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Software Defined Networking (SDN) is a networking paradigm which proposed to decouple the forwarding and the control planes. Security and safety threat challenges at the control level are divided into the reinforcement of the controller, whatever the reason. This work aims to consider both threats and pave the way for a multi-controller architecture without East-West interface. Considering one nominal controller in charge of the data plane computation, we designed a second one in order to control the consistency of the decisions made by the controller, i.e. only through observing the activity of the command (i.e. the management traffic). Compared to related works, no direct exchanges between the controllers are required. The detection logic is introduced theoretically and it mainly relies on two phases: the learning of the decisions and the verification that each decision taken fits with the data plane estimate. The algorithm, implemented on ONOS, is discussed in a case study.

I. INTRODUCTION

Software-Defined Networking (SDN), [START_REF] Mckeown | Software-defined networking[END_REF], has been introduced to provide a structured software environment to deal with various application requirements and dynamic networks [START_REF] Kreutz | Software-defined networking: A comprehensive survey[END_REF]. It provides an architecture within the infrastructure are separated from the control part in a centralized control architecture manner. SDN simplifies network management and facilitates network evolution. However, such centralization introduced two main issues: scalability and robustness. To overcome it, a distributed control has been introduced. A multicontroller architecture permits to balance the load between the controllers while it provides an active redundancy [START_REF] Li | A survey of network update in sdn[END_REF]. On top of that, it has some challenges in terms of consistency, reliability, load balancing and security as developed in [START_REF] Hu | Multi-controller based software-defined networking: A survey[END_REF].

Indeed, each plane of the SDN architecture has its own weakness [START_REF] Abd Elazim | Software defined networking: attacks and countermeasures[END_REF]. Moreover, due to the global view of the network, a security or safety threat of the control plane has consequences on the entire network.

Classically, the security challenge is resolved by making the controller more robust, as FortNOX [START_REF] Porras | A security enforcement kernel for openflow networks[END_REF], while the safety challenge is resolved by the consideration of multi-controller architectures, as in [START_REF] Fonseca | A replication component for resilient openflow-based networking[END_REF]. However, the multi-controller architecture might also be used for security reasons. In such a case, the second controller has a particular task related to the security. As an example, [START_REF] Qi | An intensive security architecture with multi-controller for sdn[END_REF] proposed a decision-making security architecture within each controller submits flow rules to a vote between all the others before sending it. In the same idea, [START_REF] Liu | Design of the multi-level security network switch system which restricts covert channel[END_REF] proposed to use a second controller as a filter in order to validate the command sent by the nominal controller. The underlying issue is then that such related works need East-West communications in order to assure consistence between the controllers information. This interface might become another primary concern. If solutions like encryption as presented in [START_REF] Lam | Securing distributed sdn with ibc[END_REF] or advanced authentication as in [START_REF] Shang | Distributed controllers multi-granularity security communication mechanism for software-defined networking[END_REF] have been proposed, there is still a channel of communication between the controllers. In this paper, a novel detection algorithm is then designed only based on the messages sent/received by the controller (and not anymore based on its internal states). The objective is to be robust to false messages sent by the controller (i.e. in case of attacked controller). Furthermore, the proposed algorithm aims at considering simultaneously security and safety threats.

The paper focusses on the data plane computation case. In this objective, a multi-controller architecture without East-West interface is introduced within one controller is in charge of the data plane computation while the second monitors the activity of the control with the sole purpose of verifying if anomalies exist concerning the decisions of the main controller. A motivated example is presented in section II. The architecture and the detection algorithm proposed are introduced in section III and IV. Use cases are then developed in section V and section VI concludes the work.

II. PROBLEM STATEMENT A. Motivating Example

A controller with a deterministic routing application is considered. Here, the controller ONOS [START_REF] Onf | ONOS source[END_REF] is considered. The controller is loaded with applications for the protocol of communication with the switches, Openflow, for the topology discovery, host provider and LLDP, and proxyARP. Moreover, ONOS used an Intent Framework which is a subsystem that allows applications to specify their network control desires in the form of policy rather than mechanisms. And these policybased directives are referred as intents. Here, the intent's routing will be added by hand.

The topology in Fig. 1 is considered. In what follows, scenarios of threats of the command are presented.

