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Sergey Gavrilyuk∗, Keh-Ming Shyue †
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Abstract

It is well known that the Benjamin-Bona-Mahony (BBM) equation
can be seen as the Euler-Lagrange equation for a Lagrangian expressed in
terms of the solution potential. We approximate the Lagrangian by a one–
parmeter family of Lagrangians depending on three potentials. The cor-
responding Euler-Lagrange equations can be then written as a hyperbolic
system of conservations laws. The hyperbolic BBM system has two gen-
uinely non-linear eigenfields and one linear degenerate eigenfield. More-
over, it can be written in terms of Riemann invariants. Such an approach
conserves the variational structure of the BBM equation and does not in-
troduce the dissipation into the governing equations as it usually happens
for the classical relaxation methods. The state-of-the-art numerical meth-
ods for hyperbolic conservation laws such as the Godunov-type methods
are used for solving the ‘hyperbolized’ dispersive equations. We find good
agreement between the corresponding solutions for the BBM equation and
for its hyperbolic counterpart.

Keywords : nonlinear dispersive equations, hyperbolic equations, Euler-
Lagrange equations

Mathematics Subject Classification numbers: 35L65, 35Q35.

1 Introduction

The Benjamin-Bona-Mahony (BBM) equation was proposed as a unidirectional
model of weakly non-linear waves in shallow water [5]. It can be written in the
following form :

ut + uux − utxx = 0. (1)

The dispersion relation to (1) linearized on a constant solution u = u0 is

cp =
u0

1 + k2
, (2)
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where cp is the phase velocity, and k is the wave number. It follows from (2)
that the phase velocity and group velocity are bounded for any wave number,
i.e. the BBM equation has in some sense hyperbolic properties.

The idea of this work is to approximate the BBM equation by an ‘equiv-
alent’ hyperbolic system such that the solutions of the hyperbolic system are
close to the solutions of the BBM equation. Recently, there has been an increas-
ing interest in rewriting nonlinear partial differential equation (PDE) systems
with higher order derivatives under the form of nonlinear hyperbolic relaxation
systems, in conjunction with potentially stiff algebraic relaxation source terms.
The idea goes back to the seminal work of Cattaneo [10], who proposed a hy-
perbolic reformulation of the parabolic heat equation. More recent work on the
topic also regards the hyperbolic relaxation reformulation of dissipative contin-
uum mechanics [16, 17] as well as the hyperbolic reformulation of nonlinear
dispersive systems [40, 1, 11, 4, 43].

The relaxation technique is commonly associated with dissipative process.
The question appears if such a technique could be applied for conservative
dispersive systems which are the Euler-Lagrange equations for a ‘master’ La-
grangian. Such a ‘hyperbolic’ approach was recently proposed in [23, 9] for the
Serre–Green–Naghdi (SGN) model [44, 26, 27] describing long dispersive waves,
for the nonlinear defocusing Schrödinger equation [14], and for a bistable Erick-
sen bar [8]. The PDE systems were derived from an ‘augmented’ (‘extended’)
Lagrangian and have a rather similar mathematical structure. The correspond-
ing ‘augmented’ Lagrangian approximating a given ‘master’ Lagrangian repre-
sents a parametric family of Lagrangians depending on a larger set of variables.

The advantages of such a conservative hyperbolic formulation are multiple.
First, from Noether’s theorem one recovers the analogues of conservation laws
admitted by the Euler-Lagrange equations for the ‘master’ Lagrangian, i.e. the
physical meaning of conservation laws is not lost. Second, no need to invent
new numerical methods which are specific to a given dispersive equation : the
state-of-the-art numerical methods for hyperbolic conservation laws such as the
Godunov-type methods can be used for solving the ‘hyperbolized’ dispersive
equations. Third, and not least, the boundary conditions are easier to treat
for the hyperbolic equations than for the dispersive equations where such a
treatment is specific to the equations to study : [6] (linear Korteweg-de-Vries
equation), [2, 3] (linear and nonlinear Schrödinger equation), [7] (linear BBM
equation), [32] (linear Serre-Green-Naghdi equations), [35] (Boussinesq sys-
tem).

