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di�usive regime

Xavier Erny

Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d'Evry, 91037, Evry,
France

Abstract: We study a model of interacting neurons. The structure of this neural system is
composed of two layers of neurons such that the neurons of the �rst layer send their spikes
to the neurons of the second one: if N is the number of neurons of the �rst layer, at each
spiking time of the �rst layer, every neuron of both layers receives an amount of potential of
the form U/

√
N, where U is a centered random variable. This kind of structure of neurons

can model the neural retina. In the model, we study the "averaged e�ect" of the neurons
of the �rst layer on a single neuron of the second layer. The theoretical model consists in
two stochastic processes, one modelling the membrane potential of the neurons of the �rst
layer, and the other the membrane potential of the neuron of the second layer. We prove
the convergence of these processes as the number of neurons N goes to in�nity and obtain a
convergence speed. The proofs rely on similar arguments as those used in Erny, Löcherbach
and Loukianova (2019): the convergence speed of the semigroups of the processes is obtained
from the convergence speed of their in�nitesimal generators using a Trotter-Kato formula, and
from the regularity of the limit semigroup. Contrarily to the situation in Erny, Löcherbach
and Loukianova (2019), the stochastic �ow of the limit process is not continuous, and we need
to use a kind of Girsanov's result to recover the regularity of the limit semigroup from the
regularity of the stochastic �ow of an auxiliary process.

MSC2020 subject classi�cations: 60J35, 60J60, 60K35, 60G55.
Keywords and phrases: Mean �eld interaction, Piecewise deterministic Markov processes,
Interacting particle systems.

1. Introduction

1.1. Model

The aim of this paper is to study a model of two layers of neurons such that:

• the neurons of the �rst layer send their spikes to the neurons of both the �rst and second
layers,
• the spikes of the neurons of the second layer do not have e�ect on these two layers.

This kind of multi-layers structure, where the neurons of a layer send their spikes to the neurons
of the next one, can model the neural retina. This kind of interaction with more than two layers
has already been studied in Ditlevsen and Löcherbach (2017) and at Section 5 of Erny, Löcherbach
and Loukianova (2021).

We note N the number of neurons of the �rst layer. The idea of our modelling is to study the
"averaged e�ect" of the �rst layer on a single neuron of the second one. We model the behavior
of the �rst layer in the following way: every neuron of the �rst layer shares the same membrane
potential and this potential does not undergo the e�ect of the repolarization. In our frame, it is
natural not to consider the e�ect of the repolarization for the �rst layer since it a�ects each neuron
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individually and we only consider these neurons through an averaged a�ect on a neuron of the
second layer.

Let us note ZN,1 the counting process related to the neuron of the second layer, and ZN,i

(2 ≤ i ≤ N + 1) the counting processes related to the neurons of the �rst layer. In the model, ZN,1t

is the number of spikes emitted by the neuron of the second layer, and ZN,it (2 ≤ i ≤ N + 1) is
the number of spikes emitted by the i−th neuron of the �rst layer before time t. We assume that
ZN,1 admits a stochastic intensity of the form (f2(Y Nt−))t≥0 where Y Nt is the membrane potential
of the neuron of the second layer at time t and f2 is its spike rate function. Similarly, we assume
that every ZN,j (2 ≤ j ≤ N + 1) admits a stochastic intensity of the form (f1(XN

t−))t≥0 where XN
t

models the averaged e�ect of the membrane potentials of the neurons of the �rst layer at time t
and f1 is the spike rate function of these neurons. We assume that this function f1 is the same
for all the neurons of the �rst layer, meaning that these neurons have similar characteristics. It is
well-known that such point processes can be represented as thinnings of Poisson measures (see e.g.
Theorem II.7.4 of Ikeda and Watanabe (1989)):

ZN,1t =

∫
[0,t]×R+

1{z≤f2(Y N
s−)}dπ

1(t, z),

ZN,it =

∫
[0,t]×R+

1{z≤f1(XN
s−)}dπ

i(t, z), 2 ≤ i ≤ N + 1,

where πi (1 ≤ i ≤ N+1) are i.i.d. Poisson measures on R2
+ having intensity dt ·dz. For the moment,

let us note JNt the jump process that models the e�ect of the spikes of the neurons of the �rst layer.
Then, the dynamics of the process XN and Y N are given by the following SDEs:

dXN
t =− α1X

N
t dt+ dJNt , (1)

dY Nt =− α2Y
N
t dt+ dJNt − Y Nt−dZ

N,1
t .

In the SDEs above, α1 and α2 are positive parameters of the model. These drifts model the fact
that the potentials of the neurons tend to go to the resting value that we assume to be zero. In this
model, we assume that the potentials go to zero at exponential speed with respective rate α1 for the
neurons of the �rst layer, and α2 for the neuron of the second layer. In the following, JN is directed
by the point processes ZN,i (2 ≤ i ≤ N + 1), modelling the fact that the spikes of the neurons of
the �rst layers modi�es the values of the potentials of the neurons. The third term in the SDE of
Y N above models the repolarization of the potential of the neuron: right after the neuron emits a
spike, its potential goes fast (here it jumps immediately) to its resting value that we assume to be
zero.

Remark 1.1. Note that it is not mandatory to assume the parameters α1 and α2 to be positive for
our results to hold true. This condition is natural for the modelling.

