS) imaging describes and characterizes the Earth surface components
and processes thanks to the measurements of the interaction of light with objects, which is
called spectral response. Everyday-life scenes captured by HS cameras [3] are used in many
computer vision tasks such as recognition or surveillance. Furthermore, remote sensing
HS data delivered by satellites through various missions help shed more light on many
Earth phenomena [4,5].

Imaging sensor performances are mainly assessed with the Ground Sampling Distance
(GSD) factor and the number of spectral bands. Lower GSD provides images with good
spatial quality, while a higher number of spectral bands allows better spectral description of
the captured scene. However, imaging sensors are subject to compromises due to various
technical and economical constraints. For instance, the compromise between the GSD
and the signal to noise ratio (SNR) is taken into account in order to maintain low-level
noise in the images. The bandwidth capacity as well as the onboard storage are important
limiting factors too. These tradeoffs lead to acquiring a multispectral (MS) image with
high spatial but low spectral resolution, or an HS image with accurate spectral but poorer
spatial resolution. Such a scenario opens the gate to fusion [6] and to super-resolution
techniques [7,8].
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Hyperspectral image fusion consists in merging the spectral information of an HS
image with the geometry of an MS image in order to infer an image with high spatial and
spectral resolutions. Since the fusion problem is generally ill posed, some state-of-the-
art methods introduce prior knowledge through the Bayesian [9,10] or variational [11,12]
frameworks. Other approaches associate fusion with super-resolution [13] or linear spectral
unmixing [14]. With the increased prominence of deep learning, convolutional neural
networks (CNNs) have been recently used [15,16].

A closely related problem to HS fusion is pansharpening [17,18]. The difference
between the two is not only that the geometry is encoded in a grayscale image in the case
of pansharpening, but also that the number of spectral bands to be spatially interpolated is
much lower than in HS fusion. Nonetheless, pansharpening models can be well adapted to
the fusion of HS and MS images [19].

In this paper, we propose to tackle HS fusion in the variational framework through
the minimization of a convex energy. In order to deal with the ill-posed nature of the
problem, we incorporate a nonlocal regularization term that encodes patch-based filtering
conditioned to the geometry of the MS image. A radiometric constraint is also introduced
in order to inject the high frequencies of the scene into the fused product with a band per
band modulation according to the energy levels of the MS and HS images. The proposed
model is compared with several state-of-the art techniques on both remote sensing imagery
and data captured by HS cameras of everyday-life scenes. An ablation study on modules
of our method is also included. This work extends our previous conference paper [20],
which contains very preliminary results. By contrast, in this work we include additional
and extensive analysis of the proposed fusion model. More specifically, we apply the
saddle-point formulation and the primal dual scheme for solving the proposed variational
model and we validate our fusion technique with a variety of experiments on different
types of HS data.

The rest of the paper is organized as follows. In Section 2, we review the state of the
art in HS fusion. Section 3 details the proposed variational model, while its robustness
to different phenomena is analyzed in Section 4. The performance of the method is
exhaustively evaluated in Section 5. Finally, conclusions are drawn in Section 6.

2. State of the Art

In this section, we outline the state of the art in HS fusion. For detailed surveys, we
refer to [6,21].

Pansharpening has been widely used to enhance the spatial resolution of MS imagery
by fusing MS data with a higher-resolution panchromatic image [17,18]. With the growing
number of HS sensors, many methods throughout the literature adapted pansharpening
to HS fusion. The first proposals in this direction were based on wavelets [22,23], but the
quality of the fusion depends on the way MS data is interpolated in the spectral domain.
Chen et al. [19] divided the spectrum of the HS image into many regions and applied
a pansharpening algorithm in each one. Selva et al. [24] introduced hypersharpening,
according to which each HS band is synthesized as a linear combination of the MS bands in
order to produce a high-resolution image. The method is tested on the base of generalized
Laplacian pyramid (GLP) [25]. Other classical pansharpening approaches such as Gram-
Schmidt adaptive (GSA) [26] and smoothing filtered-based intensity modulation (SFIM) [27]
have also been adapted to HS fusion [6].

The fusion problem is an ill-posed one, therefore, some state-of-the-art methods
introduce prior knowledge on the image to be found based on various frameworks but
usually within the variational or Bayesian one. Ballester et al. [28] were the first to introduce
a variational formulation for pansharpening. The authors assumed that the low-resolution
channels are a low-passed and downsampled version of the high-resolution ones. Then,
they imposed a regularization term forces the edges of each spectral band to line up with
those of the panchromatic one. Duran et al. [29] kept the same variational formulation and
incorporated nonlocal regularization to harness the self-similarities in the panchromatic
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image. Posteriorly, the same authors [18] introduced a new constraint imposing the
preservation of the radiometric ratio between the panchromatic image and each spectral
band and obtained a model with no assumption on the co-registration of the spectral data.
In the Bayesian setting, Fasbender et al. [30] pioneered a Bayesian fusion method that
relies on statistical relationships between the MS bands and the panchromatic one without
restrictive modeling hypotheses.

As in pansharpening, the HS fusion problem can be tackled in the variational frame-
work. Wei et al. [12] proposed a variational fusion approach with a sparse regularization
term that is determined based on the decomposition of the scene on a set of dictionaries.
Simoes et al. [11] combined a total variation based regularization with two quadratic data-
fitting terms accounting for blur, downsampling and noise. The authors also explored
inherent redundancies within the images with data reduction techniques. Zhang et al. [31]
presented a group spectral embedding fusion method exploring the multiple manifold
structures of spectral bands and the low-rank structure of HS images. Bungert et al. [32]
proposed a variational model for simultaneous image fusion and blind deblurring of HS
images based on the directional total variation. Mifdal et al. [33] pioneered an optimal
transport technique that models the fusion problem as the minimization of the sum of
two regularized Wasserstein distances. However, the noise was not taken into account,
therefore, a pre-processing step for the denoising of HS and MS data is required.

