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ABSTRACT

In this paper, we consider the problem of allocation of Emergency Vehicles (EVs)
to Rescue Centers (RCs). The objective is to improve the operational response of
the Fire and Rescue Services (SDIS) in France. More precisely, we focus on the mid-
term management, and on the process of redeployment of EVs in RCs according to
the evolution of requirements. At this level of decision, we do not have information
on accidents. We only used the available information on the simultaneity of require-
ments. Based on the Hurwicz criterion, we develop a mathematical model and an
iterative algorithm to solve it. The proposed approach takes into account both the
uncertainty on the occurrence sequence of accidents, and the attitude towards opti-
mization of the decision maker (DM). An illustration from the DM’s point of view
is presented. It shows that this uncertainty significantly impacts the deployment of
EVs. Results show that the proposed approach has an efficient resolution time for
real size problems.

KEYWORDS
Emergency medical service, Capacity deployment, Uncertainty, Hurwicz criterion

1. Introduction

In France, each department has a public service called the SDIS (Fire and Rescue
Services). A department is a territorial division which is composed of several civil
townships. Emergency, fire and rescue services provide assistance that is supplied by
vehicles from fixed locations. The SDIS is made up of a fire-fighting unit (professional
as well as voluntary), technical and administrative staff. Its main duties are rescue
operations, preparation and prevention operations. It aims to prevent all risks to civil
safety, such as accidents, damage and natural hazards; it prepares protective measures,
organizes special equipment, fights any kind of fire and also offers emergency aid. In
this paper, we focus on the Emergency Medical Service of the SDIS.

The SDIS splits each department into several sectors which are geographic zones.
It is composed of Rescue Centers (RCs) where the vehicles are located. Each sector is
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linked to all RCs in the department by a priority list named the ‘Dispatching Plan’
(DP). The first RC of each DP, named the ‘first call center’, is normally called to cover
the sector. The second one on the DP, named the ‘second call center’, is called when
the first call center is unavailable and so on until the last RC. The DPs are generated
automatically based on the time to reach a sector from an RC: the first center of the
DP is the closest, then the second center is the second closest and so on.

When lives are at stake, the aim of the SDIS is to have a set of RCs that can
intervene within 10 to 20 minutes for 80% of interventions (according to predefined
zones). In this context, one important area of improvement is to determine the
capacity (number of EVs) of each RC. This capacity depends on the requirement’s
distribution over the sectors. A report named SDACR (for instance, see SDACR31
(2012)), is produced every four years to analyse the requirements and discuss the
redeployment of EVs. In order to determine this capacity, the SDIS has at its disposal
only the simultaneous requirements of EVs in each sector. This information depends
on the number of simultaneous accidents in a given DP sector. In other words, there
may be one or more accidents in the DP sector, each of which requires at least one
EV at the same time.

In Aboueljinane, Sahin, and Jemai (2013), the authors distinguish three levels of de-
cision: long, middle and short term. The long term decisions consist of determining the
covered region, the location and the capacity of the facilities. The mid-term decisions
concern the deployment/redeployment decisions and the vehicles and resources assign-
ment problems. The short term decisions aim to determine the dispatching rules, hos-
pital destination or short term redeployment strategy. In our context, at the mid-term
management level, where only the simultaneous requirements of EVs are available, it
is mandatory to consider the uncertainty of the occurrence sequences. In order to in-
vestigate this uncertainty, we take into account the decision maker’s attitude towards
optimization using the Hurwicz criterion. This criterion considers the two extreme
values of the objective function, namely the best-case and the worst-case. Those val-
ues depend on the best/worst-case occurrence sequences of the accidents. A decision
support system is proposed to evaluate imprecise performances (i.e. the minimal and
the maximal average times to reach the accidents).

