
HAL Id: hal-03255437
https://hal.science/hal-03255437

Submitted on 9 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A technique to monitor threats in SDN data plane
computation

Loïc Desgeorges, Jean-Philippe Georges, Thierry Divoux

To cite this version:
Loïc Desgeorges, Jean-Philippe Georges, Thierry Divoux. A technique to monitor threats in SDN
data plane computation. IEEE International Conference on High Performance Switching and Routing,
HPSR 2021, Jun 2021, Paris, France. �hal-03255437�

https://hal.science/hal-03255437
https://hal.archives-ouvertes.fr


A technique to monitor threats
in SDN data plane computation

Loı̈c Desgeorges, Jean-Philippe Georges and Thierry Divoux
Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France

firstname.name@univ-lorraine.fr

Abstract—Software Defined Networking (SDN) is a networking
paradigm which proposed to decouple the forwarding and the
control planes. Security and safety threat challenges at the control
level are divided into the reinforcement of the controller, whatever
the reason. This work aims to consider both threats and pave
the way for a multi-controller architecture without East-West
interface. Considering one nominal controller in charge of the
data plane computation, we designed a second one in order to
control the consistency of the decisions made by the controller,
i.e. only through observing the activity of the command (i.e.
the management traffic). Compared to related works, no direct
exchanges between the controllers are required. The detection
logic is introduced theoretically and it mainly relies on two
phases: the learning of the decisions and the verification that each
decision taken fits with the data plane estimate. The algorithm,
implemented on ONOS, is discussed in a case study.

Index Terms—Software-Defined Networking (SDN), Safety,
Security, Multi-Controllers, Observability

I. INTRODUCTION

Software-Defined Networking (SDN), [1], has been intro-
duced to provide a structured software environment to deal
with various application requirements and dynamic networks
[2]. It provides an architecture within the infrastructure are
separated from the control part in a centralized control ar-
chitecture manner. SDN simplifies network management and
facilitates network evolution. However, such centralization in-
troduced two main issues: scalability and robustness. To over-
come it, a distributed control has been introduced. A multi-
controller architecture permits to balance the load between
the controllers while it provides an active redundancy [3]. On
top of that, it has some challenges in terms of consistency,
reliability, load balancing and security as developed in [4].

Indeed, each plane of the SDN architecture has its own
weakness [5]. Moreover, due to the global view of the net-
work, a security or safety threat of the control plane has
consequences on the entire network.

Classically, the security challenge is resolved by making
the controller more robust, as FortNOX [6], while the safety
challenge is resolved by the consideration of multi-controller
architectures, as in [7]. However, the multi-controller archi-
tecture might also be used for security reasons. In such a
case, the second controller has a particular task related to
the security. As an example, [8] proposed a decision-making
security architecture within each controller submits flow rules
to a vote between all the others before sending it. In the same
idea, [9] proposed to use a second controller as a filter in order

to validate the command sent by the nominal controller. The
underlying issue is then that such related works need East-West
communications in order to assure consistence between the
controllers information. This interface might become another
primary concern. If solutions like encryption as presented
in [10] or advanced authentication as in [11] have been
proposed, there is still a channel of communication between
the controllers. In this paper, a novel detection algorithm is
then designed only based on the messages sent/received by
the controller (and not anymore based on its internal states).
The objective is to be robust to false messages sent by the
controller (i.e. in case of attacked controller). Furthermore,
the proposed algorithm aims at considering simultaneously
security and safety threats.

The paper focusses on the data plane computation case.
In this objective, a multi-controller architecture without East-
West interface is introduced within one controller is in charge
of the data plane computation while the second monitors
the activity of the control with the sole purpose of verify-
ing if anomalies exist concerning the decisions of the main
controller. A motivated example is presented in section II.
The architecture and the detection algorithm proposed are
introduced in section III and IV. Use cases are then developed
in section V and section VI concludes the work.