In the Bayesian setting, HS fusion methods integrate prior knowledge and posterior
distribution on the data. Eismann and Hardie [9,10] developed a Bayesian method based
on a maximum a posteriori estimation and a stochastic mixing model of the spectral scene
(MAPMM). The aim of these estimations is to develop a cost function that optimizes
the target image. Wei et al. [34] designed a hierarchical Bayesian model with a prior
distribution that exploits geometrical concepts encountered in spectral unmixing problems.
The resulting posterior distribution is sampled using a Hamiltonian Monte Carlo algorithm.
The same authors proposed in [35] a Sylvester equation-based fusion model, which they
named FUSE, that allows the use of Bayesian estimators.

In hyperspectral imaging, each pixel is considered to be a mixture of various distinct
materials (grass, road, cars, etc.) with certain proportions. The materials are represented
in a matrix called endmembers and the propotions are stored in a abundance matrix. The
unmixing method [36,37] for HS fusion is based on spectra separation techniques. In this
setting, endmembers and abundance matrices are obtained from HS and MS data and the
fused image is assumed to be the product of both matrices. Berné et al. [38] suggested
a fusion method based on the decomposition of the HS data using non-negative matrix
factorization (NMF). In [39], the spatial sparsity of the HS data was harnessed and only
a few materials were assumed to constitute the composition of a pixel in the HS image.
Yokoya et al. [14] presented an approach where HS and MS data are alternately unmixed
to extract the endmember and abundance matrices, while Akhtar et al. [8] used dictionary
learning for the estimation of such matrices. Finally, Lanaras et al. [40] introduced a linear
mixing model for HS fusion which is solved with a projected gradient scheme.

Recently, deep learning and especially CNNs have been enjoying a huge success
in many applications in the image processing field. CNNs models are composed of
layers where convolution-based operations take place. Many deep architectures for
super-resolution [41,42] and fusion methods [15,16,43] have been proposed so far. Pals-
son et al. [15] introduced a 3D CNN for HS fusion. In order to reduce the computational
cost and make the method robust to noise, the authors reduced he dimensionality of the
HS image before the fusion process. In [16], the authors presented a deep CNN with
two branches devoted to HS and MS image features, respectively. Once the features are
extracted, they are concatenated and put through the fully connected layers that provide as
output the spectrum of the expected fused image. Xie et al. [43] constructed a model-based
deep learning approach that harness the data generation model and the low-rankness
along the spectral mode of the unknown image. Then, a deep network is designed to
learn the proximal operator and model parameters. Recently, Dian et al. [44] suggested
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a CNN denoiser to regularize the fusion of HS and MS images. First, the high-resolution
HS image is decomposed into subspace and coefficients. The subspace is learnt from the
HS image using the singular value decomposition (SVD). Finally, a CNN trained for the
denoising of gray images is used to regularize the estimation of coefficients with the use of
the alternating direction method of multipliers (ADMM) algorithm.

3. Variational HS Fusion Method

In this section, we introduce a nonlocal variational HS fusion model. In addition to
the classical data-fitting terms that penalize deviations from the generation models of MS
and HS data, we incorporate nonlocal regularization conditioned to the geometry of the
MS image and a radiometric constraint that introduces high frequencies of the captured
scene into the fused image.

We assume that any single-channel image is given in a regular Cartesian grid and
then rasterized by rows in a vector of length equal to the number of pixels. There-
fore, the high-resolution HS fused image with H bands and N pixels is denoted by
u = (u1, . . . , uH)

> ∈ RH×N , where uh = (uh(x1), . . . , uh(xN))
> ∈ RN for each

h ∈ {1, . . . , H} and xi denotes the linearized index of pixel coordinates.
Let f = ( f1, . . . , fM)> ∈ RM×N denote the high-resolution MS image with M spectral

bands and N pixels. Similarly, let g = (g1, . . . , gH)
> ∈ RH×Nl be the low-resolution HS

image with H spectral bands and Nl = N
l2 pixels. In this setting, M � N because of

the spectral degradation of f , and l ∈ Z+ is the sampling factor modelling the spatial
degradation of g.

For the sake of simplicity, we define the finite-dimensional vector spaces X = RH×N ,
Y = RH×N×N , Z = RH×Nl andW = RM×N endowed with their standard scalar products.
In this setting, we have that u ∈ X , g ∈ Z and f ∈ W . An element of Y is written as
p = (p1, . . . , pH) ∈ Y , where ph = (ph(x1), . . . , ph(xN))

> ∈ RN×N for each h ∈ {1, . . . , H}
and ph(xi) = (p1

h(xi), . . . , pN
h (xi))

> ∈ RN for each i ∈ {1, . . . , N}.
The most common data observation models [45] relate the HS and MS data with u by

means of
gh = DBuh + εh, ∀ h ∈ {1, . . . , H},
fm = (Su)m + εm, ∀m ∈ {1, . . . , M},

(1)

where B is the low-pass filter that models the point spread function of the HS sensors,
D is the downsampling operator, S is the spectral degradation operator representing
the responses of the MS sensors, εh and εm are the realization of i.i.d. zero-mean band-
dependent Gaussian noise. For the sake of simplicity, we consider that B and D are the
same for all bands. The operators in (1) can be obtained by registration and radiometric
calibration so they are assumed to be known [14]. In the end, the MS image is supposed to
be a spectrally degraded noisy version of u, while the HS image is a blurred, downsampled
and noisy version of u.

Since recovering u from (1) is an ill-posed inverse problem, the choice of a good prior is
required. We tackle it in the variational framework by introducing nonlocal regularization
conditioned to the geometry of the MS image. Then, the proposed energy functional is

min
u∈X
‖∇ωu‖1 +

µ

2

H

∑
h=1
‖DBuh − gh‖2

2

+
γ

2

M

∑
m=1
‖(Su)m − fm‖2

2 +
λ

2

H

∑
h=1
‖P̃huh − Ph g̃h‖2

2,

(2)

where µ, γ, λ > 0 are trade-off parameters, ∇ω denotes the nonlocal gradient operator
defined in terms of a similarity measure ω, P ∈ X is a linear combination of the MS bands,
P̃ ∈ X is a linear combination of the low frequencies of the MS bands, and g̃ ∈ X contains
the low frequencies of the HS image in the spatial domain of u. The second and third energy
terms are just the variational formulations of the generation models (1). The first term in (2)
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stands for the nonlocal regularization and the last one for the radiometric constraint. More
details are given in next subsections.