In order to study the limit of this model as the number of neurons N goes to in�nity, we need
to assume that the e�ect of each individual spike of the neurons vanishes as N goes to in�nity. To
the best of our knowledge, there exists two such kinds of models: when the e�ect of a spike is of
order N−1 (which corresponds to a law of large number) and when it is stochastic, centered and of
order N−1/2 (which corresponds to a central limit theorem). In the �rst case, the process JN is of
the form

JNt =
1

N

N+1∑
j=2

∫
[0,t]×R+

1{z≤f1(XN
s−)}dπ

j(t, z). (2)
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In the second one, to make the height of the jump stochastic, we need to consider Poisson
measures πj (2 ≤ j ≤ N + 1) de�ned on R2

+ × R rather than on R2
+, with intensity dt · dz · dν(u),

where ν is a centered probability measure. In this case, the process JN is of the form

JNt =
1√
N

N+1∑
j=2

∫
[0,t]×R+×R

u · 1{z≤f1(XN
s−)}dπ

j(s, z, u). (3)

The convergence of the processes XN , Y N and ZN,i (i ≥ 1) as N goes to in�nity in the �rst case
(i.e. when JN is given by (2)) is classical. We give the related results and references at Section 3.

So in this paper, we focus mainly on the second case (i.e. when JN is given by (3)). It is a
generalization of the model of Erny, Löcherbach and Loukianova (2019) where we have studied the
convergence of the process XN . The interesting points of the model of this paper is that it is more
relevant for the modelling of a particular structure of neural network, and that we can still prove
similar results.

We are interested in proving the convergence (and obtaining a convergence speed) of the following
sequence of two-dimensional Markov processes

dXN
t =− α1X

N
t dt+

1√
N

N+1∑
j=2

∫
R+×R

u · 1{z≤f1(XN
t−)}dπ

j(t, z, u), (4)

dY Nt =− α2Y
N
t dt+

1√
N

N+1∑
j=2

∫
R+×R

u · 1{z≤f1(XN
t−)}dπ

j(t, z, u)−
∫
R+

Y Nt−1{z≤f2(Y N
t−)}dπ

1(t, z).

to the following limit process

dX̄t =− α1X̄t + σ
√
f1(X̄t)dWt, (5)

dȲt =− α2Ȳtdt+ σ
√
f1(X̄t)dWt −

∫
R+

Ȳt−1{z≤f2(Ȳt−)}dπ̄
1(t, z).

where W is a standard one-dimensional Brownian motion and π̄1 is a Poisson measure on R2
+ with

Lebesgue intensity.
Note that it can be more practical to simulate the trajectories of the process (X̄, Ȳ ) than those

of (XN , Y N ). Indeed, to simulate (XN , Y N ) one has to compute the behavior of the N point
processes ZN,i (2 ≤ i ≤ N + 1), which can be computationaly hard if N is large. So it can be
easier to simulate a single Brownian motion W instead of those point processes. If one wants to
approximate the process (XN , Y N ) with (X̄, Ȳ ), it is interesting to quantify "weak error" between
these processes. This is done in Theorem 1.2.

To obtain the convergence speed of the semigroups (PNt )t of the processes (XN
t , Y

N
t )t to the

semigroup (P̄t)t of the limit process (X̄t, Ȳt)t, we use similar arguments as in Erny, Löcherbach and
Loukianova (2019). We consider the in�nitesimal generators AN and Ā of respectively PN and P̄ .
We begin by proving the convergence of these generators and by obtaining a convergence speed.
Then, we deduce a convergence speed for the semigroups using the following formula:

P̄tg(x, y)− PNt g(x, y) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x, y)ds.
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One of the main step of the proof consists in studying the regularity of the limit semigroup (P̄t)t.
For this purpose, we need to study the regularity of the related stochastic �ow. Compared to the
proofs of Erny, Löcherbach and Loukianova (2019), there are two additional technical di�culties
that we handle at Section 2.2:

• The trajectories of the process (X̄, Ȳ ) are not continuous. Whence, its stochastic �ow is not
a Brownian �ow and Theorem 1.4.1 of Kunita (1986) cannot be used on this �ow.
• The jump times of the process (X̄, Ȳ ) occur at the rate f2(Ȳt−). This implies that this rate
depends on the initial condition of the process. The regularity of this dependency is hard to
study directly.

To overcome the �rst point, we study the regularity of the stochastic �ow between the jump times
(see Proposition 2.6). Let us remark that Bally, Goreac and Rabiet (2018) have already used the
idea of working between the jump times of the �ow to study its regularity and that of its semigroup.
For the second point, we introduce an auxiliary limit process (X̃, Ỹ ) for which the rate of the jump
is constant. Then, we deduce the regularity of the semigroup (P̄t)t from the regularity of the �ow
of (X̃, Ỹ ) using a kind of "Girsanov result" giving the explicit Radon-Nikodym derivative between
the processes (X̄, Ȳ ) and (X̃, Ỹ ) (see Proposition 2.3).

1.2. Notation

Throughout the paper, we use the following notation:

• For n ∈ N∗, we note Cnb (R) (resp. Cnb (R2)) the set of R−valued functions de�ned on R (resp.
R2) that are Cn, bounded and such that all their derivatives (resp. partial derivatives) up to
order n are bounded.

• We call β ∈ N2 a multi-index and we note |β| = β1 + β2. If g : R2 → R is Cn and if β is a
multi-index such that |β| ≤ n, we write ∂βg the partial derivative of g w.r.t. β. For the �rst
order partial derivatives, we write instead ∂1g and ∂2g, and for the second order derivatives,
we write ∂2

i,jg (i, j ∈ {1, 2}). When there is no possible confusion, we may use the classical
notation ∂xg(x, y) = ∂1g(x, y).