II. PROBLEM STATEMENT

A. Motivating Example

A controller with a deterministic routing application is
considered. Here, the controller ONOS [12] is considered.
The controller is loaded with applications for the protocol of
communication with the switches, Openflow, for the topology
discovery, host provider and LLDP, and proxyARP. Moreover,
ONOS used an Intent Framework which is a subsystem that
allows applications to specify their network control desires in
the form of policy rather than mechanisms. And these policy-
based directives are referred as intents. Here, the intent’s
routing will be added by hand.

The topology in Fig. 1 is considered. In what follows,
scenarios of threats of the command are presented.

Attack Scenario: There are several security threats on SDN
architecture as described in [13]. In this work, attention is
paid to the command and only attacks which impacted the
decisions are considered. It corresponds as an example to the
manipulation by a malicious application of the flow table in
the switch. As an example, let’s considered the internal storage



Fig. 1. The studied topology

abuse as described in [14]. A malicious application may access
and alter network topology data within the internal storage of
the controller. As a consequence all peer applications which
use the topology information to derive flows and install a
path over the network are impacted. This modification might
be used in order to violate security policy install by other
applications as developed in [6].

As an example, let us consider an internal storage misuse
attack on the ONOS controller of the topology of Fig. 1. Here,
a malicious application modifies the network topology data by
exchanging the position of host 10.0.1.2 and host 10.0.1.3 in
the controller topology storage. In this case, if a host tries to
join host 10.0.1.3 then the data plane compute by the controller
implies the installation of rules in order to reach 10.0.1.2 and
not 10.0.1.3. Also, it is possible to modify the code of the
controller and modify the command in the direction of one
particular switch, of6 here.

Failure Scenario: Obviously, a second threat of the network
is a failure of the controller. Such a case would impact the
network as no decision will be taken any more. It is also
to consider other safety issues of the controller such as an
undiagnostiqued port’s failure which leads to the interruption
of communication with a switch.

B. Modelling of the management traffic

As mentioned, we are considering the computation of the
data plane by the controller. In this section, the properties of
the transmission of the data plane are developed.

1) Set of exchanges: The packets exchanged for the data
plane computation are sent through the Southbound interface,
which is the interface between the switches and the controller.
This interface is normalized by Openflow [15].

The messages considered at the Southbound interface are:
the requests from the switches, the commands for the switches
and the port status from the switches: Σ = ΣIn∪ΣOut∪ΣPs
The first set, ΣIn, corresponds to the ”Packet In” messages,
named pin, which are the packets received by the controller.
∀pin ∈ ΣIn there is pin = (Swp, b, src, dest) with:

• Swp = (p, S) ∈ N× N: the in-port p of the switch S.
• b ∈ N: an identifier named Buffer IDentifier which is

tagged to the original packet by the switch.
• src: the IP source address of the packet.
• dest: the IP destination address of the packet.

The second type of events is related to the commands sent
by the controller. There are two types of commands. First,
”Packet Out”, noted pout, which is used only once. (the
switch does not retain the information and will have to ask
again to the controller what to do.) Secondly, ”Flow Mod”,
noted fmod, which is permanent: the switch adds this com-
mand to its flow table. Thus: ΣOut = ΣPO ∪ ΣFMOD with
∀pout ∈ ΣPO, pout = (act, b, S):
• act ∈ Actions: the action ordered defined as following.
• b ∈ N: the buffer ID of the packet.
• S ∈ N: the switch destination of the command.
∀fmod ∈ ΣFMOD, fmod =

(act, b, S, src, dest, idle, type):
• act, b and S are similar to pout.
• src: the IP source address of the packet.
• dst: the IP destination address of the packet.
• idle ∈ R+: the storage time of the order by the switch.
• type ∈ Add,Delete,Modify: the type of the instruction.
As we consider only the computation of the data plane, an

action can be modelled as a vector within each component is
associated with a port of the switch, representing the decision
issued by the controller to transmit or not. Moreover, the
controller might delete a line of the switch’s flow table in case
of a data plane evolution and such action will be formalized
as a −1 for the corresponding port.