3.1. Non-Local Filtering Conditioned to the Geometry of the MS Image

The nonlocal gradient operator ∇ω : X → Y computes weighted differences between
any pair of pixels in terms of a similarity measure {ωh,i,j}, with ωh,i,j = ωh(xi, xj) > 0
for i, j ∈ {1, . . . , N} and h ∈ {1, . . . , H}. Thus, the nonlocal gradient of u ∈ X is
∇ωu = (∇ωu1, . . . ,∇ωuH) ∈ Y where ∇ωuh = (∇ωuh(x1), . . . ,∇ωuh(xN))

> ∈ RN×N

and ∇ωuh(xi) = (∇ωu1
h(xi), . . . ,∇ωuN

h (xi))
> ∈ RN is a vector containing the

weighted differences
∇ωuj

h(xi) =
√

ωh,i,j
(
uh(xj)− uh(xi)

)
. (3)

The nonlocal divergence operator divω : Y → X is defined by the standard adjoint
relation with the nonlocal gradient, that is, 〈∇ωu, p〉Y = −〈u, divω p〉X for every u ∈ X
and p ∈ Y . For general non symmetric weights ω, this leads to the following expression:

divω ph(xi) =
N

∑
j=1

(
pj

h(xi)
√

ωh,i,j − pi
h(xj)

√
ωh,j,i

)
, (4)

for each h ∈ {1, . . . , H} and i ∈ {1, . . . , N}. We refer to [29] for a deeper insight on nonlocal
vector calculus.

The nonlocal gradient ∇ωu can be understood as a 3D tensor with the dimensions
corresponding to the spectral channels, the spatial extend, and the directional derivatives
considered as linear operators containing the differences to other pixels defined as in (3).
The smoothness of this tensor can be measured by applying a different norm along the
different dimension. We use the `1 norm along the spectral and spatial dimensions and the
`2 norm along the derivative dimension, that is,

‖∇ωu‖1 =
H

∑
h=1

N

∑
i=1
|∇ωuh(xi)|, (5)

where | · | denotes the Euclidean norm:

|∇ωuh(xi)| =

√√√√ N

∑
j=1

ωh,i,j
(
uh(xj)− uh(xi)

)2. (6)

The question whether a strong or a weak channel coupling leads to better results
depends on the type of correlation in the data. It has been proved [46] that an `∞ coupling
assumes the strongest inter-channel correlation, which is very common in natural RGB
images. In our case, each HS band covers a different part of the spectrum and, thus,
decorrelation can be in general presumed, which justifies the choice of the `1 norm.

3.2. Weight Selection

The definitions of the nonlocal operators (3) and (4) heavily depend on the selection of
the similarity measure ω. We define them as bilateral weights that take into account the spa-
tial closeness between pixels and also the similarity between patches in the high-resolution
MS image f ∈ RM×N , which describes accurately the geometry of the captured scene.

The similarity is computed by considering a 3D volume in the spectral domain cen-
tered at each pixel as illustrated in Figure 1. We first compute the Euclidean distance
between the 2D patches on each MS band and then average the values linearly using the
spectral response S. This would attribute to each band in the MS image its corresponding
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important in the HS one. The used spectral response S can be represented as the following
M× H matrix:

S =


s11 s12 s13 · · · s1H
s21 s22 s23 · · · s2H
...

...
...

...
...

sM1 sM2 sM3 · · · sMH

. (7)

Figure 1. Illustration of how patch-based similarity weights are computed on the MS image for a
pixel xi at hth HS band.

To some extent, the spectral response is used to interpolate the weights from M to H
spectral bands, since they are computed on the MS image but finally differ for each HS
band. While other strategies may also be appropriate, the spectral response is suitable
because it is used to generate the MS data from the underlying high-resolution HS image.

Let Pi be a 3D volume centered at pixel xi and extending along the MS dimension. For
each m ∈ {1, . . . , M}, let fm(Pi) denote the 2D patch obtained as the projection of Pi onto
the mth band, so that Pi has M times more pixels than fm(Pi). We assume that the radius
of each patch fm(Pi) is νp ∈ Z+. In order to reduce the computational time, the nonlocal
operators are calculated in a restricted pixel neighbourhood. Therefore, a search window
of radius νnl ∈ Z+ is considered at each pixel. In the end, we define the weights as in (8a),
where the norms over pixel positions apply by considering the coordinates of each xi in the
Cartesian grid before rasterization, Γi in (8b) is the normalization factor, and hspt, hsim > 0
act like filtering parameters that quantify the speed of decrease of the weights whenever
the dissimilarity between the patches becomes important. The weight of the reference
pixel with respect to itself is quite important, thus, ωh,i,i is set to the maximum of the
weights as given in (8c) in order to avoid excessive weighting. The weight distribution is
in general sparse given that only a few nonzero weights are considered in a restricted pixel
neighbourhood, thus the space Y is redefined to be RH×N×Nnl with Nnl = (2νnl + 1)2 � N.

