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Abstract: We study a model of interacting neurons. The structure of this neural system is
composed of two layers of neurons such that the neurons of the first layer send their spikes to
the neurons of the second one: if N is the number of neurons of the first layer, at each spiking
time of the first layer, every neuron of both layers receives an amount of potential of the form
U/
√
N, where U is a centered random variable. This kind of structure of neurons can model a

part of the structure of the visual cortex: the first layer represents the primary visual cortex
V1 and the second one the visual area V2. In the model, we study the "averaged effect" of
the neurons of the first layer on a single neuron of the second layer. The theoretical model
consists in two stochastic processes, one modelling the membrane potential of the neurons of
the first layer, and the other the membrane potential of the particular neuron of the second
layer. We prove the convergence of these processes as the number of neurons N goes to infinity
and obtain a convergence speed. The proofs rely on similar arguments as those used in Erny,
Löcherbach and Loukianova (2022): the convergence speed of the semigroups of the processes
is obtained from the convergence speed of their infinitesimal generators using a Trotter-Kato
formula, and from the regularity of the limit semigroup. Contrarily to the situation in Erny,
Löcherbach and Loukianova (2022), the stochastic flow of the limit process is not continuous,
and we need to use Girsanov’s theorem for jump processes result to recover the regularity of
the limit semigroup from the regularity of the stochastic flow of an auxiliary process.

MSC2020 subject classifications: 60J35, 60J60, 60K35, 60G55.
Keywords and phrases: Mean field interaction, Piecewise deterministic Markov processes,
Interacting particle systems.

1. Introduction

1.1. Model

The model we study in this paper is a mean-field model of interacting neurons. This kind of model
has been studied widely in the literature to model the dynamics of neural networks (see e.g. Faugeras,
Touboul and Cessac (2009), Baladron et al. (2012), Luçon and Stannat (2014), De Masi et al. (2015)
and the references therein). A natural way of modelling the activity of the neurons is to use point
processes to represent their spike trains. In this context, Hawkes processes have called attention as a
natural model for the spike trains of neurons. These processes have been introduced in Hawkes (1971)
to model the aftershocks of earthquakes. By definition, Hawkes processes are mutually exciting point
processes, therefore they can be naturally used to model the mutually exciting/inhibiting behavior of
neurons (see Pillow, Wilson and Brown (2008), Grün, Diedsmann and Aertsen (2010) and Reynaud-
Bouret et al. (2014)). Some authors have also managed to model the repolarization of the neurons
using Hawkes processes with variable length memory (see Fournier and Löcherbach (2016), Hodara
and Löcherbach (2017) and Erny, Löcherbach and Loukianova (2021a)). Finally "age dependent
Hawkes processes" introduced in Chevallier (2017a) and further studied in Chevallier (2017b) and
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Bonde Raad, Ditlevsen and Löcherbach (2020) allows the spike rate of a neuron to depend on the
delay since its last spike, allowing to consider for example a refractory period for the neurons.

The aim of this paper is to study a model of two layers of neurons such that:

• the neurons of the first layer send their spikes to the neurons of both the first and second
layers,
• the spikes of the neurons of the second layer do not have effect on these two layers.

We note N the number of neurons of the first layer. The idea of our modelling is to study the
"averaged effect" of the first layer on a single neuron of the second one. In the following, XN

t models
the "averaged effect" of the membrane potentials on the firing rate of the neurons of the first layer
at time t, and Y Nt models the membrane potential of one particular neuron of the second layer at
time t.

We assume that the dynamics of the processes XN and Y N are given by the following SDEs:

dXN
t =− α1X

N
t dt+

1√
N

N∑
j=1

∫
R+×R

u · 1{z≤f1(XN
t−)}dπ

(1),j(t, z, u) (1)

− 1

N
XN
t−

N∑
j=1

∫
R+×R

1{z≤f1(XN
t−)}dπ

(1),j(t, z, u),

dY Nt =− α2Y
N
t dt+

1√
N

N∑
j=1

∫
R+×R

u · 1{z≤f1(XN
t−)}dπ

(1),j(t, z, u)−
∫
R+

Y Nt−1{z≤f2(Y N
t−)}dπ

(2)(t, z),

where XN
t− (resp. Y Nt−) denotes the limit from the left of XN (resp. Y N ) at time t. Above, α1, α2

are positive parameters (resp. f1, f2 are non-negative functions) of the model that represent the
leakage rate characteristics (resp. the spike rate functions) of respectively the neurons of the first
layer and the neurons of the second one. In (1), π(1),j are i.i.d. Poisson measures with intensity
dt ·dz ·dν(u) (ν is a centered probability measure on R), and π(2) a Poisson measure with Lebesgue
intensity independent of the other Poisson measures.

In (1), the counting processes

P
(1),N,i
t :=

∫
[0,t]×R+

1{z≤f1(XN
s−)}dπ

(1),i(s, z), 1 ≤ i ≤ N,

and
P

(2),N
t :=

∫
[0,t]×R+

1{z≤f2(XN
s−)}dπ

(2)(s, z),

model respectively the spike trains of the neuron i of the first layer (1 ≤ i ≤ N) and that of the
particular neuron of the second one. In this model, the form of the synaptic weights is u/

√
N where

u is the third variable of the Poisson measures π(1),i (1 ≤ i ≤ N). These variables can be seen as
random variables that are i.i.d. ν−distributed, and whence centered. Note that it is necessary to
consider centered synaptic weight because of the normalization N−1/2, and in order to make appear
these centered variables u, we need to write the point processes P (1),N,i as thinnings of Poisson
measures in (1).

We assume that the spikes of the neurons of the first layer have the same effect on the potentials
of the neurons of both the first and the second layer. This effect is given by the second term of both
SDEs of XN and Y N .
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The third term in the SDE of Y N (i.e. the third line of (1)) models the repolarization of the
potential of the particular neuron of the second layer: right after the neuron emits a spike, its
potential goes fast (here it jumps immediately) to its resting value that we assume to be zero.

The last term of the SDE of XN (i.e. the second line of (1)) should be interpreted as an averaged
repolarization. Indeed, the neurons of the first layers fire at rate N · f1(XN

t−). So XN
t should be

interpreted as the averaged potential of the neurons of the first layer. And, according to our model,
when a neuron of the first layer sends a spike, its potential should jump to zero. As a consequence,
if we assume that this potential was "close" to the averaged value XN

t− before the jump, then, right
after the spike, the quantity lost by the averaged potential is N−1XN

t−.
The main result of this paper (Theorem 1.3) is the convergence in distribution as N goes to in-

finity (with an explicit convergence speed) of the sequence of the two-dimensional Markov processes
(XN , Y N )N (defined in (1)) to the following limit process

dX̄t =− α1X̄tdt+ σ
√
f1(X̄t)dWt − X̄tf1(X̄t)dt, (2)

dȲt =− α2Ȳtdt+ σ
√
f1(X̄t)dWt −

∫
R+

Ȳt−1{z≤f2(Ȳt−)}dπ̄(t, z),

where W is a standard one-dimensional Brownian motion, π̄ is a Poisson measure on R2
+ with

Lebesgue intensity independent of W , and σ2 is the variance of the probability measure ν.

Remark 1.1. Note that Theorem 1.3 has a practical interest if one wants to simulate the trajectories
of the process (XN , Y N ). According to this result, the limit process (X̄, Ȳ ) is an approximation of
(XN , Y N ), and it is easier to simulate. Indeed, to simulate (XN , Y N ) one has to compute the
trajectories of the N Poisson measures π(1),i (1 ≤ i ≤ N), which can be computationally hard if
N is large. So it can be easier to simulate a single Brownian motion W instead of those Poisson
measures.