• For g ∈ Cnb (R2), we note

||g||n,∞ =
∑
|β|≤n

||∂βg||∞.

• Given a process X (resp. a multi-dimensional process (X,Y )) that is solution to some SDE, we
note X(x) (resp. (X(x,y), Y (x,y))) the process solution to the SDE w.r.t. the initial condition
X0 = x (resp. (X0, Y0) = (x, y)). The function x 7→ X(x) (resp. (x, y) 7→ (X(x,y), Y (x,y))) is
called the stochastic �ow of the process X (resp. (X,Y )).

• In all the paper, C denotes an arbitrary constant that is independent of any parameters except
the parameters of the model. If a constant depends on some parameter θ, we write Cθ instead.
The value of such constants can change from line to line in an equation.

1.3. Assumptions and main result

To begin with, let us state the conditions we need to study the model.

Assumption 1.
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(i) The function f1 is continuous, bounded and positive,
(ii) the function f2 is non-negative, Lipschitz continuous and belongs to C3

b (R)
(iii) the function

√
f1 is Lipschitz continuous and belongs to C4

b (R),
(iv) the probability measure ν is centered and admits a �nite third moment.

Under Assumption 1.(i)-(ii), the well-posedness of the previous SDEs is classical. The bound-
edness of f1 is not mandatory for our results to hold true but it simpli�es some technical details.
Without this boundedness, the convergence speed given in Theorem 1.2 would depend on the initial
condition. However, the boundedness of f2 is important to control the Radon-Nikodym derivative
between the limit process (X̄, Ȳ ) and the auxiliary process (X̃, Ỹ ) that we introduce at Section 2.2
(see Proposition 2.3 for the form of this derivative).

Condition (iii) allows to prove that the stochastic �ow of the auxiliary process is C3 between its
jump times (see Proposition 2.5). And condition (iv) allows us to obtain a convergence speed for
the generators (see Lemma 2.2).

Under the additional assumption that (XN
0 , Y

N
0 ) converges in distribution to (X̄0, Ȳ0), it is

classical that the process (XN , Y N ) converges in distribution to (X̄, Ȳ ) in Skorohod topology (see
Theorem IX.4.21 of Jacod and Shiryaev (2003)). The main result of this paper consists in obtaining
the convergence speed of the semigroups PN and P̄ of these processes (recalling that the processes
(XN , Y N ) and (X̄, Ȳ ) are de�ned respectively at (4) and (5)).

Theorem 1.2. Grant Assumption 1.(i)-(iv). For all t ≥ 0, N ∈ N∗, g ∈ C3
b (R2) and x, y ∈ R,∣∣P̄tg(x, y)− PNt g(x, y)

∣∣ ≤ Ct ·N−1/2.

Theorem 1.2 is proved at Section 2.3. The following �gure presents two simulations of the process
Y N with N = 100 and N = 1000.

Figure 1. Simulation of trajectories of (Y N
t )0≤t≤10 with XN

0 = 0, Y N
0 = 0, α1 = α2 = 1, ν = N (0, 1), f1(x) =

f2(x) = 2.2 + 1.4 arctan(10x− 2), N = 100 (left picture) and N = 1000 (right picture).
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2. Proofs

2.1. In�nitesimal generators

One can note that the processes (X̄, Ȳ ) and (XN , Y N ) (N ∈ N∗) are Markov processes. In the
following, we note P̄ and PN (N ∈ N∗) their respective semigroups, and Ā and AN (N ∈ N∗) their
respective in�nitesimal generators. We refer to Appendix A of Erny, Löcherbach and Loukianova
(2019) for the notion of generator we use here, and for their precise de�nition. In particular, if
X is a Markov process and A its in�nitesimal generator (in the sense of De�nition A.1 of Erny,
Löcherbach and Loukianova (2019)), we note D′(A) the set of functions g : R2 → R such that, for
all x ∈ R2,

• Exg(Xt)− g(x) = Ex
∫ t

0
Ag(Xs)ds,

• Ex
∫ t

0
|Ag(Xs)|ds <∞.

The following lemma is a direct consequence of Ito's formula and of the form of the SDE (4)

Lemma 2.1. Grant Assumption 1.(i)-(ii).
C2
b (R2) ⊆ D′(Ā), and for g ∈ C2

b (R2) and (x, y) ∈ R2,

Āg(x, y) = −α1x∂1g(x, y)− α2y∂2g(x, y) +
σ2

2
f1(x)

2∑
i,j=1

∂2
i,jg(x, y) + f2(y) [g(x, 0)− g(x, y)] .

C1
b (R2) ⊆ D′(AN ), and for g ∈ C1

b (R2) and (x, y) ∈ R2,

ANg(x, y) =− α1x∂1g(x, y)− α2y∂2g(x, y)

+Nf1(x)

∫
R

[
g

(
x+

u√
N
, y +

u√
N

)
− g(x, y)

]
dν(u) + f2(y) [g(x, 0)− g(x, y)] .

We have the following control on the convergence of the generators.

Lemma 2.2. Grant Assumption 1.(i)-(ii) and Assumption 1.(iv). For g ∈ C2
b (R2) and (x, y) ∈ R2,

∣∣ANg(x, y)− Āg(x, y)
∣∣ ≤ 1

6
f1(x)N−1/2

(∫
R
|u|3dν(u)

) ∑
|β|=3

||∂βg||∞.