Attack Scenario: There are several security threats on SDN architecture as described in [START_REF] Mubarakali | A survey: Security threats and countermeasures in software defined networking[END_REF]. In this work, attention is paid to the command and only attacks which impacted the decisions are considered. It corresponds as an example to the manipulation by a malicious application of the flow table in the switch. As an example, let's considered the internal storage Fig. 1. The studied topology abuse as described in [START_REF] Shin | Rosemary: A robust, secure, and highperformance network operating system[END_REF]. A malicious application may access and alter network topology data within the internal storage of the controller. As a consequence all peer applications which use the topology information to derive flows and install a path over the network are impacted. This modification might be used in order to violate security policy install by other applications as developed in [START_REF] Porras | A security enforcement kernel for openflow networks[END_REF].

As an example, let us consider an internal storage misuse attack on the ONOS controller of the topology of Fig. 1. Here, a malicious application modifies the network topology data by exchanging the position of host 10.0.1.2 and host 10.0.1.3 in the controller topology storage. In this case, if a host tries to join host 10.0.1.3 then the data plane compute by the controller implies the installation of rules in order to reach 10.0.1.2 and not 10.0.1.3. Also, it is possible to modify the code of the controller and modify the command in the direction of one particular switch, of 6 here.

Failure Scenario: Obviously, a second threat of the network is a failure of the controller. Such a case would impact the network as no decision will be taken any more. It is also to consider other safety issues of the controller such as an undiagnostiqued port's failure which leads to the interruption of communication with a switch.

B. Modelling of the management traffic

As mentioned, we are considering the computation of the data plane by the controller. In this section, the properties of the transmission of the data plane are developed.

1) Set of exchanges: The packets exchanged for the data plane computation are sent through the Southbound interface, which is the interface between the switches and the controller. This interface is normalized by Openflow [START_REF] Onf | OpenFlow specification version 1[END_REF].

The messages considered at the Southbound interface are: the requests from the switches, the commands for the switches and the port status from the switches: Σ = Σ In ∪ Σ Out ∪ Σ P s The first set, Σ In , corresponds to the "Packet In" messages, named pin, which are the packets received by the controller. ∀pin ∈ Σ In there is pin = (Swp, b, src, dest) with:

• Swp = (p, S) ∈ N × N: the in-port p of the switch S.

• b ∈ N: an identifier named Buffer IDentifier which is tagged to the original packet by the switch. • src: the IP source address of the packet.

• dest: the IP destination address of the packet.

The second type of events is related to the commands sent by the controller. There are two types of commands. First, "Packet Out", noted pout, which is used only once. (the switch does not retain the information and will have to ask again to the controller what to do.) Secondly, "Flow Mod", noted f mod, which is permanent: the switch adds this command to its flow table. Thus:

Σ Out = Σ P O ∪ Σ F M OD with ∀pout ∈ Σ P O , pout = (act, b, S):
• act ∈ Actions: the action ordered defined as following.

• b ∈ N: the buffer ID of the packet.

• S ∈ N: the switch destination of the command. ∀f mod ∈ Σ F M OD , f mod = (act, b, S, src, dest, idle, type):

• act, b and S are similar to pout.

• src: the IP source address of the packet.

• dst: the IP destination address of the packet.

• idle ∈ R + : the storage time of the order by the switch.

• type ∈ Add, Delete, M odif y: the type of the instruction. As we consider only the computation of the data plane, an action can be modelled as a vector within each component is associated with a port of the switch, representing the decision issued by the controller to transmit or not. Moreover, the controller might delete a line of the switch's flow table in case of a data plane evolution and such action will be formalized as a -1 for the corresponding port.

Actions = N j=1 b j (b j ) ∈ {-1, 0, 1}
Finally, "Port Status", noted ps, is a notification from the switches about the state of their ports. Then ∀ps ∈ Σ P s , ps = (reason, p, S):

• reason ∈ Add, Delete, M odif y: the reason of the message: Add to notify the port was added, Delete if the port was removed and M odif y for a modification of the port state. • p: the considered port.

• S: the switch source of the packet.

2) Path Properties: When a path is set up by the controller, though several packets described just above, the observer will have to verify its consistency according to three criteria defined below. For the analysis of these criteria, the graph topology of the switches infrastructure is needed and noted G A path, installed by a set of command

(pout i ) i∈[1,n] , is considered consistent if: • There is no loop: ∀i ∈ [1, n] j in[1, n], i = j|pout i [3] = pout j [3] • There is no dead node: ∀i ∈ [1, n]∃j in[1, n], i = j|T (pout i [3], pout i [1]) = pout j [3] • The destination is reached: ∃i ∈ [1, n]G(pout i [3], pout i [1]) = pin[4]& j ∈ [1, n], i = j|pout i [3] = pout j [3]
3) Impacts of the threats: In case of an attack or a failure, the control algorithm returns a biased command. The threat may have several origins in the SDN architecture as explained in [START_REF] Mubarakali | A survey: Security threats and countermeasures in software defined networking[END_REF] but in this work we do not consider the isolation of the fault. Thus, we proposed to synthesize these different threats in one bias, named b Cmd , which leads to an affine biased Packet Out pout ∈ Σ Out defined as:

pout = pout + b Cmd
With pout ∈ Σ Out : the biased packet; pout ∈ Σ Out : the original packet; b Cmd ∈ Σ Out : the bias; and + the operator defined as:

∀i ∈ [1, lengh(pout)] pout [i] = pout[i] + b Cmd [i]
4) Temporal notion: A particular case of the bias is the disappearance of the command packets. Which means that there is no command sent by the controller. It corresponds mainly to the case of failure. We choose to use the Student's distribution to statistically learn the interval of time it within the command is expected. Indeed, let us suppose that we have observed k commands. Then, the interval of confidence at the precision 1 -α is:

it = [t M oy -∆t M oy , t M oy + ∆t M oy ] (1) 
with

t M oy = Σ k i=1 ti k : the average time; σ = Σ k i=1 (ti-t M oy ) 2 k-1 : the standard deviation: ∆t M oy = t k-1 α/2 × σ √ k : expanded uncertainty and t k-1
α/2 : a parameter which permits to fix the confidence of the interval. This parameter depends on the number of observations and the confidence expected.

III. ARCHITECTURE PROPOSED

The aim of this work is to propose a detection approach of the bias defined just above.

A. Multi-Controller Architecture

To consider safety threats of the controller, a redundancy is necessary. That's why, a second controller is introduced. Moreover, a security threat might spread over the interface of communication, named East-West, between the controllers. Thus, we proposed to introduce the architecture represented in Fig. 2. There is one controller in charge of the network while the second is an observer which has to detect safety or security threats.

As a consequence of the absence of East-West interface, the detection method will not be based on the internal states we get from the other controller but on the observation of its activity on the network and some a priori knowledge of the control logic. Additionally, the topology discovery application also runs on the observer which permits to determine G the graph of the topology of the infrastructure. 

B. Detection principle

To develop the detection logic, Intrusion Detection System (IDS) theory has been considered. According to [START_REF] Liao | Intrusion detection system: A comprehensive review[END_REF], IDS proposals might be divided into two categories: focusing on the attack behaviour or on the unfaulty behaviour of the system. The first approach is based on the attack signature. This implies to consider particular attacks and detects only the one considered.

The second one is divided into Anomaly and Specificationbased approaches. They differ in their knowledge base of the system behaviour but both aim to compare the unfaulty behaviour known to the running behaviour. Basically, anomaly detection techniques are based on a model of the unfaulty behaviour of the system while specification-based is based on a specification directly from documentation.

These two techniques might be combined as proposed in [START_REF] Sekar | Specification-based anomaly detection: a new approach for detecting network intrusions[END_REF]. There are two steps: a specification is determined offline and then the system is observed on-line to determine a model of its recurrent behaviour and learn some statistical properties linked to the specification model. In this work, a similar approach is introduced. The specification formalism chosen is a template, inspired by [START_REF] Pandalai | Template languages for fault monitoring of timed discrete event processes[END_REF], which expresses the causality between the requests and the commands. This specification evolves according to intern variables of the controller which are estimated by the observation of the activity of the command.

Formally, let us consider T the set of templates and a template temp ∈ T defined as:

• temp = {pin, {(pout i ) i∈[1,n] , it}}
• pin ∈ Σ In : the triggered event. It might be empty in case of spontaneous command.

• (pout i ) i∈[1,n] ∈ Σ n
Out : a set of commands in reaction to the event pin. This set of command is expected to be consistent according to section II-B2.

• it ∈ R 2 : the interval of time within the data plane is expected. More specifically, a template temp specifies that after the capture of a request from a switch pin, the observer expects a set of commands initializing the route over the network (pout i ) i∈ [1,n] . Moreover, these commands are expected to be set in an interval of time it.

IV. DETECTION LOGIC

The observer is supposed to declare a fault regarding the decisions of the controller if they are not consistent regarding the constraints defined in section II-B2 and II-B4 or they are subjected to unexpected change (as we considered deterministic algorithm). The logic of the observer is to verify these two criteria. Thus, there is a learning phase in order to store the consistent path observed. The route will be stored, on the form of a template, in the set R = T n .