Then, if we simulate the limit process (X̄, Ȳ ) instead of the "real" one (XN , Y N ) (i.e. the one that
actually corresponds to the neural model), we make an error. The interesting point of Theorem 1.3
is to quantify this error (i.e. the convergence speed). Let us mention that this error is of order
N−1/2, which can be considered "small" if the first layer represents for example the primary visual
cortex V1, since the number of neurons N in V1 is estimated to be of order 108 according to Leuba
and Kraftsik (1994).

1.2. Biological motivation

This multi-layers structure is a natural model for the visual cortex, which is composed of five
interacting and functionally distinct layers of neurons (see Chapter 5 of Hubel (1995) for a detailed
description of the structure of the visual cortex). The two-layers model of this paper can be seen as
a model of the primary visual cortex V1 (the first layer) and the visual area V2 (the second layer).
A more interesting model could consist in considering five layers to represent V1-V5 and more
complex interactions between these layers. As we have mentioned earlier, to simplify the model we
only consider an averaged potential XN for the neurons of the first layer. And, we also assume that
all the neurons of the second layer have the same dynamics, and that is why we just study one
particular neuron of the second layer.

From a mathematical point of view, it is convenient to consider the same membrane potentialXN
t

for all the neurons of the first layer because it guarantees it to be an one-dimensional process and not
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an N−dimensional one. The techniques that we use in this paper would fail to obtain a convergence
in the N−dimensional case because we are interested in the convergence of the model as N goes to
infinity.

For a similar reason, we assume the effects of the spikes from the second layer to itself to be
negligible compared to the effects of the spikes from the first layer to the second one. This assumption
allows us not to consider the effect of the other neurons of the second layer on the dynamics of Y N
(otherwise the dimension of the process that we would study would depend on N).

In our model, we assume our first layer to be a complete graph (i.e. each neuron is connected by a
synapse to any other neuron). This assumption allows us to consider a one-dimensional process XN

to model this layer. As it is explained above, this property is important in our proofs, but it is a
drawback of the biological model since a neuron has only a limited number of synaptic connections
compared to the number of neurons of the network. It is possible to extend this model to the case
where the first layer is divided into a fix number k of sublayers. In this case, each sublayer has to
be assumed to be a complete graph and one can consider any interaction structure between the
sublayers. In this new model, assuming that the number k of sublayers does not depend on N , the
results of the paper would hold true, and the techniques used to prove the results would be the same
(the main difference is that XN would be a k−dimensional process instead of an one-dimensional
one). This model may be interesting to model the six functionally distinct layers of V1, and even
the four sublayers of the fourth one of V1 (i.e. taking k = 9) (see e.g. Chapter 5 of Hubel (1995)). In
order to ease the readability of the proofs, we prefer not to study the "multi-sublayers model". Let
us also mention that for similar reasons, it is possible to extend our model to study a fix number of
neurons of the second layer and not only one (provided that this number does not depend on N).

Let us end this section by commenting the form of the synaptic weights u/
√
N where the u

are random variables. These centered synaptic weights model the fact that we consider "balanced
networks" (i.e. neural networks where the excitatory inputs and the inhibitory ones are balanced).
Experiments support this hypothesis of balanced synaptic connections as a natural model (see Shu,
Hasenstaub and McCormick (2003), Haider et al. (2006) and the references therein). Let us also
mention that, if we consider balanced synaptic weights, it is necessary to rescale them as N−1/2

and not as N−1 to obtain a non-trivial limit, and that the experiments done in Barral and D Reyes
(2016) support the assumptions that the synaptic weights are of order N−1/2. Let us give a brief
overview of the mathematical studies of balanced network: Faugeras and MacLaurin (2015) have
proved a large deviation principle for a discrete-time model with correlated synaptic weights, in
Sompolinsky, Crisanti and Sommers (1988) the authors have studied a continuous-time model of
ODEs parametrized by random synaptic weights where at the limit a Gaussian field is created by
these weights, Rosenbaum and Doiron (2014) have studied the exsitence of a balanced state for the
large scale limit of a similar model, and Pfaffelhuber, Rotter and Stiefel (2021) have proved the
convergence of Hawkes processes in distribution to a limit process that is solution to a stochastic
convolution equation (also known as stochastic Volterra equation of convolution type). The form of
the model of Pfaffelhuber, Rotter and Stiefel (2021) is close to the one we consider here. In these
papers, the synaptic weight of a given synapse is a random variable and each time a neuron sends a
spike to another neuron, the potential of this other neuron always receives the same random variable
from this synapse. In our model (similarly as in Erny, Löcherbach and Loukianova (2022) and Erny,
Löcherbach and Loukianova (2021a)), at each spiking time, we make a choice of random synaptic
weight independently of the previous ones. This implies that the role of a synapse (i.e. excitatory
or inhibitory) can change.This property is not consistent with the biological reality, but compared
to the model of Pfaffelhuber, Rotter and Stiefel (2021), it allows us to obtain a convergence speed
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in addition to the convergence in distribution of the model, and it also allows us to consider more
general distributions than just Rademacher distribution for the law of the synaptic weights.

1.3. Mathematical techniques

Let us note that this kind of multi-layers model has already been studied in Ditlevsen and Löcherbach
(2017) and at Section 5 of Erny, Löcherbach and Loukianova (2021b). In both these references, the
number of layers is not limited to two (but does not depend on N) and every membrane potential
is modeled by a specific process without the "repolarization" effect in the equations. Consequently
the dimension of the N−neurons model is N , and as we have claimed previously, the techniques of
this paper would not work on these models. In Ditlevsen and Löcherbach (2017), the authors have
obtained a L1−convergence with a convergence speed in N−1/2. The processes they have studied
are Hawkes processes and the order of synaptic weight is N−1. The model in Erny, Löcherbach and
Loukianova (2021b) is closer to (1) since the synaptic weight is also centered and of orderN−1/2. The
advantage of the model of the current paper is that we obtain a convergence speed of order N−1/2

whereas in Erny, Löcherbach and Loukianova (2021b), we have just proved a convergence in distribu-
tion and in Erny, Löcherbach and Loukianova (2021c) (where the results hold true in a multi-layers
framework) the order of the convergence speed is N−1/10, which is much slower than N−1/2. Note
that it is interesting to have a good convergence speed for simulation purpose (see Remark 1.1).

The question of the convergence of system with this kind of repolarization effect has already
been studied by some references (in a one-layer framework): see De Masi et al. (2015), Andreis,
Dai Pra and Fischer (2018), Erny (2021) for models with synaptic weights of order N−1, and Erny,
Löcherbach and Loukianova (2021a) for synaptic weights of order N−1/2. The novelty of this article
consists in obtaining a convergence speed for the convergence in distribution where the order of the
synaptic weights is N−1/2.

We can also remark that (1) is a generalization of the model of Erny, Löcherbach and Loukianova
(2022) where we have studied the convergence of the one-dimensional process XN in a simplified
framework (i.e. without the last term in the SDE of XN ). The interesting points of the model of
this paper is that it is more relevant for the modelling of a particular structure of neural network
(e.g. the layers V1 and V2 of the virtual cortex), and that we can still prove similar results.