Actions =
({∏N

j=1 bj (bj) ∈ {−1, 0, 1}
})

Finally, ”Port Status”, noted ps, is a notification from the
switches about the state of their ports. Then ∀ps ∈ ΣPs, ps =
(reason, p, S):
• reason ∈ Add,Delete,Modify: the reason of the

message: Add to notify the port was added, Delete if
the port was removed and Modify for a modification of
the port state.

• p: the considered port.
• S: the switch source of the packet.
2) Path Properties: When a path is set up by the controller,

though several packets described just above, the observer will
have to verify its consistency according to three criteria defined
below. For the analysis of these criteria, the graph topology
of the switches infrastructure is needed and noted G A path,
installed by a set of command (pouti)i∈[1,n], is considered
consistent if:



• There is no loop:
∀i ∈ [1, n]@j in[1, n], i 6= j|pouti[3] = poutj [3]

• There is no dead node:
∀i ∈ [1, n]∃j in[1, n], i 6= j|T (pouti[3], pouti[1]) =
poutj [3]

• The destination is reached:
∃i ∈ [1, n]G(pouti[3], pouti[1]) = pin[4]&
@j ∈ [1, n], i 6= j|pouti[3] = poutj [3]

3) Impacts of the threats: In case of an attack or a failure,
the control algorithm returns a biased command. The threat
may have several origins in the SDN architecture as explained
in [13] but in this work we do not consider the isolation of the
fault. Thus, we proposed to synthesize these different threats
in one bias, named bCmd, which leads to an affine biased
Packet Out pout′ ∈ ΣOut defined as:

pout′ = pout+ bCmd

With pout′ ∈ ΣOut: the biased packet; pout ∈ ΣOut: the
original packet; bCmd ∈ ΣOut: the bias; and + the operator
defined as:

∀i ∈ [1, lengh(pout)] pout′[i] = pout[i] + bCmd[i]

4) Temporal notion: A particular case of the bias is the
disappearance of the command packets. Which means that
there is no command sent by the controller. It corresponds
mainly to the case of failure. We choose to use the Student’s
distribution to statistically learn the interval of time it within
the command is expected. Indeed, let us suppose that we have
observed k commands. Then, the interval of confidence at the
precision 1− α is:

it = [tMoy −∆tMoy, tMoy + ∆tMoy] (1)

with tMoy =
Σk

i=1ti
k : the average time; σ =

√
Σk

i=1(ti−tMoy)2

k−1 :
the standard deviation: ∆tMoy = tk−1

α/2 ×
σ√
k

: expanded
uncertainty and tk−1

α/2 : a parameter which permits to fix the
confidence of the interval. This parameter depends on the
number of observations and the confidence expected.

III. ARCHITECTURE PROPOSED

The aim of this work is to propose a detection approach of
the bias defined just above.

A. Multi-Controller Architecture

To consider safety threats of the controller, a redundancy
is necessary. That’s why, a second controller is introduced.
Moreover, a security threat might spread over the interface
of communication, named East-West, between the controllers.
Thus, we proposed to introduce the architecture represented
in Fig. 2. There is one controller in charge of the network
while the second is an observer which has to detect safety or
security threats.

As a consequence of the absence of East-West interface,
the detection method will not be based on the internal states
we get from the other controller but on the observation of its
activity on the network and some a priori knowledge of the

control logic. Additionally, the topology discovery application
also runs on the observer which permits to determine G the
graph of the topology of the infrastructure.

Fig. 2. Architecture proposed (c0: nominal controller, O: the observer, h1

and h2: two hosts and s1 and sn are the switches)

B. Detection principle
To develop the detection logic, Intrusion Detection System

(IDS) theory has been considered. According to [16], IDS
proposals might be divided into two categories: focusing on
the attack behaviour or on the unfaulty behaviour of the
system. The first approach is based on the attack signature.
This implies to consider particular attacks and detects only
the one considered.