The construction of the extended Lagrangian is intuitive rather than ratio-
nal. We have only to make sure that the solutions of the extended hyperbolic
system are close to the solutions of the original system. The comparison between
numerical and analytical solutions of the exact and approximate equations be-
comes thus crucial. Sometimes, a rigorous proof of this fact can be made. This
is the case, for example, of the SGN equations [15].
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The ‘master’ Lagrangian for the BBM equation (1) can be written as

L = −ϕtϕx
2

+
ϕtϕxxx

2
− ϕ3

x

6
, u = ϕx. (3)

Indeed, the Euler-Lagrange equation for (3) is :

− ∂

∂t

(
∂L
∂ϕt

)
− ∂

∂x

(
∂L
∂ϕx

)
− ∂3

∂x3

(
∂L

∂ϕxxx

)
= ϕtx + ϕxϕxx − ϕxxxt = 0.

The function ϕ is thus a potential for the variable u. In [41] it is justified that (1)
admits only three independent conservation laws :

(u− uxx)t +

(
u2

2

)
x

= 0, (4)

(
u2

2
+
u2x
2

)
t

+

(
u3

3
− uutx

)
x

= 0, (5)(
u3

3

)
t

−
(
u2t − u2xt + u2uxt −

u4

4

)
x

= 0. (6)

A Hamiltonian formulation of the BBM equation can be found in [42].
We propose to replace the BBM equation by a hyperbolic system of equations

obtained as the Euler-Lagrange equations for an ‘augmented’ Lagrangian. In
particular, we will show that the dispersion relation for the BBM equation and
that coming from the approximate system are close to each other. Moreover,
we will prove that the approximate hyperbolic model can be written in terms of
the Riemann invariants. Finally, we find good agreement between the numerical
solutions to both models.

2 Augmented Lagrangian

Let us introduce three potentials ϕ, ψ and χ and the corresponding variables
u, v, w defined as u = ϕx, v = ψx and w = χx. Let us define a one-parameter
family of ‘augmented’ Lagrangians :

L̂ = −ϕtϕx
2
− ϕ3

x

6
− ψtψx

2c
− ϕxψx + ψxχ−

χtχx
2
− χ2

x

2c
. (7)

Here c > 0 is a large positive constant. Then the Euler-Lagrange equations for
(7) can be written as :

ut + uux + vx = 0,
vt
c

+ ux = w, wt +
wx
c

= −v. (8)
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Indeed, the variational derivatives with respect to ϕ, ψ and χ should vanish :

δL̂
δϕ

= − ∂

∂t

(
∂L̂
∂ϕt

)
− ∂

∂x

(
∂L̂
∂ϕx

)
= ϕtx + ϕxϕxx + ψxx = 0, (9a)

δL̂
δψ

= − ∂

∂t

(
∂L̂
∂ψt

)
− ∂

∂x

(
∂L̂
∂ψx

)
=
ψtx
c

+ ϕxx − χx = 0, (9b)

δL̂
δχ

=
∂L̂
∂χ
− ∂

∂t

(
∂L̂
∂χt

)
− ∂

∂x

(
∂L̂
∂χx

)
= χtx +

χxx
c

+ ψx = 0. (9c)

Equations (9) are thus equivalent to (8). The first equation can be written in
the form of conservation law expressed in variables u and v :

ut + (u2/2 + v)x = 0, (10)

An equivalent form of (9) in terms of the potentials is :

χt +
χx
c

+ ψ = 0, (11a)

ψt
c

+ ϕx − χ = 0, (11b)

ϕt +
ϕ2
x

2
+ ψ = 0. (11c)

Arbitrary functions depending only on time which appear after the integration
(9) with respect to x can always be put vanishing by introducing equivalent
potentials.

Due to the Noether theorem, the system admits two additional conservation
laws :(

ϕx
∂L̂
∂ϕt

+ ψx
∂L̂
∂ψt

+ χx
∂L̂
∂χt

)
t

+

(
ϕx

∂L̂
∂ϕx

+ ψx
∂L̂
∂ψx

+ χx
∂L̂
∂χx

− L̂

)
x

= 0.