2. Literature review

In the literature, a wide variety of models have been proposed for Emergency Medical
Services (EMS) problems, which are derived to optimize the covering problem in a
facility location. Previous relevant reviews include: Brotcorne, Laporte, and Semet
(2003), Daskin and Dean (2005), Li, Zhao, Zhu, and Wyatt (2011), Farahani, Asgari,
Heidari, Hosseininia, and Goh (2012), Hulshof, Kortbeek, Boucherie, Hans, and
Bakker (2012) and Aboueljinane et al. (2013). Toregas, Swain, ReVelle, and Bergman
(1971), C. S. ReVelle and Swain (1970) and Carbone (1974) were among the first
to study the Location Set Covering Problem (LSCP). The main objective of these
studies was to minimize the number of facilities (centers) to cover the set of demand
points short of the indicated coverage. After that, the Maximal Covering Location
Problem (MCLP) was introduced by Church and ReVelle (1974) to determine the
number of facilities required to maximize the number of demand points covered by a
limited fixed number of facilities. Recently, Akbari, Eiselt, and Pelot (2018) studied
the MCLP for the location of Maritime Search and Rescue resources. Authors used
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real data which are derived from the Search and Rescue Information Management
system database. The resource centers are inshore and offshore stations. Each station
has a maximum of one vessel of each category. Nevertheless in this paper, a station is
not defined in the traditional sense of the term, but is ‘a central location for a vessel
that spends much of its time patrolling or performing other tasks at sea’.

To introduce capacity constraints, a Capacited Maximal Covering Location Problem
(CMCLP) was proposed by Current and Storbeck (1988). These authors considered a
fixed capacity level of the facility for each potential site. More recently, Yin and Mu
(2012) proposed a Modular Capacited Maximal Covering Location Problem (MCM-
CLP) with different capacity levels (varied numbers of stationed emergency vehicles).
However, these two models, do not specify which demand can be covered by which facil-
ity. To cope with this limitation, Backup Cover in Location Problems (BCLP) models
(Hogan & ReVelle, 1986), Generalized MCLP (GMCLP) models (Berman & Krass,
2002) and Gradual Covering Location Problems (GCLP) models (Berman, Drezner,
& Krass, 2010) have been developed. Nevertheless, these studies focus on the location
of facilities, and the first center allocation under finite capacity without dispatching
rules.

To take into account the availability of resources, probabilistic models have been
proposed to determine the best location that maximizes, with a given probability,
the population that can be satisfied by an available facility. Many of these models
are derived from MCLP with scenario optimization (Chow & Regan, 2011; Haight
& Fried, 2007; MacLellan & Martell, 1996; Serra & Marianov, 1998), the Maximum
Expected Covering Location Problem (MEXCLP) introduced by Daskin (1983) and
the Maximum Availability Location Problem (MALP) proposed by C. ReVelle and
Hogan (1989). These models have also been combined with simulation models in or-
der to evaluate and compare policies derived from optimal or near optimal solutions
(McCormack & Coates, 2015). Otherwise, stochastic programming models with prob-
abilistic constraints site have been developed. They aim to solve both the location of
facilities (emergency service sites) and the allocation of emergency vehicles to each site
(Beraldi, Bruni, & Conforti, 2004; Berman et al., 2010; Naoum-Sawaya & Elhedhli,
2013).

In these models, the following probabilities are assumed: (i) facilities may not be
available, and (ii) requirements at given demand points are known. In our context the
non-availability of EVs of the first call center is a consequence of a high simultaneity
of accidents that required EVs from the second or the third call center, etc. Unlike
the previous approaches, this paper explicitly proposes to integrate this cause into
the model.