In order to quantify the convergence speed of the distribution of (XN , Y N ) to the distribution
of (X̄, Ȳ ), we rely on their semigroups, respectively denoted by (PNt )t and (P̄t)t. By definition the
semigroups are families of operators that can be defined on the space of continuous and bounded
functions by: for g continuous and bounded, and x, y ∈ R,

PNt g(x, y) := E(x,y)

[
g(XN

t , Y
N
t )
]
,

where E(x,y) is the expectation related to the probability measure P(x,y) under which the initial
value of the process (XN , Y N ) is given by the deterministic value (x, y) = (XN

0 , Y
N
0 ).

To obtain this convergence speed, we use similar arguments as in Erny, Löcherbach and Loukianova
(2022). We consider the infinitesimal generators AN and Ā of respectively PN and P̄ . These infinites-
imal generators are operators that can be defined as the derivatives of their respective semigroups:

ANg(x, y) = lim
t→0

1

t

(
PNt g(x, y)− g(x, y)

)
.

The notion of generators can slightly differ from a reference to another for technical reasons. This
is why we define precisely the notion that we use in this paper at the beginning of Section 2.1 (it
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is the same notion that we have introduced and studied in Appendix A of Erny, Löcherbach and
Loukianova (2022)).

We begin by proving the convergence of these generators and by obtaining a convergence speed.
This convergence speed depends on the derivatives of the test-function g. Then, we deduce a con-
vergence speed for the semigroups using the following formula:

P̄tg(x, y)− PNt g(x, y) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x, y)ds.

To be able to use (3) to deduce a convergence speed for the semigroups from the one for the
generators, we need to control the differentiability of the function (x, y) 7→ P̄sg(x, y). So, one
of the main step of the proof of our main result consists in studying the regularity of the limit
semigroup (P̄t)t. For this purpose, we need to study the regularity of the related stochastic flow
(see Section 1.4 for the notion of stochastic flow). Compared to the proofs of Erny, Löcherbach and
Loukianova (2022), there are two additional technical difficulties that we handle at Section 2.2:

• The trajectories of the process (X̄, Ȳ ) are not continuous. Whence, the regularity of its semi-
group is harder to study.
• The jump times of the process (X̄, Ȳ ) occur at the rate f2(Ȳt−). This implies that this rate

depends on the initial condition of the process. The regularity of this dependency is hard to
study directly.

To overcome the first point, we study the regularity of the stochastic flow between the jump times
(see Proposition 2.7). Let us remark that Bally, Goreac and Rabiet (2018) have already used the
idea of working between the jump times of the flow to study its regularity and that of its semigroup.
For the second point, we introduce an auxiliary limit process (X̃, Ỹ ) for which the rate of the jumps
is constant. Then, we deduce the regularity of the semigroup (P̄t)t from the regularity of the flow
of (X̃, Ỹ ) using Girsanov’s theorem for jump processes that gives the explicit Radon-Nikodym
derivative between the processes (X̄, Ȳ ) and (X̃, Ỹ ) (see Proposition 2.4).

1.4. Notation

Throughout the paper, we use the following notation:

• For n ∈ N∗, we note Cnb (R) (resp. Cnb (R2)) the set of R−valued functions defined on R
(resp. R2) that are Cn, bounded and such that all their derivatives (resp. partial derivatives)
up to order n are bounded.
• We call β ∈ N2 a multi-index and we note |β| = β1 + β2. If g : R2 → R is Cn and if β is a

multi-index such that |β| ≤ n, we write ∂βg the partial derivative of g w.r.t. β. For the first
order partial derivatives, we write instead ∂1g and ∂2g, and for the second order derivatives,
we write ∂2

i,jg (i, j ∈ {1, 2}). When there is no possible confusion, we may use the classical
notation ∂xg(x, y) = ∂1g(x, y).
• For g ∈ Cnb (R2), we note

||g||n,∞ =
∑
|β|≤n

||∂βg||∞.

• Given a process X (resp. a multi-dimensional process (X,Y )) that is solution to some SDE, we
note X(x) (resp. (X(x,y), Y (x,y))) the process solution to the SDE w.r.t. the initial condition
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X0 = x (resp. (X0, Y0) = (x, y)). The function x 7→ X(x) (resp. (x, y) 7→ (X(x,y), Y (x,y)))
is called the stochastic flow of the process X (resp. (X,Y )). By a definition, a stochastic
flow of a Markov process represents its trajectories as functions of its initial condition (see
Definition 1.1.1 of Kunita (1986) for a more general definition). In this paper, we speak about
stochastic flow instead of the trajectories of the process itself when we want to emphasize
the fact that it is a function of the initial value, and to use the same terminology as Kunita
(1986).
• In all the paper, C denotes an arbitrary positive constant that is independent of any parame-

ters except the parameters of the model. If a constant depends on some parameter θ, we write
Cθ instead. The value of such constants can change from line to line in an equation.

1.5. Assumptions and main result

To begin with, let us state the conditions we need to study the model.

Assumption 1.

(i) The function f1 is C1
b (R), positive, and, for some constant C > 0, for any x ≥ 0, |f ′1(x)| ≤

C/(1 + |x|),
(ii) the function f2 is non-negative and belongs to C3

b (R),
(iii) the function

√
f1 belongs to C4

b (R),
(iv) the probability measure ν is centered and admits a finite third moment. We note σ2 its variance.

Remark 1.2. Any sigmoid function satisfies the conditions imposed by Assumption 1.(i)− (iii) on
the functions f1 and f2. This kind of function has been shown to be natural for neural models (see
Velichko and Boriskov (2020)).

Under Assumption 1.(i) − (ii), the strong well-posedness of the SDEs (1) and (2) is a classical
result since these two conditions guarantees that the coefficients are Lipschitz continuous and the
jump rates bounded (see Theorem IV.9.1 of Ikeda and Watanabe (1989)).

The boundedness of f1 and the assumption on f ′1 are used to prove the well-posedness of the limit
process (2) and to simplify some technical details, since it implies that the function x 7→ xf1(x)
is Lipschitz continuous. On the other hand, the boundedness of f2 is important to control the
Radon-Nikodym derivative between the limit process (X̄, Ȳ ) and the auxiliary process (X̃, Ỹ ) that
we introduce at Section 2.2 (see Proposition 2.4 for the form of this derivative).

Condition (iii) allows to prove that the stochastic flow of the auxiliary process is C3 between its
jump times (see Proposition 2.6). And condition (iv) allows us to obtain a convergence speed for
the generators (see Lemma 2.3).

Under the additional assumption that (XN
0 , Y

N
0 ) converges in distribution to (X̄0, Ȳ0), it is

known that the process (XN , Y N ) converges in distribution to (X̄, Ȳ ) in Skorokhod topology (see
Theorem IX.4.21 of Jacod and Shiryaev (2003)). The main result of this paper consists in obtaining
the convergence speed of the semigroups PN and P̄ of these processes (recalling that the processes
(XN , Y N ) and (X̄, Ȳ ) are defined respectively at (1) and (2), and that a semigroup can be defined
as PNt g(x, y) := E[g(XN

t , Y
N
t )|(XN

0 , Y
N
0 ) = (x, y)]).

Theorem 1.3. Grant Assumptions 1.(i)− (iv). For all t ≥ 0, N ∈ N∗, g ∈ C3
b (R2) and x, y ∈ R,∣∣P̄tg(x, y)− PNt g(x, y)

∣∣ ≤ Ct ·N−1/2 · ||g||3,∞ + Ct ·N−1
(
1 + x2

)
· ||g||2,∞.