(12)
and(

ϕt
∂L̂
∂ϕt

+ ψt
∂L̂
∂ψt

+ χt
∂L̂
∂χt
− L̂

)
t

+

(
ϕt

∂L̂
∂ϕx

+ ψt
∂L̂
∂ψx

+ χt
∂L̂
∂χx

)
x

= 0. (13)

The conservation law (12) corresponds to (5) and can be expressed in variables
u, v and w as : (

u2

2
+
v2

2c
+
w2

2

)
t

+

(
u3

3
+ uv +

w2

2c

)
x

= 0. (14)

Finally, the conservation law (13) corresponding to (6) is :(
ϕ3
x

6
+
χ2
x

2c
+ ψx(ϕx − χ)

)
t

−(
ϕ2
t

2
+
ψ2
t

2c
+
χ2
t

2
+ ϕt

(
ψx +

ϕ2
x

2

)
+ ψt(ϕx − χ) +

χtχx
c

)
x

= 0.

(15)

4



Using (11b) one obtains : ϕx − χ = −ψt/c, and the conservation law (15) can
also be expressed in terms of the time and space derivatives of the potentials.
However, it cannot be expressed in terms of variables u, v and w and their space
and time derivatives.

3 Properties of the hyperbolic BBM system

In this section we resume the mathematical properties of the hyperbolic Benjamin-
Bona-Mahony (BBMH) quasilinear system (8).

Theorem
1. For any c > 0 the system (8) can be rewritten as a symmetric t-hyperbolic

in the sense of Friedrichs system :

AUt + BUx = CU, A = AT > 0, B = BT , C = −CT , (16a)

with

U =

 u
v
w

 , A =

 1 0 0

0
1

c
0

0 0 1

 , B =

 u 1 0
1 0 0

0 0
1

c

 , C =

 0 0 0
0 0 1
0 −1 0

 .

(16b)
The corresponding eigenvalues are given in explicit form :

λ0 = 1/c, λ± = (u±
√
u2 + 4c)/2, λ− < 0 < min

(
λ0, λ+

)
.

The eigenvalues λ+ and λ0 coincide for u = 1/c − c2, i.e. the system is not
strictly hyperbolic.

2. It can be rewritten in terms of Riemann invariants :

R+
t + λ+R+

x = cw, R+ = v +

∫ u

λ+(s) ds, (16c)

R−t + λ−R−x = cw, R− = v +

∫ u

λ−(s) ds, (16d)

wt + λ0wx = −v. (16e)

A closed form expression for the Riemann invariants R± is :

R± = v +
u2

4
± c

(
z
√

1 + z2 + ln
(
z +

√
1 + z2

))
, z =

u

2
√
c
. (16f)

3. The fields λ± and λ0 are genuinely non-linear and linearly degenerate, re-
spectively, in the sense of Lax [36].

The proof of the first two statements is direct. To prove the third statement,

it is sufficient to find the derivatives
∂λ±

∂R±
and show that they cannot vanish.

Let us remark first that u is implicitly defined from

R+ −R− =

∫ u

(λ+(s)− λ−(s)) ds =

∫ u√
s2 + 4c ds.
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k

cp

Figure 1: Dispersion curve for the BBM equation (continuous line) and for its
hyperbolic version (dashed line). The error between the corresponding phase
velocities is O(1/c) uniformly relative to k.

In particular, it implies
.

Hence,
∂λ+

∂R+
=
dλ+

du

∂u

∂R+
=

1

2

(
1 +

u√
u2 + 4c

)
1√

u2 + 4c
> 0.

Analogous proof can be done for the eigenvalue λ−. The degeneracy of the
eigenfield λ0 is obvious.

4 Dispersion relation

Linearizing the equations (8) on the state u = u0, v = 0, w = 0, one obtains
the system for perturbations (denoted below by the same letters u, v and w) :

ut + u0ux + vx = 0,
vt
c

+ ux = w, wt +
wx
c

= −v. (17)

Looking for the monochromatic waves satisfying (17) which are proportional
to exp (i(kx− ωt)), with k and ω being the wave number and frequency, one
obtains the dispersion relation between the phase velocity cp = ω/k and wave
number k: (

cp(cp − u0)

(
cp −

1

c

)
+ 1

)
k2

1 + k2
= c

(
cp −

u0
1 + k2

)
.