In recent studies, the dynamic aspect of the problem has been incorporated
into EMS location models (Aringhieri, Bruni, Khodaparasti, & van Essen, 2017)
considering the redeployment of capacities. This redeployment problem consists of
relocating vehicles to deal with variation in demands. The research on the area
of redeployment problem is recent (Aboueljinane et al., 2013; Aringhieri et al.,
2017; Bélanger, Ruiz, & Soriano, 2012). In this context, two types of problems
are considered: multi-period (relocation of the rescue teams to base) and dynamic
redeployment problems (coverage of future requests given the set of idle vehicles).
These redeployment problems focus on short term decisions. Therefore they are based
on the occurrence of demand (accidents) at a given period. In contrast, in this study
we are at an aggregate level and only the simultaneously of requirements is known.
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Concerning the mid-term redeployment plans, a heuristic was proposed by
Schmauch (2007) to affect EVs to RCs based on the simultaneous requirement of
EVs of the first call center. Nevertheless, this approach does not take into account
other RCs of the DP when estimating the maximal time needed to reach the acci-
dent. In fact, a center is often engaged in other sectors (i.e. a sector outside its own
geographical zone). Thus, a sector may be frequently covered by the second or third
call center. Later, Guillaume, Ben-Ammar, Thierry, and Chabriac (2015) generalize
this heuristic to take into account this weakness. Nevertheless, the main limitation
of that study is that does not include the impact of the occurrences’ uncertainty. In
this paper, we show that this impact is not negligible. To address it, we propose a
two-stage model and an iterative algorithm to determine the best deployment plan.

3. Two-stage approach and features of the problem

In this section, we start by introducing the background of the two-stage programming
approach. The second part is devoted to presenting the simultaneous requirement
parameter that introduces uncertainty.

3.1. Two-stage programming: background

Two-stage linear programming problems often arise in the context of strategic planning
models. We start by reminding the reader about the formal tools used to build our
proposed two-stage approach.

Suppose that some parameters of the model are uncertain. Let the set, denoted by
S, contain all scenarios s of possible vectors of the uncertain parameters.

Firstly, we fix the decision variables xxx ∈ X, ∀s ∈ S (with cost function F 1(x)) to
determine a partial solution in the first stage. Secondly, we fix the decision variables
yyy ∈ Yxxx (where Yxxx the domain of yyy for a xxx fixed) to complete the solution in the second
stage (after the scenario came true). In this way, the problem can be formulated as
follows (where G is an aggregation function).

min
xxx∈X

(F 1(x) +G( min
yyy∈Yxxx

F 2(yyy, s)) (1)

In our case, the redeployment capacity is determined at the first stage, and the
EV available for accidents at the second stage. Moreover, the choice of aggregation
function G depends on the knowledge of the scenarios. If probability distribution over
the scenarios is available, a stochastic approach can be introduced and G becomes
the expected value (Birge & Louveaux, 2011). Then, the problem can be written as
follows:

min
xxx∈X

(F 1(x) + E[ min
yyy∈Yxxx

F 2(yyy, s)]) (2)

Otherwise, if the probability distribution is not available, another aggregation function
from decision theory can be used. Normally, the min-max criterion is introduced at
the second stage, which leads to the so-called two-stage robust optimization approach
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(Bertsimas, Brown, & Caramanis, 2011; Kasperski & Zieliński, 2017). The min-max
criterion focuses on the worst-case scenario, that is, the scenario that maximizes the
objective function. This criterion gives a guarantee of the maximum value that the
function can take knowing that there is uncertainty in the parameters. In this case the
problem is:

min
xxx∈X

(F 1(x) + max
s∈S

min
yyy∈Yxxx

F 2(yyy, s)) (3)