The second one is divided into Anomaly and Specification-
based approaches. They differ in their knowledge base of
the system behaviour but both aim to compare the unfaulty
behaviour known to the running behaviour. Basically, anomaly
detection techniques are based on a model of the unfaulty
behaviour of the system while specification-based is based on
a specification directly from documentation.

These two techniques might be combined as proposed in
[17]. There are two steps: a specification is determined off-
line and then the system is observed on-line to determine a
model of its recurrent behaviour and learn some statistical
properties linked to the specification model. In this work, a
similar approach is introduced. The specification formalism
chosen is a template, inspired by [18], which expresses the
causality between the requests and the commands. This speci-
fication evolves according to intern variables of the controller
which are estimated by the observation of the activity of the
command.

Formally, let us consider T the set of templates and a
template temp ∈ T defined as:
• temp = {pin, {(pouti)i∈[1,n], it}}
• pin ∈ ΣIn: the triggered event. It might be empty in case

of spontaneous command.
• (pouti)i∈[1,n] ∈ ΣnOut: a set of commands in reaction to

the event pin. This set of command is expected to be
consistent according to section II-B2.

• it ∈ R2: the interval of time within the data plane is
expected.

More specifically, a template temp specifies that after the
capture of a request from a switch pin, the observer expects
a set of commands initializing the route over the network
(pouti)i∈[1,n]. Moreover, these commands are expected to be
set in an interval of time it.



IV. DETECTION LOGIC

The observer is supposed to declare a fault regarding the
decisions of the controller if they are not consistent regarding
the constraints defined in section II-B2 and II-B4 or they are
subjected to unexpected change (as we considered determin-
istic algorithm). The logic of the observer is to verify these
two criteria. Thus, there is a learning phase in order to store
the consistent path observed. The route will be stored, on the
form of a template, in the set R = T n.

The detection logic is given in the Algorithm 1. The algo-
rithm is executed each time an OpenFlow packet is captured
by the observer on the communication network between the
controller and the switches. At the observation of a Packet In,
first there is the learning phase which starts line 3 within the
data plane set is stored until the end of the timeout, defined
in section II-B4, or that the path is assumed to be consistent,
according to section II-B2. To simplify, the three constraints
are resumed in one boolean variable cons(r) which means that
if r satisfied the three constraints then cons(r) = true and
else false. Otherwise, if the route asked in request is part of
R then the observer verifies that the controller sets the similar
route, line 15.

However, as soon as a link evolution between switches
is notified, by a Port Status, the data plane computation
evolves. Indeed, the controller uninstalls the previous paths
concerned in ordered to install a new one. This implies that
the observer has to restart a learning phase. Thus, if there are
paths impacted, the observer lets to the controller the time to
install a new path. The commands might be the deletion of
previous rules, line 29 or the installation of a new one, line
31 or the modification of a previous one, line 33. Anyway,
at the end of the timeout, the consistency of the route set up
through the observed commands is checked, line 35.

V. ILLUSTRATION

In this section the detection algorithm is put into practice
and discussed. The controller environment is the same as
presented in section II-A.

A. Scenario

The network environment for the use case is the same
as in section II-A. The topology is represented in Fig.
1 is considered and the traffic applied is an Iperf from
host 10.0.1.1 to host 10.0.1.2. The algorithm’s template
Temp is ∀pin ∈ ΣIn∀(pouti)i∈[1,n] ∈ ΣnPO Temp =
{pin, {((pouti)i∈[1,n], it)}}.

The interval it is determined statistically (i.e. through the
Student Law) as presented in section II-B4. In fact, the param-
eters of the model are chosen in order to have (1− α) = 99%
of confidence in the intervals. There are two different intervals,
one for a request which is a Packet In itPin and another in
response to a Port Status itPs. Among the parameters of the
model, such confidence level is obtained for a value of k = 10
time measurements and for a quantile of tk−1

α/2 = 2.764. To note
that the time measurements are related to the Iperf probes and
that adapting k and tk−1

α/2 permit to be flexible regarding the

Algorithm 1 Observer logic
Input: An OpenFlow packet p.
Data: R: the set of routes and G the graph of the topology.