It can also be written as :

cp
c

=
1

k2(cp − 1/c)
+

1

cp − u0
. (18)

Consider the case u0 > 1/c > 0. For any k there are three roots cp of (18).
The root cp belonging to the interval (1/c, u0) tends to the phase velocity of
the BBM equation (2) as c → ∞ (see Figure 1). The corresponding error
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O(1/c) is uniform with respect to k. It is worth to note that the phase velocity
defined by (18) is larger than the phase velocity (2) of the exact BBM equation.
This property is well known for hyperbolic systems with relaxation as the sub-
characteristic condition (or Whitham’s condition) : the ‘frozen’ sound speed
(i.e. the sound speed of non-relaxed system) is larger then the ‘equilibrium’
sound speed (the sound speed of relaxed system) [46]. This property is thus
also valid for our hyperbolic approximation of the BBM equation.

5 Travelling wave solutions of the BBM equa-
tion

The travelling wave solutions of the BBM equation u = u(ξ), ξ = x−Dt satisfy
the equation :

−D(u− u′′) +
u2

2
= c1, c1 = const. (19)

Here ‘prime’ means the derivative with respect to ξ. It implies the first integral
:

D
u′2

2
= −u

3

6
+D

u2

2
+c1 u+c2 =

1

6
(u−u1)(u−u2)(u3−u), c2 = const, (20)

where new constants u1 ≤ u2 ≤ u3 are introduced. They related with D, c1 and
c2 :

D =
1

3
(u1 + u2 + u3), c1 = −1

6
(u1u2 + u1u3 + u2u3), c2 =

1

6
u1u2u3. (21)

In the following, we will consider only positive solutions (0 < u1 < u2 < u < u3)
(the negative solutions can be recovered by the symmetry u → −u and D →
−D). The periodic solution u(x) is given by :

u(x) = u2 + a cn2 (η,m) , (22)

where

m =
u3 − u2
u3 − u1

, a = u3 − u2, η =
ξ + ξ0

2
√

3D

√
a

m
, ξ0 = const. (23)

Here cn (η,m) = cos (ϕ(η,m)), where ϕ is defined implicitly from

η =

∫ ϕ(η,m)

0

dθ√
1−m sin2 θ

. (24)

The solitary wave solution obtained for the values u1 = u2 > 0, a = u3 − u2 is
in the form

u(ξ) = u2 +
a

cosh2(η)
, η =

ξ + ξ0

2
√

1 + 3u2

a

, ξ = x−Dt, D = u2 +
a

3
, ξ0 = const.

(25)
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6 Travelling wave solutions for the hyperbolic
BBM equation

Traveling wave solutions of the hyperbolic equations (8) are of the form :
(u, v, w) = (u, v, w)(ξ), where ξ = x − Dt and D = const is the wave veloc-
ity. A before, we denote by ‘prime’ the derivative with respect to ξ. From the
conservation laws (10) and (14), and the last equation of (8) we have :

−Du+ u2/2 + v = c1 = const,

−D
(
u2

2
+
v2

2c
+
w2

2

)
+

(
u3

3
+ uv +

w2

2c

)
= −c2 = const,

v =

(
D − 1

c

)
w′.

Here ci are constants. As in the case of the BBM equation, consider the poly-
nomial

P (u) = −u3 + 3Du2 + 6c1u+ 6c2 = (u− u1)(u− u2)(u3 − u).

For simplification purposes, we keep the same notations as in the case of exact
BBM equation, even if the solution depends now on c. One finally has :

D

(
D − 1

c

)2
w′2

2c
+

(
D − 1

c

)
w2

2
=

1

6
P (u), (26a)

v =

(
D − 1

c

)
w′ =

1

6

dP

du
. (26b)

Differentiating (26a) with respect to ξ, one obtains

D

(
D − 1

c

)2
w′w′′

c
+

(
D − 1

c

)
ww′ =

1

6

dP

du
u′.

Thus, the system (26a)– (26b) has the following form(
D − 1

c

)
w′ =

1

6

dP

du
, D

(
D − 1

c

)
w′′

c
= u′ − w.