Nevertheless, this min-max criterion of the second stage can be seen as ultraconser-
vative since it focuses only on the worst scenario. Thus a criterion which concentrates
both on worst-case and best-case scenarios can lead a less conservative solution since
it considers not only the worst possible value but also the best possible value. This
criterion is the Hurwicz criterion (see e.g. Hurwicz (1951)). Using this criterion a so-
lution that minimizes the parametric convex combination of the objective function of
the best-case scenario and the worst-case scenario is sought. In this case, we solve the
following problem:

min
xxx∈X

(F 1(x) + αmin
s∈S

min
yyy∈Yxxx

F 2(yyy, s) + (1− α) max
s∈S

min
yyy∈Yxxx

F 2(yyy, s)) (4)

where parameter of the convex combination, namely the optimism-pessimism index
α ∈ [0, 1] is fixed and given. α is the weight of the objective function for the best-case
scenario and 1 − α is the the weight of the objective function for the worst-case
scenario. Clearly, if α = 0, we solve Problem (3); if α = 1, we seek a plan which
minimizes the total cost over the scenario set. Hence, α ∈ [0, 1] controls which of
the two extremes is preferred, since we do not have probability distribution over the
scenarios.

The Hurwicz criterion gives the possibility of modeling the attitude towards
optimization of the decision maker. It was introduced in Problem (4). We remind
readers that in this problem, we deal with the simultaneous requirement of EVs. In
the next subsection, we explain this source of uncertainty.

3.2. Uncertainty on the sequences of the occurrence of accidents under
the simultaneity of requirements

The primary objective of an Emergency Medical Service is to reach the accident site as
soon as possible. In an unconstrained resource context, there would be enough vehicles
at each RC to satisfy the demand of all the closest sectors. In our case, as the total
number of EVs is fixed, this is not the case. In this constrained context, the DPs
determine the order of the RCs to be contacted when an accident occurs. The first
call center in a DP is the nearest RC to the accident site. Under resource constraints,
it is possible that the first call center is not available to deal with the accident, hence
the second call center, which is the second nearest RC to the accident, is called. This
RC is the second RC of the DP for the sector where the accident occurs. In the same
way, there is the third, then the fourth RC of the DP and so on. Figure 1 illustrates
the DP assignment for 3 RCs and 3 sectors. it can be seen that Sector a has the DP:
RC1, RC2, RC3 since the closest RC is RC1 then RC2 and finally RC3. Sector b has
the DP: RC2, RC3, RC1 and Sector c: RC3, RC2, RC1. In this paper, the DPs are
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RC1

RC2

RC3

Sector a

Sector b

Sector c

Figure 1. Illustration of DPs.

fixed and determined as follows: if the average time to reach a sector from RC1 is less
than the average time to reach the same sector from RC2, then RC2 follows RC1 in
the DP of this sector.

Moreover, the requirement of EVs in each RC depends on the number of accidents
that occur simultaneously in the sectors that have the same DP. This simultaneity
of requirements is due to the occurrence of one or more accidents that each need
one or more EVs during the time that several EVs are occupied by other accidents.
In our case, we are at the mid-term process. The data of past accidents is available
and aggregated to estimate the simultaneity of requirements (SDACR31, 2012).
This aggregation strategy facilitates the resolution of the problem and allows us to
translate the historical data into a global requirement for each sector.

We note that this simultaneity of requirements does not fully define the occurrence
of the accidents. Thus, there is a set of occurrences of accidents, denoted by S, with
a given simultaneous requirement. This simultaneity impacts the performance of the
SDIS in terms of expected time to reach the scenes of the accidents as shown in the
following example ( see Ex.3.1).

Example 3.1. In this example, the total simultaneous requirements of EVs are equal
to 6. Only 2 sequences of occurrences are considered (see Figure 2). We suppose that
4 accidents have occurred and each one requires 1 or 2 EV(s). In other words, 6 EVs
are needed simultaneously to rescue the accident victims.

For these cases, two accidents (Acc 1 and Acc 2) have occurred in the same sector
whose dispatching plan is DPa. They require 2 and 1 EV(s), respectively. A third
accident requires 2 EVs and has occurred in another sector whose dispatching plan is
DPb. A fourth accident requires 1 EV and has occurred in a sector whose dispatching
plan is DPc.