ωh,i,j =


1
Γi

exp

−‖xi − xj‖2
2

h2
spt

−
∑M

m=1 smh

∥∥∥ fm(Pi)− fm(Pj)
∥∥∥2

2

h2
sim(2νp + 1)2 ∑M

m=1 smh

 if ‖xi − xj‖∞ ≤ νnl

0 otherwise

(8a)

Γi = ∑
{xj :‖xi−xj‖∞≤νnl}

exp

−‖xi − xj‖2
2

h2
spt

−
∑M

m=1 smh
∥∥ fm(Pi)− fm(Pj)

∥∥2
2

h2
sim(2νp + 1)2 ∑M

m=1 smh

 (8b)

ωh,i,i = max
{

ωh,i,j : ‖xi − xj‖∞ ≤ νnl and xj 6= xi

}
(8c)
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We have adopted a linear variant of the nonlocal regularization since the weights are
kept constant along minimization. Similar formulations have been used for deblurring [47],
segmentation [48] or super-resolution [49]. There are some inverse problems, such as
inpainting [49] and compressive sensing [50], for which getting an accurate estimation of
the weights is not feasible. In these scenarios, the regularization is non-linearly dependent
on the image to be found, thus, it is necessary to update the weights at each iteration. This
makes it hard to get a direct solution and also increases the computational complexity.
In our case, given that the MS image provides a good estimation of the weights, a linear
nonlocal formulation is more appropriate and also allows an efficient minimization scheme
(see Section 3.4).

3.3. Radiometric Constraint

In order to preserve the geometry of the captured scene, we introduce a radiometric
constraint that injects the high frequencies of the MS data into the desired fused image.
This is based on a similar idea proposed in [18]. In Section 4, we experimentally show that
this term allows recovering geometry, texture and fine details so it cannot be omitted in the
proposed model.

Let us introduce some notations. We define P ∈ X as a linear combination of the MS
bands weighted by the entries of the spectral response (7), that is,

Ph =
M

∑
m=1

smh
sh

fm, ∀h ∈ {1, . . . , H}, (9)

where sh = ∑M
m=1 smh. Let g̃ ∈ X be the low-resolution HS image upsampled to the high-

resolution domain by bicubic interpolation. We apply the spatial degradation in (1) to
f and obtain a low-resolution image which is then upsampled by bicubic interpolation,
denoted by f̃ ∈ X . Therefore, f̃ and g̃ contain the low frequencies of the MS and HS data,
respectively, and have the same spatial resolutions. We then compute P̃ ∈ X as in (9) but
using the spectral bands of the interpolated image f̃ , that is,

P̃h =
M

∑
m=1

smh
sh

f̃m, ∀h ∈ {1, . . . , H}.

We finally impose the radiometric constraint

uh
Ph

=
g̃h

P̃h
, ∀h ∈ {1, . . . , H}, (10)

the variational formulation of which corresponds to the last energy term in (2). The
radiometric constraint (10) can be rewritten as

uh − g̃h =
g̃h

P̃h

(
Ph − P̃h

)
, ∀h ∈ {1, . . . , H}.

Therefore, we are forcing the high frequencies of each HS band of the fused image,
given by uh − g̃h, to coincide with those of the MS image, given by Ph − P̃h. Consequently,
the spatial details of the MS image are injected into the fused product. The modulation
coefficient g̃h

P̃h
can be different for each band and it takes into account the energy levels of

the MS and HS data.

3.4. Saddle-Point Formulation and Primal-Dual Algorithm

The minimization problem (2) is convex but non smooth. In order to find a fast
and a global optimal solution we use the first-order primal-dual algorithm introduced
by Chambolle and Pock in [51] (CP algorithm). We refer to [52] for all details on convex
analysis omitted in this subsection.
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On the one hand, any proper, convex and lower semicontinuous function coincides
with its second convex conjugate, thus, given that the convex conjugate of a norm is the
indicator function of the unit dual norm ball, the dual formulation of (5) is

‖∇ωu‖1 = max
p∈Y

H

∑
h=1

(
〈∇ωuh, ph〉 − δKh(ph)

)
,

whereKh = {ph ∈ RN×(2νnl+1)2
: ‖ph‖∞ ≤ 1}, δKh is the indicator function ofKh, ‖ph‖∞ =

max1≤i≤N |ph(xi)| and | · | denotes the Euclidean norm as in (6).
On the other hand, the efficiency of the CP algorithm is based on the hypothesis that

the proximity operators have closed-form representations or can be efficiently solved. This
is the case of the λ-term in (2), but not of those related to the image generation models. For
this reason, we dualize the functional with respect to the µ- and γ-terms as follows:

α

2
‖x‖2

2 = max
y
〈x, y〉 − 1

2α
‖y‖2

2.

The primal problem (2) can be finally rewritten as the saddle-point formulation

min
u∈X

max
p∈Y , q∈Z , r∈W

H

∑
h=1

(
〈∇ωuh, ph〉 − δKh(ph)

)
+

λ

2

H

∑
h=1
‖P̃huh − Ph g̃h‖2

2

+
H

∑
h=1

(
〈DBuh − gh, qh〉 −

1
2µ
‖qh‖2

2

)

+
M

∑
m=1

(
〈(Su)m − fm, rm〉 −

1
2γ
‖rm‖2

2

)
,

where u ∈ X is the primal variable, while p ∈ Y , q ∈ Z and r ∈ W are the dual variables
related to the nonlocal regularization and the two dualized data-fitting terms, respectively.

The CP algorithm requires the use of the proximity operator, which generalizes the
projection onto convex sets and is defined for a proper convex function ϕ as

proxε ϕ(x) = argmin
y

{
ϕ(y) +

1
2ε
‖x− y‖2

}
,

where ε > 0 is a scaling parameter that controls the speed of the movement with which the
proximal operator converges to the minimum of ϕ. Thus, the proximity operator of

F∗(p, q, r) =
H

∑
h=1

(
δKh(ph) + 〈gh, qh〉+

1
2µ
‖qh‖2

2

)

+
M

∑
m=1

(
〈 fm, rm〉+

1
2γ
‖rm‖2

2

)
with respect to p is an Euclidean projection onto the unit L2 norm at each pixel and for each
HS band. The remaining proximity operators of F∗ and that of

G(u) =
λ

2

H

∑
h=1
‖P̃huh − Ph g̃h‖2

2

have easily computable closed-form expressions. Therefore, the primal-dual scheme for
the proposed variational fusion model is given in Algorithm 1. It consists in an ascent step
in the dual variables and a descent step in the primal variable followed by over-relaxation.
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Algorithm 1: Primal-dual algorithm for minimizing the variational fusion model (2)