Differentiating the first equation again with respect to ξ, and eliminating w′′,
one obtains the final system of ordinary differential equation (ODE) which is
suitable for the numerical construction of the travelling wave solutions :

u′ =
w

1− D

6c

d2P

du2

, w′′ =
1

6

d2P

du2
w(

D − 1

c

)(
1− D

6c

d2P

du2

) .
Since

d2P

du2
= 6(D − u), D = (u1 + u2 + u3)/3, one finally has

u′ =
w

1− D(D − u)

c

, w′′ =
w(D − u)(

D − 1

c

)(
1− D(D − u)

c

) . (27)
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Figure 2: Left figure : the exact solitary wave solution of the BBM equation
(25) with parameters u1 = u2 = 0.3, u3 = 1 (dashed line) and the solution of
the hyperbolic BBM system for c = 30 (continuous line) are shown. Right figure
: periodic solution of the BBM equation (22) with parameters u1 = 0.2, u2 =
0.3, u3 = 1 (dashed line) is approximated by the solution of the hyperbolic
BBM system with c = 100. In both cases, the accuracy of the approximation is
very good.

If c → ∞, one has w → u′, and we recover the travelling wave solutions of
the BBM equation. Unfortunately, we could not find the closed form analytical
solutions of this ODE system even in the limit case of solitary waves u1 = u2 <
u3. Nevertheless, one can show that the accuracy of the hyperbolic system is
very good. In Figure 2 the comparison of solutions is made for c = 30 in the case
of solitary wave (25) having the parameters u1 = u2 = 0.3, a = u3 − u2 = 0.7.
For the numerical solution of (27), we took the initial data at ξ = ξ0 < 0 in the
following way :

w(ξ0) = ε, w′(ξ0) = λε, u(ξ0) = u2 +
ε

λ (1−D(D − u2)/c)
, (28)

where

λ =

√√√√√ D − u2(
D − 1

c

)(
1− D(D − u2)

c

) . (29)

For ξ0 = −20 one takes ε ≈ 0.00000215 to have the maximum of the solitary
wave at ξ = 0. To approximate the periodic solution of the BBM equation (22)
with parameters u1 = 0.2, u2 = 0.3, u3 = 1 (dashed line on the right Figure 2),
we take c = 100 and the initial data u(0) = u3, w(0) = 0, w′(0) ≈ −0.20005. In
both cases, the accuracy of the approximation is very good.
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7 Comparison of non-stationary solutions

7.1 Initial conditions

To compare non-stationary solutions, we need first to understand how to form
an initial condition for the hyperbolic BBM system from an initial condition for
the BBM equation. In the case of a smooth initial condition u(0, x), one has to
take w(0, x) =≈ ux(0, x). How to find v(0, x)? One has v(0, x) ≈ −utx(0, x).
So, the second derivative utx(0, x) should be found. The BBM equation can be
written as :

Kt = −uux, K = u− uxx = T [u]. (30)

The operator T has its inverse given explicitly as :

u(t, x) = T−1[K](t, x) =
1

2

∫ ∞
−∞

e−|x−y|K(t, y) dy.

Differentiating u(t, x) with respect to t, one obtains :

ut(t, x) =
1

2

∫ ∞
−∞

e−|x−y|Kt(t, y) dy

= −1

2

∫ ∞
−∞

e−|x−y|
(
u2

2

)
y

dy

=
1

4

∫ ∞
−∞

u2e−|x−y|sgn(x− y) dy

=
1

4

∫ x

−∞
u2e−(x−y)dy − 1

4

∫ +∞

x

u2e(x−y) dy

=
1

4
e−x

∫ x

−∞
u2eydy − 1

4
ex
∫ +∞

x

u2e−y dy.

Finally, for utx one has :

utx(t, x) = −1

4
e−x

∫ x

−∞
u2ey dy − 1

4
ex
∫ +∞

x

u2e−y dy +
u2(t, x)

2

=
u2(t, x)

2
− 1

4

∫ +∞

−∞
e−|x−y|u2(t, y) dy.