1 p = wait(packet)
2 if p ∈ ΣIn then
3 if p /∈ R then
4 r = ∅
5 while cons(r)&timeout do
6 f = wait(fmod)
7 r = r ∪ (p, fmod)

8 if cons(r) then
9 R = R∪ r

10 else
11 return Fault

12 else
13 rp = r|r ∈ R&pin(r) = p)
14 r′p = rp
15 while path(r′p) 6= ∅&timeout do
16 f = wait(fmod)
17 if f /∈ path(r′p) then
18 return Fault
19 else
20 path(r′p) = path(r′p) \ fmod

21 if path(r′p) 6= ∅ then
22 return Fault

23 else if p ∈ ΣPs then
24 for rp ∈ R|∃fmod ∈ cmd(rp)|port(fmod) = port(p)

do
25 r′p = rp
26 while timeout do
27 f = wait(fmod)
28 f ′ ∈ cmd(r′p)|src(f ′) = src(f), dst(f ′) =

dst(f), sw(f ′) = sw(f)
29 if type(f) = delete then
30 r′p = r′p \ f ′
31 else if type(f) = add then
32 r′p = r′p ∪ f
33 else if type(f) = modify then
34 r′p = r′p \ f ′&r′p = r′p ∪ f

35 if cons(r′p)||r′p = rp then
36 return Fault
37 else
38 R = R \ rp&R = R∪ r′p

reactivity and the precision of the observer. The board of the
parameter values for the determination of it are given in (1).
In conclusion, the interval of time is itPin = [1.879, 8.324]
and itPs = [0, 0.1842].

The attack considered is the same as in II-A. Such an attack
is then modelled by a bias bCmd of a command pout ∈ ΣOut



which leads to pout′ ∈ ΣOut such as:
∀i ∈ [1, lengh(pout)] pout′[i] = pout[i]

pout′[1] = 10 if pout[3] = of6, pout′[1] = pout[1] else
All traffic which passes through the switch 6 is retransmitted

on the port 10. The aim of what follows is to show how this
anomaly is detected. First, the learning phase is developed and
then the running state is presented.

B. Learning Phase

This phase corresponds to the observation of requests with-
out a priori information about the controller. The related
frames, captured using Wireshark, are represented in Fig. 3. It
is important to note here that for the detection, the observer
remains silent and do not generate additional traffic.

Fig. 3. Frames exchanged during the learning phase

The evolution of R according to Algo. 1 is presented in
Table. I. To simplify the table, just the observed path related
to frame number 464 is considered.

TABLE I
EVOLUTION OF R

r1 = {pin464, {(pouti)i∈[1,n], [1.879, 8.324]}}
r2 = {pin468, {(pouti)i∈[1,n], [1.879, 8.324]}}

Frame R Path observed
464 ∅ ∅
468 ∅ ∅
854 ∅ {fmod854}
855 ∅ {fmod854, fmod855}
856 ∅ {fmod854, fmod855, fmod856}
857 r1 ∪ r2 {fmod854, fmod855, fmod856, fmod857}

There is the observation of two flows requests, packet 464
for the route from host 10.0.1.1 and 468 for a route from
10.0.1.2 (noted pin464 and pin468. The observer launches the
Algo. 1. The first action of the controller is to respond to the
ARP request by a Packet Out which are the frames number
466 and 469. Those frame does not install path so are not
considered by Algo. 1.

Firstly, the packet number 854 is observed and is a fmod,
noted fmod854. This command is divided in two actions, one
regarding pin464 and the other regarding pin468. It is added to
the current route observed rpin,464 and rpin,468 through line
7. Then the consistency of these paths are checked in line 5.
Here, as the paths are not consistent, no decision is taken and
the observer waits for the other commands. It will be the same
for the frames number 855, 856 and 857.