Figure 1 shows two simulations of the process Y N with N = 100 and N = 1000.
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Figure 1. Simulation of trajectories of (Y N
t )0≤t≤10 with XN

0 = 0, Y N
0 = 0, α1 = α2 = 1, ν = N (0, 1), f1(x) =

f2(x) = 4/(1 + exp(2(1− x))), N = 100 (left panel) and N = 1000 (right panel).

2. Proof of Theorem 1.3

We prove Theorem 1.3 in three steps. In Section 2.1, we obtain an explicit convergence speed for
the convergence of the generators AN of (XN , Y N ) to the generator Ā of (X̄, Ȳ ) (see Lemma 2.3).
Then, we want to use this result using the following formula

P̄tg(x, y)− PNt g(x, y) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x, y)ds, (3)

to deduce the convergence speed for the semigroups PN and P̄ . The problem is that our bound
for the convergence speed of ANg(x, y) − Āg(x, y) depends on the derivatives of the function g.
So we need a control on the derivatives of the limit semigroup (P̄t)t. This is done at Section 2.2
(Proposition 2.8). Finally, at Section 2.3, we apply the formula (3) to conclude the proof.

2.1. Convergence of the infinitesimal generators

One can note that the processes (X̄, Ȳ ) and (XN , Y N ) (N ∈ N∗) are Markov processes. In the
following, we note P̄ and PN (N ∈ N∗) their respective semigroups, and Ā and AN (N ∈ N∗)
their respective infinitesimal generators. Usually, if Z is a R2−valued Markov process, we define its
semigroup P by: for any t ≥ 0, z ∈ R2, and any continuous and bounded function g,

Ptg(z) = Ez [g(Zt)] ,

where the index z indicates that we consider the law under which Z0 = z.
The definition of the semigroup of a Markov process coincides in general to the one above, but

the notion of infinitesimal generators can change from a reference to another. Here we consider
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a notion of extended generators (similar as the one used in Meyn and Tweedie (1993) and Davis
(1993)). If Z is a R2−valued Markov process (whose generator will be denoted by A), we note D′(A)
the set of continuous and bounded functions g for which it exists a function hg that satisfies, for
all z ∈ R2, t ≥ 0,

Ez
∫ t

0

|hg(Zs)|ds <∞ and Ez [g(Zt)]− g(z) = Ez
∫ t

0

hg(Zs)ds.

If this function hg exists, we note it Ag := hg. Then A is an operator called the (extended) generator
of Z. Note that the expression of a generator does not depend on the different definitions, what can
change from a definition to another is the domain on which the generator is defined.

Example 2.1. Let X be a Markov process solution to the following one-dimensional SDE

dXt = b(Xt)dt+ σ(Xt)dWt +

∫
R+

Φ(Xt−, u)1{z≤f(Xt−)}dπ(t, z, u),

where W is a standard Brownian motion and π a Poisson measure on R2
+ × R with intensity

dt ·dz ·dν(u). Then, Ito’s formula allows to prove (provided some sufficient control on the functions
b, σ, f,Φ) that D′(A) contains C2

b (R) and that

Ag(x) = b(x)g′(x) +
1

2
σ(x)2g′′(x) + f(x)

∫
R

[g(x+ Φ(x, u))− g(x)] dν(u).

In this example we consider a one-dimensional SDE to make it simple, but this can be generalized
to any finite-dimensional SDE.

We refer to Appendix A of Erny, Löcherbach and Loukianova (2022) for the study of some
basical properties of this notion of generators (in particular for Proposition 5.6 where (3) is proved
in another model).

Let us give the form of the generators AN and Ā of the processes (XN , Y N ) and (X̄, Ȳ ). The
following lemma is a direct consequence of Ito’s formula and of the form of the SDEs (1) and (2).

Lemma 2.2. Grant Assumption 1.(i) − (ii). D′(AN ) contains C1
b (R2), and for g ∈ C1

b (R2) and
(x, y) ∈ R2,

ANg(x, y) =− α1x∂1g(x, y)− α2y∂2g(x, y)

+Nf1(x)

∫
R

[
g

(
x+

u√
N
− x

N
, y +

u√
N

)
− g(x, y)

]
dν(u) + f2(y) [g(x, 0)− g(x, y)] .

D′(Ā) contains C2
b (R2), and for g ∈ C2

b (R2) and (x, y) ∈ R2,

Āg(x, y) =− α1x∂1g(x, y)− xf1(x)∂1g(x, y)− α2y∂2g(x, y)

+
σ2

2
f1(x)

2∑
i,j=1

∂2
i,jg(x, y) + f2(y) [g(x, 0)− g(x, y)] .

We have the following control on the convergence of the generators.
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Lemma 2.3. Grant Assumption 1.(i)−(ii) and Assumption 1.(iv). For g ∈ C2
b (R2) and (x, y) ∈ R2,

∣∣ANg(x, y)− Āg(x, y)
∣∣ ≤ 1

6
f1(x)N−1/2

(∫
R
|u|3dν(u)

) ∑
|β|=3

||∂βg||∞ +
1

2
x2f1(x)N−1

∣∣∣∣∂2
11g
∣∣∣∣
∞ .

Proof. Recalling that ν is a centered probability measure and that σ2 is its variance,

ANg(x, y)− Āg(x, y)

=

∫
R
Nf1(x)

[
g

(
x+

u√
N
− x

N
, y +

u√
N

)
− g(x, y)

]
dν(u)

+ xf1(x)∂1g(x)− σ2

2
f1(x)

2∑
i,j=1

∂2
i,jg(x, y)

=Nf1(x)

∫
R

[
g

(
x+

u√
N
− x

N
, y +

u√
N

)
− g(x, y)− u√

N

2∑
i=1

∂ig(x, y) +
x

N
∂1g(x)

− u2

2N

2∑
i,j=1

∂2
i,jg(x, y)

 dν(u).

In order to make appear the second-order term of the Taylor polynomial of g(x+u/
√
N−x/N, y+

u/
√
N), let us write

u2

2N

2∑
i,j=1

∂2
i,jg(x, y) =

1

2

(
u√
N
− x

N

)2

∂2
11g(x, y) +

u2

2N
∂2

22g(x, y) +
u√
N

(
u√
N
− x

N

)
∂2

12g(x, y)

+
ux

N
√
N
∂2

11g(x, y)− x2

2N2
∂2

11g(x, y) +
ux

N
√
N
∂2

12g(x, y).

Whence, since
∫
R udν(u) = 0,

ANg(x, y)− Āg(x, y)

=Nf1(x)

∫
R

[
g

(
x+

u√
N
− x

N
, y +

u√
N

)
− g(x, y)− u√

N

2∑
i=1

∂ig(x, y) +
x

N
f1(x)∂1g(x)

−

(
1

2

(
u√
N
− x

N

)2

∂2
11g(x, y) +

u2

2N
∂2

22g(x, y) +
u√
N

(
u√
N

+
x

N

)
∂2

12g(x, y)

)]
dν(u)

+
x2

2N
f1(x)∂2

11g(x, y).
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As a consequence∣∣ANg(x, y)− Āg(x, y)
∣∣

≤Nf1(x)

∫
R

[∣∣∣∣∣g
(
x+

u√
N
− x

N
, y +

u√
N

)
− g(x, y)− u√

N

2∑
i=1

∂ig(x, y) +
x

N
f1(x)∂1g(x)

−

(
1

2

(
u√
N
− x

N

)2

∂2
11g(x, y) +

u2

2N
∂2

22g(x, y) +
u√
N

(
u√
N

+
x

N

)
∂2

12g(x, y)

)∣∣∣∣∣
]
dν(u)

+
x2

2N
f1(x)|∂2

11g(x, y)|.