So, we take

v(0, x) = −utx(0, x) =
1

4

∫ +∞

−∞
e−|x−y|u2(0, y) dy − u2(0, x)

2
. (31)

7.2 Numerical solutions

For the tests below, we take the initial data u(0, x) having the property
∫ +∞
−∞ u(0, x) dx =

2L. The parameter L having the meaning of ‘total mass’ will vary. A Godunov-
type method is used in all the computations with a uniform mesh size ∆xi = 0.05
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on a domain of size x ∈ [−300, 300], and a time step ∆t determined from
the Courant-Friedrich-Lewy (CFL) condition for the stability of the hyperbolic
solver, see Appendix A for more detail. The Neumann boundary condition was
employed on the left and right of the boundaries during the computations.

7.2.1 Test 1

For the hyperbolic BBM system, we initially take u = 1 on the interval [−L,L],
and u = 0 outside this interval. The function v(0, x) is computed from (31) that
gives the explicit form:

v(0, x) =


1
4 (exp(x+ L)− exp(x− L)) , x < −L,
− 1

4 (exp(−x− L) + exp(x− L)) , x ∈ [−L,L],
1
4 (exp(−x+ L)− exp(−x− L)) , x > L.

(32)

It is also discontinuous at x = ±L. The function w(0, x) is taken zero every-
where. For the BBM equation, the initial discontinuous data are replaced by
the hyperbolic tangent :

u(0, x) =


1
2

(
1 + tanh

(
x+L
α

))
, x ≤ 0,

1
2

(
1− tanh

(
x−L
α

))
, x > 0,

where α is a positive constant, and is taken to be α = 2 here.
Figure 3 shows numerical results for L = 50 and L = 100 at time t = 200,

where the parameter value c = 30 was used in the solver for the hyperbolic BBM
system in both cases. The solutions of the BBM equation and of the hyperbolic
BBM system are in good qualitative agreement.

To show the convergence of the hyperbolic BBM solution to the BBM one,
we perform a parameter study on c for c = 30, 50, and 100. The results are
presented in Figure 4 at time t = 200 in the case of L = 100.

7.2.2 Test 2

We take the Gaussian profile :

u(0, x) =
2√
π

exp(−x2/L2).

The function w(0, x) is the derivative of u(0, x) :

w(0, x) = − 4x

L2
√
π

exp(−x2/L2).

The expression for v(0, x) is found from (31) :

v(0, x) = − 2

π
exp(−2x2/L2) +

L exp(L2/8− x)

2
√

2π

(
1− erf

(
L2 − 4x

2
√

2L

))
+

L exp(L2/8 + x)

2
√

2π

(
1− erf

(
L2 + 4x

2
√

2L

))
,

(33)
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Figure 3: Numerical results for test case 1 with the exact initial condition (32)
for v(0, x); snapshot of solutions are shown at time t = 200 for L = 50 and
L = 100. In both cases, parameter value c = 30 was used for the hyperbolic
BBM (BBMH) system.
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Figure 4: A convergence study of the solution on c for test case 1. Solutions are
shown for c = 30, 50, and 100 in the case of L = 100 at time t = 200; only the
partial solutions in the region x ∈ [50, 230] are drawn.

where

erf(z) =
2√
π

∫ z

0

exp(−y2) dy.

Note that the function v(0, x) given by (33) attains its minimum at x = 0. This
value is

vm(L) = − 2

π
+
L exp(L2/8)√

2π

(
1− erf

(
L

2
√

2

))
.

The asymptotic formula for large L is :

vm(L) ≈ − 8

πL2
.

Thus, for large L we can take v(0, x) ≈ 0.
The corresponding numerical results are shown in Fig. 5 in the case of L = 20

and c = 30, where we have employed two different initial condition for v in the
computation : v(0, x) is given either by (33) or v(0, x) = 0. No significant
differences were observed between the solutions in this respect. Figure 6 shows
the solution behavior t = 200 for different values of L : L = 50 and L = 100.
In both cases we took c = 30 and v(0, x) = 0. As in the Test 1, to show the
convergence of the ‘hyperbolic’ BBM solution to the BBM one, we perform a
parameter study on c for c = 30, 50, and 100 ( see Figure 7 for the solutions
at time t = 200 in the case of L = 100).
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Figure 5: Numerical results for the test case 2 with two different initial condi-
tions for v. Snapshot solutions are shown at time t = 200 for the case of L = 20
and c = 30.
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Figure 6: Numerical results for test case 2 with v0 = 0; snapshot of solutions
are shown at time t = 200 for L = 50 and L = 100. Parameter value c = 30 was
used in both cases.
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Figure 7: A convergence study of the solution on c for the test case 2. Solutions
are shown for c = 30, 50, and 100 in the case of L = 100 at time 200; only the
partial solutions in the region x ∈ [140, 215] are shown.