Proof. Recalling that ν is a centered probability measure and that σ2 is its variance,

ANg(x, y)− Āg(x, y)

=

∫
R
Nf1(x)

[
g

(
x+

u√
N
, y +

u√
N

)
− g(x, y)

]
dν(u)− σ2

2
f1(x)

2∑
i,j=1

∂2
i,jg(x, y)

= Nf1(x)

∫
R

g(x+
u√
N
, y +

u√
N

)
− g(x, y)− u√

N

2∑
i=1

∂ig(x, y)− u2

2N

2∑
i,j=1

∂2
i,jg(x, y)

 dν(u).
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As a consequence∣∣ANg(x, y)− Āg(x, y)
∣∣

≤ Nf1(x)

∫
R

∣∣∣∣∣∣g
(
x+

u√
N
, y +

u√
N

)
− g(x, y)− u√

N

2∑
i=1

∂ig(x, y)− u2

2N

2∑
i,j=1

∂2
i,jg(x, y)

∣∣∣∣∣∣
 dν(u).

Then Taylor-Lagrange's inequality gives the result.

2.2. Semigroups and stochastic �ows

In this section, we prove the regularity of the semigroup of the limit process (X̄, Ȳ ) w.r.t. its
initial condition and a control of its derivatives. However there are additional technical di�culties
in this proof compared to Erny, Löcherbach and Loukianova (2019). The main di�culty is that
the trajectories of the process (X̄, Ȳ ) are not continuous. Whence the associated stochastic �ow is
not a Brownian �ow and Theorem 1.4.1 of Kunita (1986) cannot be applied directly to study the
di�erentiability of the �ow. So, we study the stochastic �ow between its jump times. Then we face
another di�culty: the jump times of the stochastic �ow depends on the initial condition, and we
do not want to study the regularity of this dependency.

This is why we introduce the following auxiliary limit process (X̃, Ỹ ). The only di�erence with
the limit process (X̄, Ȳ ) is that the stochastic intensity of the jump term in the SDE of Ỹ is
constant. In other words, the occurrences of the jump times of the process Ỹ are distributed as a
homogeneous Poisson process.

dX̃t =− α1X̃t + σ

√
f1(X̃t)dWt,

dỸt =− α2Ỹtdt+ σ

√
f1(X̃t)dWt −

∫
[0,||f2||∞]

Ỹt−dπ̃
1(t, z),

where π̃1 is a Poisson measure on R2
+ with Lebesgue intensity.

Let us note Nt = π̃1([0, t] × ||f2||∞) the number of jumps of the process Ỹ before time t. By
de�nition of π̃1, (Nt)t≥0 is a homogeneous Poisson process with rate ||f2||∞.We also note Tn (n ≥ 1)

the jump times of the process Ỹ .
The next proposition can be seen as a Girsanov's theorem for jump processes. It gives the Radon-

Nikodym derivative between the distribution of (X̄t, Ȳt) and that of (X̃t, Ỹt), for any t ≥ 0. This
result is a straightforward application of Theorem 3.5 of Löcherbach (2002) (see also Theorem V I.T3
of Brémaud (1981)), its proof is therefore omitted.

Proposition 2.3. Grant assumption 1.(i)-(ii). For all g ∈ Cb(R2), and, x, y ∈ R,

E
[
g
(
X̄

(x)
t , Ȳ

(x,y)
t

)]
= E

g (X̃(x)
t , Ỹ

(x,y)
t

) Nt∏
n=1

f2

(
Ỹ

(x,y)
Tn

)
||f2||∞

exp

[
−
∫ t

0

(
f2

(
Ỹ (x,y)
s

)
− ||f2||∞

)
ds

] ,
with Nt := π̃1([0, t]× [0, ||f2||∞]).
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In order to obtain a control on the regularity of the semigroup P̄ of the limit process (X̄, Ȳ ),
we rely on the previous proposition and on a control of the derivatives of the stochastic �ow of the
auxiliary process (X̃, Ỹ ). The next step is to prove this control.

Let us note ϕt(x, y) (t ∈ R+, (x, y) ∈ R2) the stochastic �ow related to the following 2−dimensional
SDE:

dXt =− α1Xtdt+ σ
√
f1(Xt)dWt,

dYt =− α2Ytdt+ σ
√
f1(Xt)dWt.

One can note that ϕt(x, y) is the �ow of the process (X̃, Ỹ ) between its jump times. We admit that
ϕt(x, y) is a Brownian �ow in the sense of Kunita (1986).

Remark 2.4. Contrarily to the more general framework of Kunita (1986), the stochastic �ow
ϕt(x, y) does only depend on one time parameter, because the process is time-homogeneous.

Proposition 2.5. Grant Assumption 1.(i), Assumption 1.(iii) and assume that f2 is bounded.
Almost surely, for all t ≥ 0, (x, y) 7→ ϕt(x, y) is a C3−di�eomorphism.

Proof. We rely on Theorem 1.4.1 of Kunita (1986) and use the notation therein. One can note that
the local characteristics (a, b) of the �ow ϕt(x, y) are

b(x, y) =

(
−α1x
−α2y

)
and a((x, y), (x′, y′)) = σ2

√
f1(x)f1(x′)

(
1 1
1 1

)
.

One can check that the Assumptions 1, 2 and 3 of Kunita (1986) are satis�ed. Then, Theo-
rem 1.4.1 of Kunita (1986) allows to conclude the proof.