Then Taylor-Lagrange’s inequality gives the result.

2.2. Regularity of the limit semigroup and stochastic flow

In this section, we prove the regularity of the semigroup of the limit process (X̄, Ȳ ) w.r.t. its initial
condition and a control of its derivatives. However there are additional technical difficulties in this
proof compared to Erny, Löcherbach and Loukianova (2022). We rely on Theorem 1.4.1 of Kunita
(1986) which guarantees the differentiability of stochastic flows under some conditions. Let us recall
that the stochastic flow of (X̄, Ȳ ) is the family of functions (x, y) 7→ (X̄

(x)
t , Ȳ

(x,y)
t ) (t ≥ 0). A well-

known kind of flow is called "Brownian flow". By definition, a Brownian flow is a stochastic flow
that is almost surely continuous w.r.t. the time-parameter t with independent increments w.r.t. the
time-parameter.

The main difficulty is that the trajectories of the process (X̄, Ȳ ) are not continuous. Whence the
stochastic flow of this process is not a Brownian flow and Theorem 1.4.1 of Kunita (1986) cannot be
applied. So, we study the stochastic flow between its jump times. Then we face another difficulty:
the jump times of the stochastic flow depends on the initial condition, and we do not want to study
the regularity of this dependency.

This is why we introduce the following auxiliary limit process (X̃, Ỹ ). The only difference with
the limit process (X̄, Ȳ ) is that the stochastic intensity of the jump term in the SDE of Ỹ is
constant. In other words, the occurrences of the jump times of the process Ỹ are distributed as a
homogeneous Poisson process.

dX̃t =− α1X̃t + σ

√
f1(X̃t)dWt − X̃tf1(X̃t)dt,

dỸt =− α2Ỹtdt+ σ

√
f1(X̃t)dWt −

∫
[0,||f2||∞]

Ỹt−dπ̃
1(t, z),

where π̃1 is a Poisson measure on R2
+ with Lebesgue intensity.

Let us note Nt = π̃1([0, t] × ||f2||∞) the number of jumps of the process Ỹ before time t. By
definition of π̃1, (Nt)t≥0 is a homogeneous Poisson process with rate ||f2||∞.We also note Tn (n ≥ 1)
the jump times of the process Ỹ .

The next proposition is a consequence of Girsanov’s theorem for jump processes. It gives the
Radon-Nikodym derivative between the distribution of (X̄t, Ȳt) and that of (X̃t, Ỹt), for any t ≥ 0.
This result is a straightforward application of Theorem V I.T3 of Brémaud (1981) (see also of
Theorem 3.5 Löcherbach (2002)), its proof is therefore omitted.
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Proposition 2.4. Grant Assumption 1.(i)− (ii). Let Nt := π̃1([0, t]× [0, ||f2||∞]) and Tn (n ∈ N∗)
be the jump times of (Nt)t. For all g ∈ Cb(R2), and, x, y ∈ R,

E
[
g
(
X̄

(x)
t , Ȳ

(x,y)
t

)]
= E

g (X̃(x)
t , Ỹ

(x,y)
t

) Nt∏
n=1

f2

(
Ỹ

(x,y)
Tn

)
||f2||∞

exp

[
−
∫ t

0

(
f2

(
Ỹ (x,y)
s

)
− ||f2||∞

)
ds

] .
In order to obtain a control on the regularity of the semigroup P̄ of the limit process (X̄, Ȳ ),

we rely on the previous proposition and on a control of the derivatives of the stochastic flow of the
auxiliary process (X̃, Ỹ ). The next step is to prove this control.

Let us note ϕt(x, y) (t ∈ R+, (x, y) ∈ R2) the stochastic flow related to the following 2−dimensional
SDE:

dXt =− α1Xtdt+ σ
√
f1(Xt)dWt −Xtf1(Xt)dt, (4)

dYt =− α2Ytdt+ σ
√
f1(Xt)dWt.

With our previous notation, it means that ϕt(x, y) := (X
(x)
t , Y

(x,y)
t ), if (X,Y ) is defined as the

solution of the above 2−dimensional SDE. One can note that ϕt(x, y) is the flow of the process
(X̃, Ỹ ) between its jump times. It is clear that ϕt(x, y) is a stochastic flow by Definition 1.1.1 of
Kunita (1986). It is even a Brownian flow since the process (X,Y ) has independent increments and
continuous trajectories.

Remark 2.5. Contrarily to the more general framework of Kunita (1986), the stochastic flow
ϕt(x, y) does only depend on one time parameter, because the process is time-homogeneous.

Proposition 2.6. Grant Assumption 1.(i) and Assumption 1.(iii). Almost surely, for all t ≥ 0,
(x, y) 7→ ϕt(x, y) is a C3−diffeomorphism.

Proof. We rely on Theorem 1.4.1 of Kunita (1986) and use the notation therein. Let us note (a, b)
the local characteristics of the flow ϕt(x, y). The notion of local characteristics is formally defined
in Assumption 1 of (Kunita 1986, p. 8), and when we study the flow related to an SDE with a
drift term and a Brownian term, the function b can be shown to be the coefficient of the drift term,
and a the matrix of quadratic covariations of the Brownian term. Here the local characteristics of
ϕt(x, y) are given by

b(x, y) =

(
−α1x− xf1(x)

−α2y

)
and a((x, y), (x′, y′)) = σ2

√
f1(x)f1(x′)

(
1 1
1 1

)
.

One can check that the Assumptions 1, 2 and 3 of (Kunita 1986, p. 8, 9, 15) are satisfied. Indeed,
Assumptions 1 and 2 follows easily from the fact that, if (X,Y ) is solution to (4), then

E(x,y)

[
(Xt)

2 + (Yt)
2
]
≤ Ct(1 + x2 + y2),

where the inequality above can be proved with the same reasoning as in the proof of Lemma 3.2.
For Assumption 3, it is sufficient to remark that the functions x 7→ xf1(x) and x 7→

√
f1(x) are

Lipschitz continuous under Assumptions 1.(i) and 1.(iii).
Then, Theorem 1.4.1 of Kunita (1986) allows to conclude the proof.
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Proposition 2.7. Grant Assumption 1.(i)−(iii). Almost surely, for all t ≥ 0, (x, y) 7→ (X̃
(x)
t , Ỹ

(x,y)
t )

is C3 and, for all even p ∈ N∗, for all multi-index β ∈ N2 such that 1 ≤ |β| ≤ 3,

sup
x∈R

E
[

sup
0≤s≤t

(
∂βX̃

(x)
s

)p]
+ sup
x,y∈R

E
[

sup
0≤s≤t

(
∂βỸ

(x,y)
s

)p]
<∞.

Proof. We already know that, for all t ≥ 0, x 7→ X̃
(x)
t is C3 by Proposition 2.6. Indeed, by definition

X̃
(x)
t is the first coordinate of ϕt(x, y).
Now, let us recall that Tn (n ∈ N∗) denote the jump times of the process (X̃(x), Ỹ (x,y)) and that

these jump times do not depend on the initial condition (x, y). For t < T1,

(X̃
(x)
t , Ỹ

(x,y)
t ) = ϕt(x, y)

is C3 w.r.t. (x, y) by Proposition 2.6. And, for t ∈ [Tn, Tn+1[ (n ∈ N∗),

(X̃
(x)
t , Ỹ

(x,y)
t ) = ϕt−Tn(X̃

(x)
Tn
, 0),

which is also C3 w.r.t. (x, y) as a composition of the function (x, y) ∈ R2 7→ ϕt−Tn
(x, y) and

the function (x, y) ∈ R2 7→ (X̃
(x)
Tn
, 0). This proves that, almost surely, for all t ≥ 0, (x, y) 7→

(X̃
(x)
t , Ỹ

(x,y)
t ) is C3. Now, we prove the second part of the statement.