The detection logic is given in the Algorithm 1. The algorithm is executed each time an OpenFlow packet is captured by the observer on the communication network between the controller and the switches. At the observation of a Packet In, first there is the learning phase which starts line 3 within the data plane set is stored until the end of the timeout, defined in section II-B4, or that the path is assumed to be consistent, according to section II-B2. To simplify, the three constraints are resumed in one boolean variable cons(r) which means that if r satisfied the three constraints then cons(r) = true and else f alse. Otherwise, if the route asked in request is part of R then the observer verifies that the controller sets the similar route, line 15.

However, as soon as a link evolution between switches is notified, by a Port Status, the data plane computation evolves. Indeed, the controller uninstalls the previous paths concerned in ordered to install a new one. This implies that the observer has to restart a learning phase. Thus, if there are paths impacted, the observer lets to the controller the time to install a new path. The commands might be the deletion of previous rules, line 29 or the installation of a new one, line 31 or the modification of a previous one, line 33. Anyway, at the end of the timeout, the consistency of the route set up through the observed commands is checked, line 35.

V. ILLUSTRATION

In this section the detection algorithm is put into practice and discussed. The controller environment is the same as presented in section II-A.

A. Scenario

The network environment for the use case is the same as in section II-A. The topology is represented in Fig. 1 is considered and the traffic applied is an Iperf from host 10.0.1.1 to host 10.0.1.2. The algorithm's template

T emp is ∀pin ∈ Σ In ∀(pout i ) i∈[1,n] ∈ Σ n P O T emp = {pin, {((pout i ) i∈[1,n] , it)}}.
The interval it is determined statistically (i.e. through the Student Law) as presented in section II-B4. In fact, the parameters of the model are chosen in order to have (1 -α) = 99% of confidence in the intervals. There are two different intervals, one for a request which is a Packet In it P in and another in response to a Port Status it P s . Among the parameters of the model, such confidence level is obtained for a value of k = 10 time measurements and for a quantile of t k-1 α/2 = 2.764. To note that the time measurements are related to the Iperf probes and that adapting k and t k-1 α/2 permit to be flexible regarding the 

28 f ∈ cmd(r p )|src(f ) = src(f ), dst(f ) = dst(f ), sw(f ) = sw(f ) 29 if type(f ) = delete then 30 r p = r p \ f 31 else if type(f ) = add then 32 r p = r p ∪ f 33 else if type(f ) = modif y then 34 r p = r p \ f &r p = r p ∪ f 35 if cons(r p )||r p = r p then 36 return F ault 37 else 38 R = R \ r p &R = R ∪ r p
reactivity and the precision of the observer. The board of the parameter values for the determination of it are given in [START_REF] Mckeown | Software-defined networking[END_REF].

In conclusion, the interval of time is it P in = [1.879, 8.324] and it P s = [0, 0.1842].

The attack considered is the same as in II-A. Such an attack is then modelled by a bias b Cmd of a command pout ∈ Σ Out which leads to pout ∈ Σ Out such as:

∀i ∈ [1, lengh(pout)] pout [i] = pout[i] pout [1] = 10 if pout[3] = of 6, pout [1] = pout[1] else
All traffic which passes through the switch 6 is retransmitted on the port 10. The aim of what follows is to show how this anomaly is detected. First, the learning phase is developed and then the running state is presented.

B. Learning Phase

This phase corresponds to the observation of requests without a priori information about the controller. The related frames, captured using Wireshark, are represented in Fig. 3. It is important to note here that for the detection, the observer remains silent and do not generate additional traffic. There is the observation of two flows requests, packet 464 for the route from host 10.0.1.1 and 468 for a route from 10.0.1.2 (noted pin 464 and pin 468 . The observer launches the Algo. 1. The first action of the controller is to respond to the ARP request by a Packet Out which are the frames number 466 and 469. Those frame does not install path so are not considered by Algo. 1.

Firstly, the packet number 854 is observed and is a f mod, noted f mod 854 . This command is divided in two actions, one regarding pin 464 and the other regarding pin 468 . It is added to the current route observed r pin,464 and r pin,468 through line 7. Then the consistency of these paths are checked in line 5. Here, as the paths are not consistent, no decision is taken and the observer waits for the other commands. It will be the same for the frames number 855, 856 and 857. Now, for the frame number 857, noted f mod 857 , the same process is done except that the paths satisfied the three conditions introduced in section II-B2 which means that the condition cons(r pin,464 ) is now satisfied. Then, the path is stored in R. Here we assumed that the learning phase was not under attacked. However, the anomalies would also have been detected by an analysis of the consistency of the commands lines 8 and 10.

C. Running State

The three following cases are supposed to be after the learning phase described above.