Proposition 2.6. Grant Assumption 1.(i)-(iii). Almost surely, for all t ≥ 0, (x, y) 7→ (X̃
(x)
t , Ỹ

(x,y)
t )

is C3 and, for all even p ∈ N∗, for all multi-index β ∈ N2 such that 1 ≤ |β| ≤ 3,

sup
x∈R

E
[

sup
0≤s≤t

(
∂βX̃

(x)
s

)p]
+ sup
x,y∈R

E
[

sup
0≤s≤t

(
∂βỸ

(x,y)
s

)p]
<∞.

Proof. We already know that, for all t ≥ 0, x 7→ X̃
(x)
t is C3 by Proposition 2.5. Indeed, by de�nition

X̃
(x)
t is the �rst coordinate of ϕt(x, y).
Now, let us recall that Tn (n ∈ N∗) denote the jump times of the process (X̃(x), Ỹ (x,y)) and that

these jump times do not depend on the initial condition (x, y). For t < T1,

(X̃
(x)
t , Ỹ

(x,y)
t ) = ϕt(x, y)

is C3 w.r.t. (x, y) by Proposition 2.5. And, for t ∈ [Tn, Tn+1[ (n ∈ N∗),

(X̃
(x)
t , Ỹ

(x,y)
t ) = ϕt−Tn

(X̃
(x)
Tn
, 0),

which is also C3 w.r.t. (x, y) as a composition of the function (x, y) ∈ R2 7→ ϕt−Tn(x, y) and

the function (x, y) ∈ R2 7→ (X̃
(x)
Tn
, 0). This proves that, almost surely, for all t ≥ 0, (x, y) 7→

(X̃
(x)
t , Ỹ

(x,y)
t ) is C3. Now, we prove the second part of the statement.
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By de�nition, for all t ≥ 0,

X̃
(x)
t = x− α1

∫ t

0

X̃(x)
s ds+ σ

∫ t

0

√
f1

(
X̃

(x)
s

)
dWs.

This implies

∂xX̃
(x)
t = 1− α1

∫ t

0

∂xX̃
(x)
s ds+ σ

∫ t

0

∂xX̃
(x)
s

(√
f1

)′ (
X̃(x)
s

)
dWs.

We also know that

∂xỸ
(x,y)
t = −α2

∫ t

0

∂xỸ
(x,y)
s ds+ σ

∫ t

0

∂xX̃
(x)
s ·

√
f1

(
X̃

(x)
s

)
dWs −

∫ t

0

∫
[0,||f2||∞]

∂xỸ
(x,y)
s dπ̃(s, z).

Noting that the initial condition of the process (∂xX̃
(x)
t , ∂xỸ

(x,y)
t ) is (1, 0), Lemma 4.2 allows to

prove the result of the lemma for the �rst order partial derivative w.r.t. x. The results for the other
partial derivatives follow from the same reasoning.

Proposition 2.7. Grant Assumption 1.(i)-(iii). For all t ≥ 0 and g ∈ C3
b (R2), the function (x, y) ∈

R2 7→ P̄tg(x, y) is C3 and for all multi-index β such that |β| = 3,

sup
0≤s≤t

∣∣∣∣∂βP̄sg∣∣∣∣∞ ≤ Ct||g||3,∞,
where Ct > 0 does not depend on g.

Proof. For the sake of readability, we do not prove the result for the multi-indexes β such that
|β| = 3 but for those such that |β| = 1. This case is easier to prove and the technics are exactly the
same.

Recalling Proposition 2.3, we have

P̄tg(x, y) = E

g (X̃(x)
t , Ỹ

(x,y)
t

) Nt∏
n=1

f2

(
Ỹ

(x,y)
Tn

)
||f2||∞

exp

[
−
∫ t

0

(
f2

(
Ỹ (x,y)
s

)
− ||f2||∞

)
ds

] . (6)

To prove that the function P̄tg is C1, we rely on Lemma 4.1 which is a generalization of the
classical result about the "di�erentiation under the integral sign" that uses Vitali theorem instead
of the dominated convergence theorem.

By Proposition 2.6, we know that the expression in the expectation of the right-hand side of (6)
is C1 almost surely. In addition, one can control the expectation of the derivatives of this expression
thanks to Proposition 2.6 (see below for the explicit expression of the derivatives).

So Lemma 4.1 (applied twice) implies that P̄tg is C
1. In addition, denoting by

Lt(x, y) :=

Nt∏
n=1

f2

(
Ỹ

(x,y)
Tn

)
||f2||∞

exp

[
−
∫ t

0

(
f2

(
Ỹ (x,y)
s

)
− ||f2||∞

)
ds

]
,



X. Erny/Two-layers neural model 10

we have

∂2

(
P̄tg
)

(x, y) = E
[
∂yỸ

(x,y)
t · ∂2g

(
X̃

(x)
t , Ỹ

(x,y)
t

)
Lt(x, y)

]
+ E

g (X̃(x)
t , Ỹ

(x,y)
t

) Nt∑
n=1

∂yỸ
(x,y)
Tn

f ′2

(
Ỹ

(x,y)
Tn

)
||f2||∞

∏
k 6=n

f2

(
Ỹ

(x,y)
Tk

)
||f2||∞

exp

(∫ t

0

(||f2||∞ − f2(Ỹ (x,y)
s ))ds

)
− E

[∫ t

0

∂yỸ
(x,y)
s f ′2

(
Ỹ (x,y)
s

)
ds · g

(
X̃

(x)
t , Ỹ

(x,y)
t

)
Lt(x, y)

]
.