By definition, for all t ≥ 0,

X̃
(x)
t = x− α1

∫ t

0

X̃(x)
s ds−

∫ t

0

X̃(x)
s f1(X̃(x)

s )ds+ σ

∫ t

0

√
f1

(
X̃

(x)
s

)
dWs.

This implies

∂xX̃
(x)
t =1− α1

∫ t

0

∂xX̃
(x)
s ds−

∫ t

0

X̃(x)
s ∂xX̃

(x)
s f ′1(X̃(x)

s )ds−
∫ t

0

∂xX̃
(x)
s f1(X̃(x)

s )ds

+ σ

∫ t

0

∂xX̃
(x)
s

(√
f1

)′ (
X̃(x)
s

)
dWs.

We also know that

∂xỸ
(x,y)
t = −α2

∫ t

0

∂xỸ
(x,y)
s ds+ σ

∫ t

0

∂xX̃
(x)
s ·

√
f1

(
X̃

(x)
s

)
dWs −

∫ t

0

∫
[0,||f2||∞]

∂xỸ
(x,y)
s dπ̃(s, z).

Noticing that the initial condition of the process (∂xX̃
(x)
t , ∂xỸ

(x,y)
t ) is (1, 0), Lemma 3.2 allows

to prove the result of the lemma for the first order partial derivative w.r.t. x. The results for the
other partial derivatives follow from the same reasoning.

Proposition 2.8. Grant Assumption 1.(i) − (iii). For all t ≥ 0 and g ∈ C3
b (R2), the function

(x, y) ∈ R2 7→ P̄tg(x, y) is C3 and for all multi-index β such that |β| = 3,

sup
0≤s≤t

∣∣∣∣∂βP̄sg∣∣∣∣∞ ≤ Ct||g||3,∞,
where Ct > 0 does not depend on g.



X. Erny/Two-layers neural model 14

Proof. For the sake of readability, we do not prove the result for the multi-indexes β such that
|β| = 3 but for those such that |β| = 1. This case is easier to prove and the techniques are exactly
the same.

Recalling Proposition 2.4, we have

P̄tg(x, y) = E

g (X̃(x)
t , Ỹ

(x,y)
t

) Nt∏
n=1

f2

(
Ỹ

(x,y)
Tn

)
||f2||∞

exp

[
−
∫ t

0

(
f2

(
Ỹ (x,y)
s

)
− ||f2||∞

)
ds

] . (5)

To prove that the function P̄tg is C1, we rely on Lemma 3.1 which is a generalization of the
classical result about the "differentiation under the integral sign" that uses Vitali theorem instead
of the dominated convergence theorem.

By Proposition 2.7, we know that the expression in the expectation of the right-hand side of (5)
is C1 almost surely. In addition, one can control the expectation of the square of the derivatives of
this expression thanks to Proposition 2.7 (see below for the explicit expression of the derivatives).

So Lemma 3.1 (applied twice since there are two coordinates) implies that P̄tg is C1. In addition,
denoting by

Lt(x, y) :=

Nt∏
n=1

f2

(
Ỹ

(x,y)
Tn

)
||f2||∞

exp

[
−
∫ t

0

(
f2

(
Ỹ (x,y)
s

)
− ||f2||∞

)
ds

]
,

we have (thanks to Lemma 3.1)

∂2

(
P̄tg
)

(x, y) = E
[
∂yỸ

(x,y)
t · ∂2g

(
X̃

(x)
t , Ỹ

(x,y)
t

)
Lt(x, y)

]
+ E

g (X̃(x)
t , Ỹ

(x,y)
t

) Nt∑
n=1

∂yỸ
(x,y)
Tn

f ′2

(
Ỹ

(x,y)
Tn

)
||f2||∞

∏
k 6=n

f2

(
Ỹ

(x,y)
Tk

)
||f2||∞

exp

(∫ t

0

(||f2||∞ − f2(Ỹ (x,y)
s ))ds

)
− E

[∫ t

0

∂yỸ
(x,y)
s f ′2

(
Ỹ (x,y)
s

)
ds · g

(
X̃

(x)
t , Ỹ

(x,y)
t

)
Lt(x, y)

]
.

As a consequence,∣∣∂2

(
P̄tg
)

(x, y)
∣∣ ≤||∂2g||∞et||f2||∞E

[∣∣∣∂yỸ (x,y)
t

∣∣∣]
+ ||g||∞

||f ′2||∞
||f2||∞

e||f2||∞tE
[
Nt sup

0≤s≤t

∣∣∣∂yỸ (x,y)
s

∣∣∣]
+ ||f ′2||∞ · ||g||∞et||f2||∞tE

[
sup

0≤s≤t

∣∣∣∂yỸ (x,y)
s

∣∣∣] .
The expressions of the first line and the third line above can be bounded uniformly in (x, y) thanks

to Proposition 2.7. For the expression of the second line, we can use Cauchy-Schwarz’s inequality
for example (we can recall that Nt follows the Poisson distribution with parameter t||f2||∞).

This implies that
sup
x,y∈R

sup
0≤s≤t

∣∣∂2

(
P̄sg
)

(x, y)
∣∣ ≤ Ct||g||1,∞.
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With similar computation, we can prove that

sup
x,y∈R

sup
0≤s≤t

∣∣∂1

(
P̄sg
)

(x, y)
∣∣ ≤ Ct||g||1,∞.

So we have proved the result for the two multi-indexes β such that |β| = 1. Note that in the
case for the multi-indexes β such that |β| = 3, we would need a control on higher moments of the
processes X̃, Ỹ and their derivatives to control expectations of product of these processes. Indeed,
the partial derivative w.r.t. the multi-index (1, 2) would involve terms as

E

[(
sup

0≤s≤t
|∂xỸ (x,y)

s |
)(

sup
0≤s≤t

|∂yỸ (x,y)
s |

)2
]

which can be controlled using Cauchy-Schwarz’s inequality, recalling that Proposition 2.7 allows to
bound every polynomial moment of the partial derivatives of the process (X̃, Ỹ ) w.r.t. its initial
condition.

2.3. End of the proof of Theorem 1.3

With a similar proof as the one of Proposition 5.6 of Erny, Löcherbach and Loukianova (2022), we
can prove that, for all t ≥ 0, N ∈ N∗, g ∈ C3

b (R2), x, y ∈ R,

(
P̄t − PNt

)
g(x, y) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x, y)ds.

Consequently,

∣∣(P̄t − PNt ) g(x, y)
∣∣ ≤ ∫ t

0

E(x,y)

[∣∣(Ā−AN) P̄sg(XN
t−s, Y

N
t−s)

∣∣] ds
≤C ·N−1/2

∫ t

0

E(x,y)

f1(XN
t−s)

∑
|β|=3

||∂β
(
P̄sg
)
||∞

 ds
+ CN−1

∫ t

0

E(x,y)

[(
XN
t−s
)2
f1

(
XN
t−s
)
||∂2

11(P̄sg)||∞
]
ds

≤Ct ·N−1/2 · ||f1||∞||g||3,∞ + Ct ·N−1 · ||f1||∞
(
1 + x2

)
||g||2,∞,

where we have used Lemma 2.3 to obtain the second inequality above, and Proposition 2.8 and
Lemma 3.4 to obtain the last one. More precisely, Proposition 2.8 is used to control the partial
derivatives of the function P̄sg, and Lemma 3.4 to control the second order moment of XN

t−s.