Input: Images f ∈ W , g ∈ Z and g̃, P, P̃ ∈ X Operators D, B and S
involved in (1) Step-size parameters τ > 0 and σ > 0

while not convergence do

ûh ← [ uh

pj
h(xi)← [

pj
h(xi) + σ∇ω ūj

h(xi)

max(1, |ph(xi) + σ∇ω ūh(xi)|)

qh(xi)← [
qh(xi) + σ(DBūh(xi)− gh(xi))

1 + σ
µ

rm(xi)← [
rm(xi) + σ((Sūh)m − fm)(xi)

1 + σ
γ

uh ← [
uh + τ

(
divω ph − B>D>qh −

(
S>r

)
h + λP̃hPh g̃h

)
1 + τλP̃2

ūh ← [ 2uh − ûh

Output: High-resolution HS fused image u ∈ X

4. Method Analysis and Discussion

In this section, we analyze the contribution of the radiometric constraint to the final
fused product, study the robustness of the proposed method to noise and aliasing, and
discuss on the parameter selection.

For these experiments, we use Bookshelves from Harvard dataset [3] acquired by an
HS camera that captures 31 spectral bands and Washington DC which is a remote sensing
data [53] with 93 spectral bands. Since the ground truth images are available, we evaluate
the results in terms of the root mean squared error (RMSE), which accounts for spatial
distortions, and the spectral angle mapper (SAM), which measures the spectral quality.

The reference images are denoised with a routine provided by Naoto Yokoya (https://
openremotesensing.net/knowledgebase/hyperspectral-and-multispectral-data-fusion/, ac-
cessed on 7 March 2021) [6] before data generation. We simulate the low-resolution HS
images by Gaussian convolution of standard deviation σblur = 2 (unless otherwise stated)
followed by downsampling of factor l = 4. The downsampling procedure consists in
taking every lth pixel in each direction. The high-resolution MS images are obtained by
considering the spectral degradation operator in (7) to be the Nikon D700 spectral response
for all experiments on Bookshelves and the Ikonos spectral response on Washington DC
(see Figure 2). Unless otherwise stated, we add white Gaussian noise to both HS and MS
images in order to have a SNR of 45 dB. The trade-off parameters in (2) are optimized in
terms of the lowest RMSE for each experiment in this section.

 https://openremotesensing.net/knowledgebase/hyperspectral-and-multispectral-data -fusion/
 https://openremotesensing.net/knowledgebase/hyperspectral-and-multispectral-data -fusion/
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Nikon D700 spectral response

Ikonos spectral response

Figure 2. Spectral responses used for all experiments in Sections 4 and 5. Nikon D700 spectral
response is used on data acquired by HS cameras and leads to MS images with three spectral bands.
Ikonos spectral response is used on remote sensing data and provides MS images with four spectral
bands.

4.1. Analysis of the Radiometric Constraint

We analyze the contribution of the radiometric contraint (10) to the quality of the final
fused product. We use Bookshelves and we launch Algorithm 1 to minimize, on the one
hand, the full energy (2) and, on the other hand, the proposed energy without considering
the radiometric constraint, which is formally equivalent to set λ = 0 in (2). The respective
fused images are shown in Figure 3.

No radiometric constraint Radiometric constraint
RMSE = 17.93, SAM = 1.51 RMSE = 3.07, SAM = 0.84

Figure 3. Illustration of the contribution of the radiometric constraint (10). The experiments were carried out on Bookshelves.
We display the 5th, 10th and 25th spectral bands of the fused images to account for the blue, green and red channels. RMSE
values are given in magnitude of 10−9. The result without radiometric constraint is oversmoothed, several details like the
texts on the book spines are missing, and spectral distortions such as the red spot on the shelf appear.
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If the radiometric constraint is omitted, spatial details are degraded and not correctly
restored, see for instance the contours of the objects and the texts on the book spines. We
also notice in this case the appearance of spectral artifacts such as the red spot on the shelf.
On the contrary, the fused image obtained when using the full proposed model exhibits
better spatial and spectral qualities. Therefore, the radiometric contraint plays an important
role in recovering the geometry and the spatial details of the scene and also in avoiding
spectral degradations. The numerical results in terms of RMSE and SAM indexes confirm
the conclusions drawn visually.

4.2. Robustness to Aliasing in the Low-Resolution Data

Many image acquisition systems suffer from aliasing in the spectral bands that usually
produces jagged edges, color distortions and stair-step effects. In the case of MS images,
the modulation transfer function (MTF) has low values near Nyquist frequency which
leads to avoiding undesirable aliasing effects. On the contrary, for HS images, the MTF has
high values at Nyquist frequency which results in present aliasing effects in the spectral
data as can be noticed in Figure 4.

σblur = 1 σblur = 1.3 σblur = 1.5

In
te

rp
ol

at
ed

H
S

da
ta

RMSE = 14.92, SAM = 5.30 RMSE = 15.14, SAM = 5.53 RMSE = 15.45, SAM = 5.73

Fu
se

d
im

ag
e

RMSE = 5.15, SAM = 2.94 RMSE = 5.08, SAM = 2.93 RMSE = 5.15, SAM = 3.00

Figure 4. Illustration of the robustness of the proposed method to aliasing in the low-resolution data. The experiments were
carried out on Washington DC. The HS images were simulated by Gaussian convolution of s.d. σblur ∈ {1, 1.3, 1.5}. We
display the 7th, 25th and 40th spectral bands to account for the blue, green and red channels. RMSE values are given in
magnitude of 10−8. Our approach reduces aliasing, avoids the colors of the objects exceeding their contours and recovers
the geometry. While aliasing effects diminish, the RMSE of the fused images increases from σblur = 1.3 to σblur = 1.5 because
more spatial details are compromised by blur.