Thus, the simultaneity of requirements of DPa, DPb and DPc are 3, 2 and 1, re-
spectively. Nevertheless, the sequences of occurrences of these accidents with the same
simultaneous requirements are different for the two cases. Moreover, considering the
DPs, these sequences lead to different assignments to the RCs, as shown below (see
Figure 2).

Let the following DPs define the level of the different RCs as call centers for the
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Case 1 Case 2

DPa, Acc1

DPa, Acc2

DPb, Acc3

DPc, Acc4

2 EV s

1 EV

2 EV s

1 EV

Simultaneity = 6

Time

2 EV s

1 EV

2 EV s

1 EV

Simultaneity = 6

Time

Figure 2. Simultaneity of 6.

different sectors (each DP is associated with a sector):

• a = (RC1;RC2;RC3)
• b = (RC2;RC3;RC1)
• c = (RC3;RC2;RC1)

Moreover, each average time needed for an EV from the RC to reach the scene of the
accident is given below:

• (RC1, a) =4 min, (RC1, b)=10 minutes and (RC1, c)=9 min
• (RC2, a) =6 min, (RC2, b)=3 minutes and (RC2, c)=6 min
• (RC3, a) =12 min, (RC3, b)=5 minutes and (RC3, c)=2 min

Initially, 2 EVs are located in RC1, 1 EV in RC2 and 3 EVs in RC3.

Two examples of occurrences of these accidents with the same simultaneity are
considered.

• Case 1 (see Figure 2): the sequence of occurrences of accidents is Acc1, Acc2 then
Acc3 and Acc4.
• Case 2 (see Figure 2): the sequence is Acc3, Acc4 then Acc1 and Acc2.

Using the DPs, sequence 1 gives the following results (see Figure 3), where the number
in brackets following RCi (resp. Acci) is the number of EV of RCi (resp. the number
of required EV of Acci)):

• 2 accidents corresponding to DPa and DPc are rescued by the first call center,
RC1 and RC3, respectively with 2 and 1 EVs respectively,
• 2 accidents corresponding to DPa and DPb are rescued by the second call center,
RC2 and RC3, respectively, with 1 and 2 EVs respectively.

Sequence 2 (see Figure 3) gives the following result:
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• 3 accidents corresponding to DPa, DPb and DPc are rescued by the first call
center, RC1, RC2 and RC3, respectively, with 2, 1 and 1 EVs respectively,
• 1 accident corresponding to DPb is rescued by the second call center (RC3) with

1 EV,
• 1 accident corresponding to DPa is rescued by the third call center (RC3) with

1 EV.

Then, the expected times to rescue the accidents are:

• (4 ∗ 2 + 6 + 5 ∗ 2 + 5)/6 ≈ 4.34 minutes for sequence 1
• (4 ∗ 2 + 3 + 12 + 5 + 2)/6 = 5 minutes for sequence 2.

RC1(2)

RC2(1)

RC3(3)

2

1

2
1

DPa/Acc1(2)

DPa/Acc2(1)

DPb/Acc3(2)

DPc/Acc4(1)

RC1(2)

RC2(1)

RC3(3)

2

1
1

1
1

DPa/Acc1(2)

DPa/Acc2(1)

DPb/Acc3(2)

DPc/Acc4(1)

(a) Sequence 1. (b) Sequence 2.

Figure 3. Assignment of EVs to DPs.

Remark 1. The values of the number of EVs from RCi allocated to DPπ (noted hi,π)
are linked to the sequence of occurrence of the accidents. In the example (see Figure 3),
sequence 1 leads to the solution h1,a = 2, h2,a = 1, h3,b = 2, h3,c = 1 and the solution
corresponding to sequence 2 is h1,a = 2, h3,a = 1, h2,b = 1, h3,b = 1, h3,c = 1. In the
next section, we will distinguish the number of EVs from RCi allocated to DPπ for
the best-case sequence and the worst-case sequence.

In the next section, we introduce our two-stage optimization approach based on
simultaneous requirement of EVs.