3. Technical lemmas

The first lemma allows to differentiate under an integral sign. Contrary to the classical result that
relies on the dominated convergence theorem, this result relies on Vitali convergence theorem. In
other words, we use a uniform integrability criterion instead of a domination condition.
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Lemma 3.1. Let F : (x, ω) ∈ R × Ω 7→ R be a measurable function, where (Ω,P) is a probability
space. Assume that:

• P−almost surely, x 7→ F (x, ω) is C1,
• there exists p > 1 such that

sup
x∈R

∫
Ω

|∂1F (x, ω)|p dP(ω) <∞.

Then, P−almost surely, x 7→
∫

Ω
F (x, ω)dP(ω) is C1 and its derivative is∫

Ω

∂1F (x, ω)dP(ω).

Proof. Let (xn)n be a sequence of real numbers that converges to some x ∈ R. Let us write

Gn(ω) :=
F (x, ω)− F (xn, ω)

x− xn
.

We have
|Gn(ω)| =

∣∣∣∣ 1

x− xn

∫ x

xn

∂1F (y, ω)dy

∣∣∣∣ ≤ 1

|x− xn|

∫ x

xn

|∂1F (y, ω)|dy.

Then, by Jensen’s inequality and Fubini-Tonelli’s theorem,∫
Ω

|Gn(ω)|p dP(ω) ≤ 1

|x− xn|

∫
Ω

∫ x

xn

|∂1F (y, ω)|p dydP(ω)

≤ 1

|x− xn|

∫ x

xn

∫
Ω

|∂1F (y, ω)|p dP(ω)dy ≤ sup
y∈R

∫
Ω

|∂1F (y, ω)|p dP(ω).

As the previous bound is uniform in n, this implies that the family of random variables {Gn : n ∈
N} is uniformly integrable. Since P−almost surely,Gn(ω) converges to ∂1F (x, ω) as n goes to infinity,
Vitali convergence theorem allows to prove that

∫
Ω
Gn(ω)dP(ω) converges to

∫
Ω
∂1F (x, ω)dP(ω) as

n goes to infinity. So, we have shown that∫
Ω

Gn(ω)dP(ω) =
1

x− xn

(∫
Ω

F (x, ω)dP(ω)−
∫

Ω

F (xn, ω)dP(ω)

)
converges to

∫
Ω
∂1F (x, ω)dP(ω) for any sequence (xn)n converging to x. This means that the func-

tion x 7→
∫

Ω
F (x, ω)dP(ω) is differentiable and that its derivative is x 7→

∫
Ω
∂1F (x, ω)dP(ω).

Now let us show that x 7→
∫

Ω
∂1F (x, ω)dP(ω) is continuous. Let (xn)n converges to some x ∈ R.

We have ∣∣∣∣∫
Ω

∂1F (x, ω)dP(ω)−
∫

Ω

∂1F (xn, ω)dP(ω)

∣∣∣∣ ≤ ∫
Ω

|∂1F (x, ω)− ∂1F (xn, ω)| dP(ω).

Besides, we know that, P−almost surely, |∂1F (x, ω)− ∂1F (xn, ω)| vanishes as n goes to infinity.
And, using the fact that (by Jensen’s inequality), for any a, b ∈ R, (|a|+ |b|)p = 2p((|a|+ |b|)/2)p ≤
2p−1(|a|p + |b|p), we have∫

Ω

|∂1F (x, ω)− ∂1F (xn, ω)|p dP(ω) ≤2p−1

∫
Ω

(|∂1F (x, ω)|p + |∂1F (xn, ω)|p) dP(ω)

≤2p sup
y∈R

∫
Ω

|∂1F (y, ω)|p dP(ω),
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which implies that {|∂1F (x, ω) − ∂1F (xn, ω)| : n ∈ N} is uniformly integrable. Then Vitali
convergence theorem implies that

∫
Ω
|∂1F (x, ω)− ∂1F (xn, ω)| dP(ω) vanishes as n goes to infinity,

hence x 7→
∫

Ω
F (x, ω)dP(ω) is continuous.

The next lemma allows to obtain a priori estimates on solutions of certain SDEs (in our model, it
is used to control the polynomial moments of the derivatives of the limit process in Proposition 2.7).
This result is not written to be general, because some specific properties of our SDEs allows to do
some simplifications to obtain the result.

Lemma 3.2. Let (Xt, Yt)t be a solution of the following two-dimensional SDE

dXt =b1(Xt, Yt)dt+ ς1(Xt, Yt)dWt,

dYt =b2(Xt, Yt)dt+ ς2(Xt, Yt)dWt −
∫

[0,+∞[

Yt−1{z≤f(Yt−)}dπ(z, t),

where (Wt)t is one-dimensional standard Brownian motion, π a Poisson measure on R2
+ with

Lebesgue intensity and f a non-negative measurable function. Assume that the functions b1, b2,
ς1 and ς2 are sublinear: for all x, y ∈ R,

|b1(x, y)|+ |b2(x, y)|+ |ς1(x, y)|+ |ς2(x, y)| ≤ C(1 + |x|+ |y|).

Then:

(i) for any even p ∈ N such that X0 and Y0 both have a finite p−order moment, for all t ≥ 0,

E [Xp
t ] + E [Y pt ] ≤ Ct,p(1 + E [Xp

0 ] + E [Y p0 ]),

with Ct,p > 0 some constant,
(ii) if X0 and Y0 both have a finite 2p−th order moment (for some even p ∈ N∗), for all t ≥ 0,

E
[

sup
0≤s≤t

Xp
s

]
+ E

[
sup

0≤s≤t
Y ps

]
≤ Ct,p

(
1 + E

[
X2p

0

]
+ E

[
Y 2p

0

])
,

with Ct,p > 0 another constant.

Proof. Step 1. Let us prove the point (i). By Ito’s formula, for all t ≥ 0,

Xp
t =Xp

0 + p

∫ t

0

Xp−1
s b1(Xs, Ys)ds+

p(p− 1)

2

∫ t

0

Xp−2
s ς1(Xs, Ys)

2ds+ p

∫ t

0

Xp−1
s ς1(Xs, Ys)dWs,

(6)

Y pt =Y p0 + p

∫ t

0

Y p−1
s b2(Xs, Ys)ds+

p(p− 1)

2

∫ t

0

Y p−2
s ς2(Xs, Ys)

2ds+ p

∫ t

0

Y p−1
s ς2(Xs, Ys)dWs

−
∫

[0,t]×[0,+∞[

Y ps−1{z≤f(Ys−)}dπ(s, z)

≤Y p0 + p

∫ t

0

Y p−1
s b2(Xs, Ys)ds+

p(p− 1)

2

∫ t

0

Y p−2
s ς2(Xs, Ys)

2ds+ p

∫ t

0

Y p−1
s ς2(Xs, Ys)dWs.

(7)
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Now for M > 0, let us introduce the following stopping time

τM := inf{t > 0 : |Xt| > M or |Yt| > M},

and the function
uM,p(t) := E [(Xt∧τM )p + (Yt∧τM )p] .