Now, for the frame number 857, noted fmod857, the same
process is done except that the paths satisfied the three
conditions introduced in section II-B2 which means that the
condition cons(rpin,464) is now satisfied. Then, the path is
stored in R. Here we assumed that the learning phase was not
under attacked. However, the anomalies would also have been
detected by an analysis of the consistency of the commands
lines 8 and 10.

C. Running State

The three following cases are supposed to be after the
learning phase described above.

1) Case of topology evolution: The first case considered
is the evolution of the infrastructure topology. Here, a link
failure between of2 and of4 is considered and notified by a
Port Status ps.

Fig. 4. Frames exchange after the notification of a failure link

The path set up during the learning phase is impacted which
means that the observer restarts a learning phase. Thus, during
the next 0.01842 seconds the new route will be observed. The
evolution of the path set up is shown in the Table. II.

TABLE II
EVOLUTION OF THE PATH INSTALLED.

Frame Path Observed
6574 {fmod854, fmod855, fmod856, fmod857}
6580 {fmod854, fmod855, fmod856, fmod857, fmod6577}
6582 {fmod854, fmod855, fmod856, fmod6577}
6587 {fmod854, fmod855, fmod6587, fmod6577}
6588 {fmod854, fmod6588, fmod6587, fmod6577}

At the end of the timeout, the consistence of the final
route rPs = {fmod854, fmod6588, fmod6587, fmod6577} is
checked. Here, rPs is consistent and so, replaced r1 in R.

2) Case of attack: After this learning phase, at the ob-
servation of each similar request, the same path is expected.
Let’s develop the case with the anomaly described in section
II-A. The corresponding frames, captured using Wireshark, are
given in Fig. 5.

The evolution of R is given in Table. III. To simplify, just
the path expected in the instance related to the frame number
1569 which is a Packet In, noted pin1569, is considered.

The Packet In observed at the frame number 1569, noted
pin1569, is similar to pin464 which means that the similar
data plane path(r1) is expected. During the running phase,
the aim is to verify that the controller takes similar decision
than in the learning phase. As fmod1759, fmod1762 and
fmod1766 are part of the data plane expected, the commands
are assumed to be consistent and thus are deleted from the path



Fig. 5. Frames exchanged during the steady state with an attack

TABLE III
EVOLUTION OF R WITH r1 AND r2 THE TWO ROUTES LEARNED DURING

THE LEARNING PHASE

Frame R Path expected
pin1569 r1 ∪ r2 {fmod854, fmod855, fmod856, fmod857}
pin1571 r1 ∪ r2 {fmod854, fmod855, fmod856, fmod857}

fmod1759 r1 ∪ r2 {, fmod854, fmod855, fmod856}
fmod1762 r1 ∪ r2 {fmod854, fmod855}
fmod1766 r1 ∪ r2 {fmod855}
fmod1769 r1 ∪ r2 {fmod855}

expected though line 20 of Algo. 1. Regarding fmod1769 the
command is part of no data plane expected and so is assumed
to be inconsistent. As a consequence a fault is declared line
18 of Algo. 1. In this example, the bias considered was a
modification of the transmission port but any other bias of the
command, which can be formalized as in section IV, would
be detected similarly.

3) Case of Failure: The case of the failure of the controller
is considered. Formally, it corresponds to a command pout ∈
ΣOut biased pout′ = ∅ ∈ ΣOut. The observed frames are
represented in Fig. 6.

Fig. 6. Frames exchanged during a failure of the nominal controller

At the observation of pin2616 the template is instantiated in
Algo. 1. After the timeout, no data plane has been observed
so a fault is declared, line 22 and as represented in Fig. 6.