As a consequence,∣∣∂2

(
P̄tg
)

(x, y)
∣∣ ≤||∂2g||∞et||f2||∞E

[∣∣∣∂yỸ (x,y)
t

∣∣∣]
+ ||g||∞

||f ′2||∞
||f2||∞

e||f2||∞tE
[
Nt sup

0≤s≤t

∣∣∣∂yỸ (x,y)
s

∣∣∣]
+ ||f ′2||∞ · ||g||∞et||f2||∞tE

[
sup

0≤s≤t

∣∣∣∂yỸ (x,y)
s

∣∣∣] .
The expressions of the �rst line and the third line above can be bounded uniformly in (x, y) thanks

to Proposition 2.6. For the expression of the second line, we can use Cauchy-Schwarz's inequality
for example (we can recall that Nt follows the Poisson distribution with parameter t||f2||∞).

This implies that
sup
x,y∈R

sup
0≤s≤t

∣∣∂2

(
P̄sg
)

(x, y)
∣∣ ≤ Ct||g||1,∞.

With similar computation, we can prove that

sup
x,y∈R

sup
0≤s≤t

∣∣∂1

(
P̄sg
)

(x, y)
∣∣ ≤ Ct||g||1,∞.

So we have proved the result for the two multi-indexes β such that |β| = 1. Note that in the
case for the multi-indexes β such that |β| = 3, we would need a control on higher moments of the
processes X̃, Ỹ and their derivatives to control expectations of product of these processes. Indeed,
the partial derivative w.r.t. the multi-index (1, 2) would involve terms as

E

[(
sup

0≤s≤t
|∂xỸ (x,y)

s |
)(

sup
0≤s≤t

|∂yỸ (x,y)
s |

)2
]

which can be controlled using Cauchy-Schwarz's inequality, recalling that Proposition 2.6 allows to
bound every polynomial moment of the partial derivatives of the process (X̃, Ỹ ) w.r.t. its initial
condition.

2.3. Proof of Theorem 1.2

With a similar proof as the one of Proposition 5.6 of Erny, Löcherbach and Loukianova (2019), we
can prove that, for all t ≥ 0, N ∈ N∗, g ∈ C3

b (R2), x, y ∈ R,

(
P̄t − PNt

)
g(x, y) =

∫ t

0

PNt−s
(
Ā−AN

)
P̄sg(x, y)ds.
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Consequently,

∣∣(P̄t − PNt ) g(x, y)
∣∣ ≤∫ t

0

E(x,y)

[∣∣(Ā−AN) P̄sg(XN
t−s, Y

N
t−s)

∣∣] ds
≤C ·N−1/2

∫ t

0

E(x,y)

f1(XN
t−s)

∑
|β|=3

||∂β
(
P̄sg
)
||∞

 ds
≤Ct ·N−1/2 · ||f1||∞||g||3,∞,

where we have used Lemma 2.2 to obtain the second line above, and Proposition 2.7 to obtain the
third one.

3. The model in normalization N−1

The aim of this section is to state the convergence of the process (XN , Y N ) given in (1) with the
process JN de�ned by (2) instead of (3). In this section, the process (XN , Y N ) is solution to

dXN
t =− α1X

N
t dt+

1

N

N+1∑
j=2

∫
R+

1{z≤f1(XN
t−)}dπ

j(t, z),

dY Nt =− α2Y
N
t dt+

1

N

N+1∑
j=2

∫
R+

1{z≤f1(XN
t−)}dπ

j(t, z)−
∫
R+

Y Nt−1{z≤f2(Y N
t−)}dπ̄

1(t, z),

where πj (1 ≤ j ≤ N + 1) are i.i.d. Poisson measures on R2
+ with Lebesgue intensity.

In this framework the limit process (X̄, Ȳ ) is solution to the following SDE:

dX̄t =− α1X̄tdt+ E
[
f1(X̄t)

]
dt,

dȲt =− α2Ȳtdt+ E
[
f1(X̄t)

]
dt−

∫
R+

Ȳt−1{z≤f2(Ȳt−)}dπ̄
1(t, z),

where π̄1 is a Poisson measure with Lebesgue intensity. Note that the equation of X̄ above is
deterministic, as long as the initial condition X̄0 is.

With classical computation (see e.g. Delattre, Fournier and Ho�mann (2016), Fournier and
Löcherbach (2016) and Ditlevsen and Löcherbach (2017)) and under the assumption that the coef-
�cients of the SDEs are Lipschitz continuous, we can prove that for all t ≥ 0,

E
[

sup
0≤s≤t

∣∣XN
s − X̄s

∣∣]+ E
[

sup
0≤s≤t

∣∣Y Ns − Ȳs∣∣] ≤ Ct (N−1/2 + E
[
|XN

0 − X̄0|
]

+ E
[
|Y N0 − Ȳ0|

])
.