1) Case of topology evolution: The first case considered is the evolution of the infrastructure topology. Here, a link failure between of 2 and of 4 is considered and notified by a Port Status ps. The path set up during the learning phase is impacted which means that the observer restarts a learning phase. Thus, during the next 0.01842 seconds the new route will be observed. The evolution of the path set up is shown in the At the end of the timeout, the consistence of the final route r P s = {f mod 854 , f mod 6588 , f mod 6587 , f mod 6577 } is checked. Here, r P s is consistent and so, replaced r 1 in R.

2) Case of attack: After this learning phase, at the observation of each similar request, the same path is expected. Let's develop the case with the anomaly described in section II-A. The corresponding frames, captured using Wireshark, are given in Fig. 5.

The evolution of R is given in Table. III. To simplify, just the path expected in the instance related to the frame number 1569 which is a Packet In, noted pin 1569 , is considered.

The Packet In observed at the frame number 1569, noted pin 1569 , is similar to pin 464 which means that the similar data plane path(r 1 ) is expected. During the running phase, the aim is to verify that the controller takes similar decision than in the learning phase. As f mod 1759 , f mod 1762 and f mod 1766 are part of the data plane expected, the commands are assumed to be consistent and thus are deleted from the path expected though line 20 of Algo. 1. Regarding f mod 1769 the command is part of no data plane expected and so is assumed to be inconsistent. As a consequence a fault is declared line 18 of Algo. 1. In this example, the bias considered was a modification of the transmission port but any other bias of the command, which can be formalized as in section IV, would be detected similarly.

3) Case of Failure: The case of the failure of the controller is considered. Formally, it corresponds to a command pout ∈ Σ Out biased pout = ∅ ∈ Σ Out . The observed frames are represented in Fig. 6. At the observation of pin 2616 the template is instantiated in Algo. 1. After the timeout, no data plane has been observed so a fault is declared, line 22 and as represented in Fig. 6.

VI. CONCLUSION

In this paper, an alternative solution to detect threats at the controller in a SDN architecture has been proposed. It relies on a second "extra" controller, checking if anomalies exist concerning the decisions of the main controller. A novelty is that this detection is not based on exchanges between the controllers as in a classical distributed architecture but it only relies on analysing the traffic between the nominal controller and the switches. (Routing) decisions are hence learned by the observer which verifies any inconsistency representative of a fault or an attach.

In future works, we aim at extending the detection algorithm. Firstly, even if the observer is silent and only fault/attack on the controller are considered, vulnerabilities of the switches (and hence of the south interface captured by the observer) and the observer will be studied. Secondly, in a same manner, we aim at considering other network services (even based on nondeterministic logic). Finally, mechanisms for taking the lead over the nominal controller will be introduced.
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 3 Fig. 3. Frames exchanged during the learning phaseThe evolution of R according to Algo. 1 is presented in Table. I. To simplify the table, just the observed path related to frame number 464 is considered.
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TABLE I EVOLUTION

 I OF R r 1 = {pin 464 , {(pout i ) i∈[1,n] , [1.879, 8.324]}} r 2 = {pin 468 , {(pout i ) i∈[1,n] , [1.879, 8.324]}} ∪ r 2 {f mod 854 , f mod 855 , f mod 856 , f mod 857 }

	Frame	R	Path observed
	464	∅	∅
	468	∅	∅
	854	∅	{f mod 854 }
	855	∅	{f mod 854 , f mod 855 }
	856	∅	{f mod 854 , f mod 855 , f mod 856 }
	857	r 1	

TABLE II EVOLUTION

 II OF THE PATH INSTALLED.

	Frame	Path Observed
	6574	{f mod854, f mod855, f mod856, f mod857}
	6580	{f mod854, f mod855, f mod856, f mod857, f mod6577}
	6582	{f mod854, f mod855, f mod856, f mod6577}
	6587	{f mod854, f mod855, f mod6587, f mod6577}
	6588	{f mod854, f mod6588, f mod6587, f mod6577}

TABLE III EVOLUTION

 III OF R WITH r 1 AND r 2 THE TWO ROUTES LEARNED DURING THE LEARNING PHASE ∪ r 2 {f mod 854 , f mod 855 , f mod 856 , f mod 857 } pin 1571 r 1 ∪ r 2 {f mod 854 , f mod 855 , f mod 856 , f mod 857 } f mod 1759 r 1 ∪ r 2 {, f mod 854 , f mod 855 , f mod 856 } f mod 1762 r 1 ∪ r 2 {f mod 854 , f mod 855 } f mod 1766 r 1 ∪ r 2 {f mod 855 } f mod 1769 r 1 ∪ r 2 {f mod 855 }

	Frame	R	Path expected
	pin 1569	r 1	
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