4. Mid-term redeployment of capacity: a two-stage linear programming
problem

Our problem, denoted P, can be expressed as a two-stage linear programming
problem. The capacity redeployment is determined at the first stage (before the
sequence of accidents is known), and the EVs allocated to accidents at the second
one (by using DP logic). Here, we use the Hurwicz criterion at the second stage.
Consequently, the model takes into account the two extreme sequences of accidents
i.e. the best and the worst. The best (resp. worst) sequence leads to the best (resp.
worst) rescue time. Thus, we do not need to compute the best (resp. worst) sequence
but only the related best (resp. worst) rescue time. To do so, we compute the best
(resp. worst) affectation of EVs to DPs.

Let C be the set of RCs, card(C) = c, Π the set of DPs. Each DP is denoted
π = (π(1), π(2), · · · ) where π(1) is the first RC to be called (level 1), π(2) the second
RC to be called (level 2) if the first one has no available EV(s), and so on. For simplicity
of notation, we use the notation i �π j when π(a) = i and π(a + 1) = j. Moreover
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we need to define another set noted W which contains all impossible transportation
plans by respecting DP logic. Before giving the formal definition of this set, let’s recall
the logic of DP: when an accident occurs in a sector with DPπ, the first related RC
which has enough available EVs is affected to the accident rescue. In other words, this
means that if RCi, where i = π(n), is required to rescue an accident occurring in the
sector that has the DPπ, RCj = π(m) such that m < n does not have enough free
EVs. Hence, an accident that occurs in a sector with a DPπ′ such that i = π′(a) and
j = π′(b) with a < b can not be rescued by RCj , (Figure 4 illustrates the impossible
case). In fact, RCj has to rescue the accident occurring in π because RCi cannot rescue
it (see Ex. 4.1).

i

j

π : i � j

π′ : j � i

Figure 4. Impossible transportation plan.

So, the formal definition of W is as follows:

W = {(i, j, π, π′) : π, π′ ∈ Π, i, j ∈ C : π 6= π′, i �π j, j �π′ i}

Therefore, a vector (i, j, π, π′) is in ∈ W means that we can not rescue a sector
whose dispatching plan is DPπ with an EV from RCj and can rescue a sector whose
dispatching plan is DPπ′ with an EV from RCi if i is before j in the DPπ and j before
i the DPπ.

The input data are:

• ti,π: the average time needed for an EV from RCi to reach the scene of the
accident. If RCi is the first center called, ti,π = tπ(1),π,
• DPπ: the number of simultaneously required EVs for DPπ,
• Kinit

i : initial capacity of EVs,
• Kmin

i : the minimal capacity of assignment of EVs to RCi,
• Kmax

i : the maximal capacity of assignment of EVs to RCi,
• Tmaxi,j : the maximal transferred EVs from i to j ,∀i, j ∈ C,

• TRCi : the maximal number of transferred EVs for an RC.

The decision variables are integers:

• Ki: the capacity of RCi in terms of the number of EVs,
• Ti,j : the number of EVs tranfered from RCi to RCj ,
• hbi,π: the number of EVs from RCi allocated to DPπ for the best-case sequence

of accident,
• hwi,π: the number of EVs from RCi allocated to DPπ for the worst-case sequence

of accident,
• xi,π: a binary variable such that xi,π = 1 if hwi,π > 0.