Figure 2 presents two simulations of the process Y N with N = 100 and N = 1000.
Note that in this model, a result similar to the one above above holds true even without "averag-

ing" the e�ect of the �rst population. More precisely, let us introduce XN,i the membrane potential
of the i−th neuron of the �rst population (2 ≤ i ≤ N +1), and Y N that of the neuron of the second
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Figure 2. Simulation of trajectories of (Y N
t )0≤t≤10 with XN

0 = 0, Y N
0 = 0, α1 = α2 = 1, ν = N (0, 1), f1(x) =

f2(x) = 2.2 + 1.4 arctan(10x− 2), N = 100 (left picture) and N = 1000 (right picture).

one. Assume that these processes are solutions to

dXN,i
t =− α1X

N,i
t dt+

1

N

N+1∑
j=2
j 6=i

∫
R+

1{z≤f1(XN,j
t− )}dπ

j(t, z)−XN,i
t−

∫
R+

1{z≤f1(XN,i
t− )}dπ

i(t, z),

dY Nt =− α2Y
N
t dt+

1

N

N+1∑
j=2

∫
R+

1{z≤f1(XN,j
t− )}dπ

j(t, z)− Y Nt−
∫
R+

1{z≤f2(Y N
t−)}dπ

1(t, z),

where XN,i
0 (2 ≤ i ≤ N + 1) are exchangeable.

Then one can show that these processes converge respectively to X̄i (2 ≤ i ≤ N + 1) and Ȳ :

dX̄i
t =− α1X̄

i
t + E

[
f1(X̄i

t)
]
dt−

∫
R+

X̄i
t−1{z≤f1(X̄i

t−)}dπ
i(t, z), 2 ≤ i ≤ N + 1,

dȲt =− α2Ȳt + E
[
f1(X̄1

t )
]
dt−

∫
R+

Ȳt−1{z≤f2(Ȳt−)}dπ̄
1(t, z)

in the following sense: for all t ≥ 0,

1

N

N+1∑
i=2

E
[

sup
0≤s≤t

∣∣X̄i
s −XN,i

s

∣∣]+ E
[

sup
0≤s≤t

∣∣Ȳs − Y Ns ∣∣]

≤ Ct

(
N−1/2 +

1

N

N+1∑
i=2

E
[
|X̄i

0 −X
N,i
0 |

]
+ E

[
Ȳ0 − Y N0

])
.
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4. Technical lemmas

The �rst lemma allows to di�erentiate under an integral sign. Contrary to the classical result that
relies on the dominated convergence theorem, this result relies on Vitali convergence theorem. In
other words, we use a uniform integrability criterion instead of a domination condition.

Lemma 4.1. Let F : (x, ω) ∈ R× Ω 7→ R+ be a measurable function, where (Ω,P) is a probability
space. Assume that:

• P−almost surely, x 7→ F (x, ω) is C1,
• there exists p > 1 such that

sup
x∈R

∫
Ω

|∂1F (x, ω)|p dP(ω) <∞.

Then, P−almost surely, x 7→
∫

Ω
F (x, ω)dP(ω) is C1 and its derivative is∫

Ω

∂1F (x, ω)dP(ω).

Proof. Let (xn)n be a sequence of real numbers that converges to some x ∈ R. Let us write

Gn(ω) :=
F (x, ω)− F (xn, ω)

x− xn
.

We have

|Gn(ω)| =
∣∣∣∣ 1

x− xn

∫ x

xn

∂1F (y, ω)dy

∣∣∣∣ ≤ 1

|x− xn|

∫ x

xn

|∂1F (y, ω)|dy.

Then, by Jensen's inequality and Fubini-Tonelli's theorem,∫
Ω

|Gn(ω)|p dP(ω) ≤ 1

|x− xn|

∫
Ω

∫ x

xn

|∂1F (y, ω)|p dydP(ω)

≤ 1

|x− xn|

∫ x

xn

∫
Ω

|∂1F (y, ω)|p dP(ω)dy ≤ sup
y∈R

∫
Ω

|∂1F (y, ω)|p dP(ω).

As the previous bound is uniform in n, this implies that the family of random variables {Gn : n ∈
N} is uniformly integrable. Since P−almost surely,Gn(ω) converges to ∂1F (x, ω) as n goes to in�nity,
Vitali convergence theorem allows to prove that

∫
Ω
Gn(ω)dP(ω) converges to

∫
Ω
∂1F (x, ω)dP(ω) as

N goes to in�nity.

The next lemma allows to obtain a priori estimates on solutions of certain SDEs. This result is not
written to be general, because some speci�c properties of our SDEs allows to do some simpli�cations
to obtain the result.

Lemma 4.2. Let (Xt, Yt)t be a solution of the following two-dimensional SDE

dXt =b1(Xt, Yt)dt+ ς1(Xt, Yt)dWt,

dYt =b2(Xt, Yt)dt+ ς2(Xt, Yt)dWt −
∫

[0,+∞[

Yt−1{z≤f(Yt−)}dπ(z, t),
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where (Wt)t is one-dimensional standard Brownian motion, π a Poisson measure on R2
+ with

Lebesgue intensity and f a non-negative measurable function. Assume that the functions b1, b2,
ς1 and ς2 are sublinear: for all x, y ∈ R,

|b1(x, y)|+ |b2(x, y)|+ |ς1(x, y)|+ |ς2(x, y)| ≤ C(1 + |x|+ |y|).

Then:

(i) for any even p ∈ N such that X0 and Y0 both have a �nite p−order moment, for all t ≥ 0,

E [Xp
t ] + E [Y pt ] ≤ Ct,p(1 + E [Xp

0 ] + E [Y p0 ]),

with Ct,p > 0 some constant,
(ii) if X0 and Y0 both have a �nite 2p−th moment (for some even p ∈ N∗), for all t ≥ 0,

E
[

sup
0≤s≤t

Xp
s

]
+ E

[
sup

0≤s≤t
Y ps

]
≤ Ct,p

(
1 + E

[
X2p

0

]
+ E

[
Y 2p

0

])
,

with Ct,p > 0 another constant.