In this subsection, the robustness of the variational fusion model to aliasing in the
low-resolution HS data is analyzed. We use Washington DC and compare the results
obtained on HS images generated with different degrees of aliasing induced by taking
σblur ∈ {1, 1.3, 1.5}. Figure 4 shows the respective HS images after bicubic interpolation
and the fused results provided by the proposed method. Note that for lower values of σblur,
the initial data is more aliased but less blurred.

It is noticeable in the interpolated images the relationship between the aliasing and the
standard deviation of the blurring kernel. Both the quality metrics and the visual inspection
show the ability of our fusion technique to remove aliasing artifacts and drooling effects,
i.e., the colors of the objects exceeding their contours, while increasing the resolution of
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the observations. While aliasing effects diminish, the RMSE of the fused images increases
from σblur = 1.3 to σblur = 1.5 because more spatial details are compromised by the blur.
Since the fused images obtained from data with very different degrees of aliasing are pretty
similar, we can conclude that the proposed approach is robust to aliasing.

4.3. Robustness to Noise in the Data

We test now the robustness of the proposed fusion method to noise. We use Book-
shelves and compare the results obtained by our algorithm on two sets of MS and HS
images with different noise levels, SNR ∈ {30, 45} dB. Figure 5 shows the MS images, the
HS images after bicubic interpolation and the fused results.

MS data Interpolated HS data Fused image

SN
R
=

45

RMSE = 26.35, SAM = 1.38 RMSE = 3.07, SAM = 0.84

SN
R
=

30

RMSE = 27.19, SAM = 1.40 RMSE = 4.10, SAM = 0.99

Figure 5. Illustration of the robustness of the proposed method to noise. The experiments were carried out on Bookshelves.
Gaussian noise was added to MS and HS data to have SNR ∈ {30, 45} dB. We display the 5th, 10th and 25th spectral
bands of the HS images to account for the blue, green and red channels. RMSE values are given in magnitude of 10−9.
While the interpolated images are affected by the decrease of the SNR, we achieve similar visual and numerical results in
both scenarios.

The quality of the interpolated HS images decreases as the noise increases. On the
contrary, we correctly deal with different noise levels. Even in the case of low SNR, our
algorithm provides a noise-free image and correctly recovers the geometry of the scene.
The results for different SNRs looking very similar and yielding almost identical RMSE
and SAM values proves the robustness of the method to noise.

4.4. Parameter Selection

The convolution, downsampling and spectral operators used in the energy (2) are the
same as those considered for HS and MS data simulation. In our case, we only considered
Gaussian convolution kernels since we deal with the aliasing introduced by the relationship
between the optics and the sensor size.

For the NL weights in (8), we restrict the nonlocal interactions to a search window of
radius νnl = 7, while the radius of the 2D patches considered on each MS band is νp = 1.
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The filtering parameters are set to hspt = 2.5 and hsim = 10. The trade-off parameters
in the variational formulation (2) have been optimized in terms of the lowest RMSE on
Bookshelves for Harvard dataset [3] and on Washington DC [53] for remote sensing data.
All experiments have been performed using the same set of parameters.

5. Experimental Results

We evaluate the performance of the proposed variational fusion method and compare
with several state-of-the-art and recent techniques on data acquired by commercial HS
cameras and Earth observation satellites.

According to the reviews [6,21], we compare with the coupled non-negative matrix
factorization unmixing technique [14] (CNMF), the convex variational model with total
variation regularization of the subspace coefficients [11] (HySure), the Gram-Schmidt
adaptive component-substitution method [6,26] (GSA-HS), the smoothing filtered-based
intensity modulation technique [6,27] (SFIM-HS), the generalized Laplacian pyramid
approach [6,25] (GLP-HS), the maximum a posteriori estimation with a stochastic mixing
model [10] (MAPMM), the Sylvester-equation based Bayesian approach [35] (FUSE), the
Wasserstein barycenter optimal transport method [33] (HMWB) and the CNN-FUS method
which is based on a convolutional neural network [44]. For HMWB we use the code
provided by the authors. Regarding CNN-FUS we use the network weights the authors
suggested for any HS and MS image fusion. Finally, for all the other state-of-the-art
techniques, we use the codes made available by Naoto Yokoya [6]. In all the experiments,
we take the default parameters considered in the corresponding papers.

The availability of the ground truths allows an accurate quality assessment of the
fused products. Therefore, we evaluate numerically the results in terms of RMSE and SAM
as in the previous section, but also in terms of ERGAS, which measures the global quality
of the fused product; Q2n, which evaluates the loss of correlation, luminance and contrast
distortions; the cross correlation (CC), which characterizes the geometric distortion; and
the degree of distortion (DD) between images. We refer to [6,12,21] for more details on
these metrics.

We recall that, the reference images are denoised with a routine provided by Naoto
Yokoya [6] before data generation. We simulate the MS and HS data according to the image
formation models given in (1). Therefore, the low-resolution HS images are generated by
Gaussian convolution of standard deviation σblur = 2 followed by downsampling of factor
l = 4. The high-resolution MS images are obtained by considering the spectral degradation
operator to be the Nikon D700 spectral response on Harvard dataset and the Ikonos spectral
response on remote sensing data (see Figure 2) . We add white Gaussian noise to HS and
MS images in order to have a SNR of 35 dB. From these noisy images, we generate Ph, P̃h
and g̃h required in our model following the procedure described in Section 3.3.

Let us emphasize that neither pre-processing on the input data, which consists of 5
noisy images, nor post-processing on the obtained fused products are applied in the case
of our algorithm. For the state-of-the-art methods that do not tackle noise in their models
(GSA-HS, SFIM-HS, GLP-HS, MAPMM and HMWB), a post-procesing denoising step is
carried out with the routine provided by Yokoya [6]. The HMWB method considers the
images as probability measures and provides results that sum to one. Thus, in order to
compare the fusion performances with the ones from HMWB, each fusion result from our
method and from the state of the art is normalized by the total number of pixels so that it
sums to one.