8 Conclusion

A hyperbolic approximation (8) of the BBM equation based on an ‘augmented
Lagrangian’ formulation is proposed. The corresponding equations can be writ-
ten as a symmetric t-hyperbolic in the sense of Friedrichs system. It allows
us to use the state-of-the-art numerical methods for hyperbolic conservation
laws for solving the ‘hyperbolized’ BBM system. Recently, there has been
an increasing interest to the Riemann problem for the dispersive equations
[28, 29, 19, 18, 20, 21, 12, 22, 24, 25]. The approximation we proposed could
be a new numerical tool for solving the Cauchy problem for the BBM equation
with discontinuous initial data.

Acknowledgments SG thanks François Dubois for helpful discussion. KMS
was partially supported by the Grant MOST 109-2115-M-002-012.

A Numerical method

A.1 BBM equation

To find approximate solutions to BBM equation, we use the hyperbolic-elliptic
splitting approach developed previously in [39, 24]. This algorithm consists of
two steps. In the first step, the hyperbolic step, we employ the state-of-the-
art method for hyperbolic conservation laws for the numerical resolution of the
equation

Kt +

(
u2

2

)
x

= 0, with K = u− uxx,
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over a time step ∆t. In the second step, the elliptic step, using the approximate
solution K computed during the hyperbolic step, we invert numerically the
elliptic operator:

u− uxx = K
with prescribed boundary conditions based on a fourth-order compact scheme [37].

More precisely, in the hyperbolic step, we use the semi-discrete finite volume
method written in a wave-propagation form as before [24], but employ a different
solution reconstruction technique, the BVD (boundary variation diminishing)
principle, which is more robust than the classical one for the interpolated states
(K for BBM) at cell boundaries (cf. [13] and the references cited therein). These
reconstructed variables form the basis for the initial data of the Riemann prob-
lems, where the solutions of the Riemann problems (obtained from the local
Lax-Friedrichs approximate solver [38] for BBM) are then used to construct the
fluctuations in the spatial discretization that gives the right-hand side of the
system of ODEs (cf. [33, 34]). To integrate the ODE system in time, the strong
stability-preserving (SSP) multistage Runge-Kutta scheme [30, 45] is used. In
particular, for the numerical results presented in this paper, the third–order SSP
scheme was employed together with the pair of third– and fifth–order WENO
(weighted essentially non-oscillatory) scheme in the BVD reconstruction pro-
cess.

A.2 Hyperbolic BBM system

As in [23], we use a fractional-step approach for the numerical resolution of the
hyperbolic BBM system : at each time step we alternate between by solving the
homogeneous (hyperbolic) part of the symmetric t-hyperbolic system (16a) u

v/c
w


t

+

u2/2 + v
u
w/c


x

= 0 (34a)

over a time step ∆t, and the ODEs u
v/c
w


t

=

 0
w
−v

 (34b)

using the inital data from the previous step and the same time step. Here the
numerical method we employed for (34a) is the same as for the BBM equation
(see A.1, hyperbolic step), and we use the exact solution of (34b) for the update
of the solution in the ODE step :

u = u0,
v = v0 cos(

√
ct) + w0

√
c sin(

√
ct),

w = − v0√
c

sin(
√
ct) + w0 cos(

√
ct),

where u0, v0 and w0 is the solution of the homogeneous system (34a). Such a
splitting procedure was also used in [23] in the case of the SGN equations.
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ables dans les canaux, La Houille Blanche 8 374–388.

[45] Shu C W 2009 High order weighted essentially nonoscillatory schemes for
convection dominated problems, SIAM Review 5 82–126.

[46] Whitham G B 1974 Linear and Nonlinear Waves, John Wiley and Sons.

20