Thanks to (6), we have for all t ≥ 0,

E [(Xt∧τM )p] = E [Xp
0 ] + E

[∫ t∧τM

0

(
pXp−1

s b1(Xs, Ys) +
p(p− 1)

2
Xp−2
s ς1(Xs, Ys)

2

)
ds

]
= E [Xp

0 ] + E
[∫ t∧τM

0

(
pXp−1

s∧τM b1(Xs∧τM , Ys∧τM ) +
p(p− 1)

2
Xp−2
s ς1(Xs∧τM , Ys∧τM )2

)
ds

]
≤ E [Xp

0 ] + C

∫ t

0

E
[
|Xs∧τM |p−1 · |b1(Xs∧τM , Ys∧τM )|+Xp−2

s∧τM ς1(Xs∧τM , Ys∧τM )2
]
ds

≤ E [Xp
0 ] + C

∫ t

0

(1 + uM,p(s)) ds,

where we have used the sublinearity of the functions b1 and ς1 to obtain the last line. With the
same reasoning, we also have using (7) for all t ≥ 0,

E [(Yt∧τM )p] ≤ E [Y p0 ] + C

∫ t

0

(1 + uM,p(s)) ds.

So, for all t ≥ 0,

uM,p(t) ≤ E [Xp
0 ] + E [Y p0 ] + Ct+ C

∫ t

0

uM,p(s)ds.

Then, as the function uM,p is locally integrable (thanks to the stopping time τM ), Grönwall’s
lemma implies that for all t ≥ 0,

uM,p(t) ≤ (E [Xp
0 ] + E [Y p0 ] + Ct) eCt ≤ Ct(1 + E [Xp

0 ] + E [Y p0 ]), (8)

where Ct > 0 does not depend on M.
Now let us prove that τM goes to infinity almost surely as M goes to infinity. Firstly, as (τM )M

is non-decreasing w.r.t. M , we know that τM has an almost sure limit τ as M goes to infinity. We
have, for all t > 0, by Markov’s inequality and thanks to (8),

P (τM ≤ t) ≤ P
(
Xp
t∧τM + Y pt∧τM ≥M

p
)
≤ 1

Mp
uM,p(t) −→

M→∞
0.

Consequently, for all t > 0,

P (τ ≤ t) ≤ P

( ⋂
M∈N∗

{τM ≤ t}

)
= lim
M→∞

P (τM ≤ t) = 0.

Whence

P (τ <∞) ≤ P

( ⋃
t∈N∗
{τ ≤ t}

)
= 0.
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This means that τM goes to infinity almost surely as M goes to infinity.
Finally, applying Fatou’s lemma to (8) gives that for all t ≥ 0,

E [Xp
t + Y pt ] ≤ Ct(1 + E [Xp

0 ] + E [Y p0 ]).

Step 2. Let us prove the point (ii). By (6) and Burkhölder-Davis-Gundy’s inequality,

E
[

sup
0≤s≤t

Xp
s

]
≤E [X0]

p
+ p

∫ t

0

E
[
|Xp−1

s b1(Xs, Ys)|
]
ds+

p(p− 1)

2

∫ t

0

E
[
Xp−2
s ς1(Xs, Ys)

2
]
ds

+ Cp

(∫ t

0

E
[
X2p−2
s ς1(Xs, Ys)

2
]
ds

)1/2

≤E
[
X2

0

]
+ C

∫ t

0

(1 + E [Xp
s ] + E [Y ps ]) ds+ C

(∫ t

0

(
1 + E

[
X2p
s

]
+ E

[
Y 2p
s

])
ds

)1/2

≤E [Xp
0 ] + C

∫ t

0

(
1 + E

[
X2p
s

]
+ E

[
Y 2p
s

])
ds

≤Ct
(

1 + E
[
X2p

0

]
+ E

[
Y 2p

0

])
.

The result for the process Y follows from the same computation using (7) instead of (6).

Remark 3.3. In the proof of Lemma 3.2, we use the stopping times τM to guarantee the function
uM,p to be locally integrable. Otherwise we would not have the right to apply Grönwall’s lemma.

The following lemma is similar to the previous one: it allows to control the moments of the process
(XN , Y N ) instead of the moments of the limit process (X̄, Ȳ ). An important point of the lemma
is that, the desired estimates are uniform in N (provided that the initial conditions (XN

0 , Y
N
0 )

admit finite moments uniformly bounded in N). This lemma is used in the proof of Theorem 1.3
at Section 2.3. In the proof of Lemma 3.4 below, we do not introduce the stopping times τM as in
the proof of Lemma 3.2 for the sake of readability.

Lemma 3.4. Grant Assumption 1.(i) and Assumption 1.(iv). Let XN be the solution of the first
equation of (1). Assume that each XN

0 has a finite second order moment. Then, for any N ∈ N∗
and t ≥ 0,

sup
s≤t

E
[(
XN
s

)2] ≤ Ct (1 + E
[
(XN

0 )2
])
,

where Ct > 0 does not depend on N.
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Proof. By Ito’s formula,

(XN
t )2 =(XN

0 )2 − 2α1

∫ t

0

(XN
s )2ds

+

N∑
j=1

∫
[0,t]×R+×R

[(
XN
s− +

u√
N
−
XN
s−
N

)2

− (XN
s−)2

]
1{z≤f1(XN

s−)}dπ
(1),j(s, z, u)

≤(XN
0 )2 +

N∑
j=1

∫
[0,t]×R+×R

[(
XN
s− +

u√
N
−
XN
s−
N

)2

− (XN
s−)2

]
1{z≤f1(XN

s−)}dπ
(1),j(s, z, u)

=(XN
0 )2 +

N∑
j=1

∫
[0,t]×R+×R

[
2

(
u√
N
−
XN
s−
N

)
XN
s− +

(
u√
N
−
XN
s−
N

)2
]
1{z≤f1(XN

s−)}dπ
(1),j(s, z, u).

Taking expectation, we obtain

E
[
(XN

t )2
]
≤ E

[
(XN

0 )2
]

+N ||f1||∞
∫ t

0

∫
R
E

[
2

(
u√
N
− XN

s

N

)
XN
s +

(
u√
N
− XN

s

N

)2
]
dν(u)ds.

Now let us develop the term within the expectation

2

(
u√
N
− XN

s

N

)
XN
s +

(
u√
N
− XN

s

N

)2

= 2
u√
N
XN
s − 2

(XN
s )2

N
+
u2

N
+

(XN
s )2

N2
− 2

uXN
s

N
√
N
.

Recalling that
∫
udν(u) = 0 and that σ2 :=

∫
u2dν(u), we have∫

R
E

[
2

(
u√
N
− XN

s

N

)
XN
s +

(
u√
N
− XN

s

N

)2
]
dν(u) =− 2

N
E
[
(XN

s )2
]

+
σ2

N
+

1

N2
E
[
(XN

s )2
]

≤σ
2

N
+

1

N2
E
[
(XN

s )2
]
.

Consequently,

E
[
(XN

t )2
]
≤ E

[
(XN

0 )2
]

+ σ2||f1||∞t+
1

N

∫ t

0

E
[
(XN

s )2
]
ds.

And Grönwall’s lemma implies that

E
[
(XN

t )2
]
≤
(
E
[
(XN

0 )2
]

+ σ2||f1||∞t
)
et/N ≤

(
E
[
(XN

0 )2
]

+ σ2||f1||∞t
)
et,

which proves the result.
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