The experiments for this paper were run on a 2.70 GHz Intel Core i7-7500U Asus
computer. The overall time for a fusion result is 1.5 min on average. This time includes
the computation of the non-local weight matrix which is computed only once before the
fusion process and maintained during the iterative procedure. The optimization scheme
solved at each iteration contains complex different backward-forward implementations
of the gradient and divergence operators that are time consuming. The computational
time can be significantly reduced by harnessing parallel computing and better memory



Mathematics 2021, 9, 1265 14 of 22

access schemes to speed up the weight computations and other steps necessary for the
minimization process.

5.1. Performance Evaluation on Data Acquired by HS Cameras

We test the performance of our method on ten images from Harvard dataset [3],
representing different indoor and outdoor scenes. These data were acquired by an HS
commercial camera (Nuance FX, CRI Inc., Santa Maria, CA, USA)) that captures 31 narrow
spectral bands with wavelengths ranging from 420 nm to 720 nm with a step of 10 nm. Each
image has a resolution of 1392× 1040 pixels, but we cropped them to 512× 512 pixels. The
reference images are displayed in Figure 6, where 5th, 10th and 25th bands are used to
account for the blue, green and red channels. Since Nikon D700 spectral response is used,
MS images with three spectral bands are generated.

Bicycles Bookshelves Benches Parking Stone

Pillars House Building Bushes Office

Figure 6. Reference images from Harvard dataset [3] with 31 spectral bands and spatial resolution of
512× 512 used in the experiments of Section 5.1. We display 5th, 10th and 25th bands to account for
the blue, green and red channels.

Table 1 shows the average of the quality measures over all images of the Harvard
dataset (Figure 6) after removing boundaries of 5 pixels. We note that the RMSE and DD
values are in magnitude of 10−9. The best results are in bold and the second best ones are
underlined. In view of RMSE and ERGAS values, SFIM-HS, GLP-HS and MAPMM are
the less competitive in terms of spatial quality. These methods also introduce the largest
degrees of distortion (DD) in the fused products. HySure, GSA-HS and CNN-FUS are more
affected by spectral degradations as the SAM values point out. Regarding CNMF and
FUSE, they seem to have good performance in terms of SAM with relatively high RMSE
and DD values. Finally, HMWB has good performance is terms of spectral distortion as
shown by the DD measure but performs poorly in ERGAS and Q2n. The proposed fusion
approach outperforms all the methods in terms of all numerical indexes.
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Table 1. Average of the quality measures over all images of Figure 6, computed after removing a
boundary of 5 pixels. RMSE and DD values are expressed in magnitude of 10−9. Best results are
displayed in bold and the second best ones are underlined. The proposed method outperforms all
other techniques with respect to all evaluation metrics.

RMSE SAM ERGAS CC DD Q2n

Reference 0 0 0 1 0 1

CNMF 10.4862 1.7887 2.3019 0.9917 5.5729 0.9353
HySure 8.0721 2.2296 2.1924 0.9925 5.0001 0.9329
GSA-HS 9.7863 2.3961 2.1880 0.9924 5.6908 0.9327
SFIM-HS 22.0725 1.7659 4.4102 0.9706 10.6725 0.8843
GLP-HS 20.3945 1.9569 4.0528 0.9751 10.6240 0.8921

MAPMM 24.7269 2.2269 4.9971 0.9599 12.2679 0.8530
FUSE 12.0888 1.9744 2.5190 0.9897 6.4420 0.9317

HMWB 8.1404 2.1985 2.8053 0.9835 4.7099 0.9060
CNN-FUS 7.9423 2.9849 2.3130 0.99151 4.929 0.9245

Ours 5.8112 1.6030 1.5313 0.9953 3.7399 0.9376

Figure 7 displays the fused images obtained by each technique on Bicycle. As can
be noticed on the baskets, all results except the one from CNN-FUS, which is based on a
CNN denoiser and ours are noisy. Unlike CNMF, CNN-FUS and our approach, the other
methods are also affected by aliasing in the form of color spots and jagged edges, see the
metal handlebars. Furthermore, HySure, SFIM-HS, GLP-HS, MAPMM and FUSE have
problems at saturated areas such as the reflection on the headlight of the bike. Regarding
HMWB and GSA-HS, they suffer from color spots on the metal handlebar and in other
parts of the image. We also note that CNN-FUS suffers from repetitive squares that are
visible on the handlbars and faint red pixels on the magnified part of the black box. The
proposed fusion model successfully combines the geometry contained in the MS image
with the spectral information of the HS image, while removing noise and aliasing effects.
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Ground truth Interpolated HS data CNMF HySure

GSA-HS SFIM-HS GLP-HS MAPMM

FUSE HMWB CNN-FUS Ours

Figure 7. Visual comparison of the fusion approaches on Bicycles. All techniques except ours are
affected either by noise (see the baskets) or by aliasing effects in the form of color spots and jagged
edges (see the metal handlebars). The proposed fusion method successfully combines the geometry
and spatial details of the MS image with the spectral information of the HS image, while removing
noise and avoiding distortions due to aliasing.

5.2. Performance Evaluation on Remote Sensing Data

In this subsection, we exhibit how fusion techniques behave on remote sensing data.
In addition to Washington DC [53], we use Chikusei [54], acquired by the Headwall
Hyperspec-VNIR-C imaging sensor with a GSD of 2.5 m and 128 spectral bands, and
Urban (https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/
Article/610433/hypercube/, accessed on 7 March 2021), acquired by the HYDICE imaging
sensor with a GSD of 2 m and 210 spectral bands. We cropped all the images to 128× 128
pixels and reduced the spectral bands to 93. The reference images are shown in Figure 8,
with 7th, 25th and 40th spectral bands being displayed to account for the blue, green and

 https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Articl e/610433/hypercube/
 https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Articl e/610433/hypercube/
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red channels. Since Ikonos spectral response is used, MS images with four spectral bands
are generated.