Proof. Step 1. Let us prove the point (i). By Ito's formula, for all t ≥ 0,

Xp
t =Xp

0 + p

∫ t

0

Xp−1
s b1(Xs, Ys)ds+

p(p− 1)

2

∫ t

0

Xp−2
s ς1(Xs, Ys)

2ds+ p

∫ t

0

Xp−1
s ς1(Xs, Ys)dWs,

(7)

Y pt =Y p0 + p

∫ t

0

Y p−1
s b2(Xs, Ys)ds+

p(p− 1)

2

∫ t

0

Y p−2
s ς2(Xs, Ys)

2ds+ p

∫ t

0

Y p−1
s ς2(Xs, Ys)dWs

−
∫

[0,t]×[0,+∞[

Y ps−1{z≤f(Ys−)}dπ(s, z)

≤Y p0 + p

∫ t

0

Y p−1
s b2(Xs, Ys)ds+

p(p− 1)

2

∫ t

0

Y p−2
s ς2(Xs, Ys)

2ds+ p

∫ t

0

Y p−1
s ς2(Xs, Ys)dWs.

(8)

Now for M > 0, let us introduce the following stopping time

τM := inf{t > 0 : |Xt| > M or |Yt| > M},

and the function
uM,p(t) := E [(Xt∧τM )p + (Yt∧τM )p] .

Thanks to (7), we have for all t ≥ 0,

E [(Xt∧τM )p] = E [Xp
0 ] + E

[∫ t∧τM

0

(
pXp−1

s b1(Xs, Ys) +
p(p− 1)

2
Xp−2
s ς1(Xs, Ys)

2

)
ds

]
= E [Xp

0 ] + E
[∫ t∧τM

0

(
pXp−1

s∧τM b1(Xs∧τM , Ys∧τM ) +
p(p− 1)

2
Xp−2
s ς1(Xs∧τM , Ys∧τM )2

)
ds

]
≤ E [Xp

0 ] + C

∫ t

0

E
[
|Xs∧τM |p−1 · |b1(Xs∧τM , Ys∧τM )|+Xp−2

s∧τM ς1(Xs∧τM , Ys∧τM )2
]
ds

≤ E [Xp
0 ] + C

∫ t

0

(1 + uM,p(s)) ds,
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where we have used the sublinearity of the functions b1 and ς1 to obtain the last line. With the
same reasoning, we also have using (8) for all t ≥ 0,

E [(Yt∧τM )p] ≤ E [Y p0 ] + C

∫ t

0

(1 + uM,p(s)) ds.

So, for all t ≥ 0,

uM,p(t) ≤ E [Xp
0 ] + E [Y p0 ] + Ct+ C

∫ t

0

uM,p(s)ds.

Then, as the function uM,p is �nite valued (thanks to the stopping time τM ), Grönwall's lemma
implies that for all t ≥ 0,

uM,p(t) ≤ (E [Xp
0 ] + E [Y p0 ] + Ct) eCt ≤ Ct(1 + E [Xp

0 ] + E [Y p0 ]), (9)

where Ct > 0 does not depend on M.
Now let us prove that τM goes to in�nity almost surely as M goes to in�nity. Firstly, as (τM )M

is non-decreasing w.r.t. M , we know that τM has an almost sure limit τ as M goes to in�nity. We
have, for all t > 0, by Markov's inequality and thanks to (9),

P (τM ≤ t) ≤ P
(
Xp
t∧τM + Y pt∧τM ≥M

p
)
≤ 1

Mp
uM,p(t) −→

M→∞
0.

Consequently, for all t > 0,

P (τ ≤ t) ≤ P

( ⋂
M∈N∗

{τM ≤ t}

)
= lim
M→∞

P (τM ≤ t) = 0.

Whence

P (τ <∞) ≤ P

( ⋃
t∈N∗
{τ ≤ t}

)
= 0.

This means that τM goes to in�nity almost surely as M goes to in�nity.
Finally, applying Fatou's lemma to (9) gives that for all t ≥ 0,

E [Xp
t + Y pt ] ≤ Ct(1 + E [Xp

0 ] + E [Y p0 ]).

Step 2. Let us prove the point (ii). By (7) and Burkhölder-Davis-Gundy's inequality,

E
[

sup
0≤s≤t

Xp
s

]
≤E [X0]

p
+ p

∫ t

0

E
[
|Xp−1

s b1(Xs, Ys)|
]
ds+

p(p− 1)

2

∫ t

0

E
[
Xp−2
s ς1(Xs, Ys)

2
]
ds

+ Cp

(∫ t

0

E
[
X2p−2
s ς1(Xs, Ys)

2
]
ds

)1/2

≤E
[
X2

0

]
+ C

∫ t

0

(1 + E [Xp
s ] + E [Y ps ]) ds+ C

(∫ t

0

(
1 + E

[
X2p
s

]
+ E

[
Y 2p
s

])
ds

)1/2

≤E [Xp
0 ] + C

∫ t

0

(
1 + E

[
X2p
s

]
+ E

[
Y 2p
s

])
ds

≤Ct
(

1 + E
[
X2p

0

]
+ E

[
Y 2p

0

])
.

The result for the process Y follows from the same computation using (8) instead of (7).
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