VI. CONCLUSION

In this paper, an alternative solution to detect threats at the
controller in a SDN architecture has been proposed. It relies
on a second ”extra” controller, checking if anomalies exist
concerning the decisions of the main controller. A novelty
is that this detection is not based on exchanges between the
controllers as in a classical distributed architecture but it only
relies on analysing the traffic between the nominal controller
and the switches. (Routing) decisions are hence learned by the
observer which verifies any inconsistency representative of a
fault or an attach.

In future works, we aim at extending the detection algo-
rithm. Firstly, even if the observer is silent and only fault/attack

on the controller are considered, vulnerabilities of the switches
(and hence of the south interface captured by the observer) and
the observer will be studied. Secondly, in a same manner, we
aim at considering other network services (even based on non-
deterministic logic). Finally, mechanisms for taking the lead
over the nominal controller will be introduced.

ACKNOWLEDGMENT

This work was supported partly by the French PIA project
“Lorraine Université d’Excellence”, reference ANR-15-IDEX-
04-LUE.

REFERENCES

[1] N. McKeown, “Software-defined networking,” INFOCOM Keynote Talk,
vol. 17, pp. 30–32, 01 2009.

[2] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[3] D. Li, S. Wang, K. Zhu, and S. Xia, “A survey of network update in
sdn,” Frontiers of Computer Science, vol. 11, no. 1, pp. 4–12, 2017.

[4] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller based
software-defined networking: A survey,” IEEE Access, vol. 6, pp.
15 980–15 996, 2018.

[5] N. M. Abd Elazim, M. A. Sobh, and A. M. Bahaa-Eldin, “Software
defined networking: attacks and countermeasures,” in 2018 13th Inter-
national Conference on Computer Engineering and Systems (ICCES).
IEEE, 2018, pp. 555–567.

[6] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in First workshop
on Hot topics in software defined networks, 2012, pp. 121–126.

[7] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A replication
component for resilient openflow-based networking,” in 2012 IEEE
Network operations and management symposium, 2012, pp. 933–939.

[8] C. Qi, J. Wu, H. Hu, G. Cheng, W. Liu, J. Ai, and C. Yang, “An
intensive security architecture with multi-controller for sdn,” in 2016
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2016, pp. 401–402.

[9] X. Liu, H. Xue, X. Feng, and Y. Dai, “Design of the multi-level security
network switch system which restricts covert channel,” in 2011 IEEE 3rd
International Conference on Communication Software and Networks.
IEEE, 2011, pp. 233–237.

[10] J.-H. Lam, S.-G. Lee, H.-J. Lee, and Y. E. Oktian, “Securing distributed
sdn with ibc,” in 2015 Seventh International Conference on Ubiquitous
and Future Networks. IEEE, 2015, pp. 921–925.

[11] F. Shang, Y. Li, Q. Fu, W. Wang, J. Feng, and L. He, “Distributed
controllers multi-granularity security communication mechanism for
software-defined networking,” Computers & Electrical Engineering,
vol. 66, pp. 388–406, 2018.

[12] ONF, ONOS source: https://opennetworking.org/onos/, 2021.
[13] A. Mubarakali and A. S. Alqahtani, “A survey: Security threats and

countermeasures in software defined networking,” in 2019 IEEE 2nd
International Conference on Information and Computer Technologies
(ICICT). IEEE, 2019, pp. 180–185.

[14] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A robust, secure, and high-
performance network operating system,” in ACM SIGSAC conference
on computer and communications security, 2014, pp. 78–89.

[15] ONF, OpenFlow specification version 1.3.0
https://opennetworking.org/wp-content/uploads/2014/10/openflow-
spec-v1.3.0.pdf, June 2012.

[16] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection
system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16–24, 2013.

[17] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and
S. Zhou, “Specification-based anomaly detection: a new approach for
detecting network intrusions,” in Proceedings of the 9th ACM conference
on Computer and communications security, 2002, pp. 265–274.

[18] D. N. Pandalai and L. E. Holloway, “Template languages for fault
monitoring of timed discrete event processes,” IEEE transactions on
automatic control, vol. 45, no. 5, pp. 868–882, 2000.