Chikusei Urban Washington DC

Figure 8. Reference remote sensing images with 93 spectral bands and spatial resolution of 128× 128
used in the experiments of Section 5.2. We display 7th, 25th and 40th bands to account for the blue,
green and red channels.

The average of the quality measures over all the remote sensing images used in the
experiments (Figure 8), are provided in Table 2 after removing boundaries of 5 pixels. The
RMSE and DD values are expressed in magnitude of 10−8. The best results are displayed in
bold and the second best ones are underlined. In the case of satellite data, our method gives
the best result in RMSE, SAM and DD and the second best ones in ERGAS, CC and Q2n

after the deep learning based technique CNN-FUS. It is expected that CNN-FUS performs
better than our method in some quality metrics given that the used network was trained
on multiple satellite images, which makes the fusion performance on satellite data better
in some quantitative measures. However, as shown in the previous section, CNN-FUS
does not provide the best results on Bicycles. This could be explained by the fact that
the CNN-FUS network was not trained on images provided by hyperspectral cameras
with a spatial resolution as high as Harvard dataset’s. This shows that deep learning
based methods are constrained by the type of data the network was trained on, which
limits the performance of the network on unseen data. Nonetheless, our method is more
flexible and can be easily applied on any type of images. Regarding the other methods,
SFIM-HS, GLP-HS, MAPMM and FUSE perform poorly especially in terms of RMSE and
ERGAS. HySure and GSA-HS show good performances in terms of RMSE but high degrees
of spectral distortion as shown by the DD index. CNMF and HMWB show competitive
performances in terms of SAM with low values in Q2n.

Figure 9 shows a visual comparison of the fused images for Chikusei. All state-of-the-
art methods except CNN-FUS are not robust to noise. The proposed approach however
is able to remove the noise while preserving the spatial details of the scene. Annoying
artifacts further compromise the results provided by HySure, SFIM-HS, MAPMM and
FUSE. We also observe that HMWB is not able to correctly recover the spectral information
from the HS data, while GLP-HS has problems at saturated areas such as light reflections
on the roofs. Moreover, GSA-HS and CNMF provide results visually close to ours but being
noisy. Finally, although CNN-FUS produced a non-noisy result, some spatial artifacts are
visible such as the repetitive small squares especially in the green parts, highlighted in the
magnified images, and also the presence of pink colors on white buildings and elsewhere
on the image.
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Ground truth Interpolated HS data CNMF HySure

GSA-HS SFIM-HS GLP-HS MAPSMM

FUSE HMWB CNN-FUS Ours

Figure 9. Visual comparison of the fusion methods on Chikusei. All state-of-the-art methods are
not robust to noise, and only the proposed approach is able to remove it while preserving the
spatial details of the scene. Annoying artifacts further compromise the results provided by HySure,
SFIM-HS, MAPMM and FUSE. We also observe that HMWB is not able to correctly recover the
spectral information from the HS data, while GLP-HS have problems at saturated areas such as
light reflections on roofs. Regarding CNN-FUS, we notice the appearance of small repetitive squares
especially on the green parts. Furthermore, the white building have some pink color influence which
does not exist on the ground truth image.
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Table 2. Average of the quality measures over all remote sensing images of Figure 8, computed after
removing a boundary of 5 pixels. RMSE and DD values are expressed in magnitude of 10−8. Best
results are displayed in bold and second best ones are underlined. The proposed method outperforms
all other techniques with respect to all metrics, except CNN-FUS for three metrics.

RMSE SAM ERGAS CC DD Q2n

Reference 0 0 0 1 0 1

CNMF 7.3652 3.2942 3.2900 0.9750 4.8122 0.9577
HySure 6.9567 4.1765 3.4362 0.9748 4.6931 0.9534
GSA-HS 6.7690 3.4157 2.5668 0.9821 4.4959 0.9676
SFIM-HS 10.8585 3.4718 4.5756 0.9440 6.9330 0.9233
GLP-HS 10.2542 3.6230 4.2168 0.9519 5.9117 0.9300

MAPMM 12.5035 4.1206 5.6333 0.9072 7.9438 0.8716
FUSE 9.8776 4.2944 3.9426 0.9550 6.2706 0.9387

HMWB 5.5557 3.1258 2.7468 0.9847 3.1855 0.9675
CNN-FUS 6.1420 3.4497 2.5052 0.9902 4.2926 0.9762

Ours 5.1813 2.8279 2.5589 0.9867 3.1628 0.9718

6. Conclusions

We have presented a convex variational model for HS and MS data fusion based on
the image formation models. According to these models, the low-resolution HS image
is generated by low-pass filtering in the spatial domain followed by subsampling, while
the high-resolution MS image is obtained by sampling in the spectral domain taking
into account the spectral response function of each band of the MS instrument. The
proposed energy functional incorporates a nonlocal regularization term that settles non-
linear filtering conditioned to the geometry of the MS image. Furthermore, a radiometric
constraint that incorporates modulated high frequencies from MS data into the fused
product has been included. In order to compute the solution of the variational model, the
saddle-point formulation of the energy has been presented and a primal-dual algorithm
has been used for the optimization of the functional.

The analysis of the method has revealed that the radiometric constraint plays an
important role in recovering the geometry and the spatial details of the scene and also in
avoiding spectral degradation. Furthermore, we have experimentally proven the robust-
ness of our approach to noise and aliasing even though the input data to our model, namely
the multispectral, the hyperspectral and the three generated images were all affected by
noise. An exhaustive performance comparison, with several classical state-of-the-art fusion
techniques and a recent deep learning based one, was carried out. The qualitative measures
on data acquired by commercial hyperspectral cameras showed the superiority of our
method in all the indexes. Regarding the performances on remote sensing data, only the
deep learning based method provides slightly better results in some of the quality metrics,
but their fused images are affected by artifacts, which does not happen with the proposed
model. Finally, unlike deep learning based techniques, our method can be easily adapted
to various types of images from different sensors without any prior knowledge on the data.
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