Without loss of generality, we consider that the simultaneous requirement is equal
to the total number of EVs. If that is not the case, a virtual RC or sector can be added
as proposed in Guillaume et al. (2015). Hence, all the EVs are used. The mathematical
formulation of the problem with uncertainty on the sequences of accident is:
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P : min
K,T

αminhb

∑
π∈Π

∑
i∈C

ti,πh
b
i,π (5)

+(1− α) maxhw

∑
π∈Π

∑
i∈C

ti,πh
w
i,π

s.t.∑
i∈C

Ki =
∑
i∈C

Kinit
i (5.a)

Kinit
i +

∑
j∈{C:j 6=i}

Tj,i = Ki ∀i ∈ C (5.b)

Tj,i ≤ Tmaxj,i ∀i ∈ C, j ∈ C : i 6= j (5.c)∑
j∈{C:j 6=i}

Ti,j ≤ TRCi ∀i ∈ C (5.d)

Ti,j = −Tj,i ∀i ∈ C, ∀j ∈ C (5.e)

Kmin
i ≤ Ki ≤ Kmax

i ∀i ∈ C (5.f)∑
i∈C

hbi,π = DPπ ∀π ∈ Π (5.g)∑
π∈Π

hbi,π = Ki ∀i ∈ C (5.h)∑
i∈C

hwi,π = DPπ ∀π ∈ Π (5.j)∑
π∈Π

hwi,π = Ki ∀i ∈ C (5.i)

hwi,π ≤ xi,πKi ∀π ∈ Π,∀i ∈ C (5.k)

xi,π + xj,π′ ≤ 1 ∀(i, j, π, π′) ∈W (5.l)

Ki ∈ N, Tj,i ∈ Z, xi,π ∈ {0, 1} i, j ∈ C, π ∈ Π (5.m)

The constraints from (5.a) to (5.f) are constraints of the first stage decision variables.
More precisely, constraints (5.a) mean that the number of EVs is constant. Constraints
(5.b) mean that the new capacity assignment is equal to the sum of the initial capacity
and the transferred EVs. Constraints (5.c) express the maximal number of EVs which
could be transferred between two RCs. Constraints (5.d) express the maximal number
of EVs which could be transferred from an RC. Constraints (5.e) express the link
between the number of EVs transferred from RCi to RCj and the number of EVs
transferred from RCj to RCi. Constraints (5.f) express the capacity constraint for
each RC.

The second stage contains two problems. In the first (resp. second) one we look for
the minimal (resp. maximal) evaluation. The first problem is a minimization problem
in which we focus on the EVs allocated to accidents for the best-case sequences of
accidents (Constraints 5.g-5.h). The second problem is a maximization problem in
which we focus on the EVs allocated to accidents for the worst-case sequences of
accidents (Constraints 5.i-5.l on the model).

Constraints (5.h) and (5.j) express the impossibility of an RC rescuing more acci-
dents than its capacity.

These two types of constraints define the Transportation Problem in which hbi,π
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(resp. hwi,π) is the flow of EV from RCi to DPπ for the best-case (resp. worst-case)
sequence of accident occurrences.

The constraints (5.k) and (5.l) guarantee that the transportation plan that concerns
the worst-case sequence of accidents satisfies the DP logic. From Proposition 1, these
constraints can be omitted for the best-case sequence problem. In addition, they are
not trivial, so the justification will be detailed in the next paragraph.

Proposition 1. The optimal solution of the following problem satisfies the DP con-
straints (Constraints 5.k-5.l):

min
hb

∑
π∈Π

∑
i∈C

ti,πh
b
i,π

s.t. (5.a)− (5.i) and (5.m).

Proof : Let suppose that a solution, which does not satisfy DP constraints, is optimal.
Hence there are at least two variables hb∗ such that hb∗j,π > 0 and hb∗i,π′ > 0 with RCi
and RCj , and DPπ and DPπ′ such that π : i � j and π′ : j � i. The cost of the

solution to recuse π and π′ is tj,πh
b,∗
j,π + ti,π′h

b,∗
i,π′ + K where K is the cost which does

not depend on decision variables hb,∗j,π and hb,∗i,π′ . Let hb,DP be the solution that differs

from hb∗ only for hbi,π′ , h
b
j,π, hbi,π and hbj,π′ , and which satisfies the flow constraints. We

have two possible cases: hb,∗j,π ≥ hb,∗i,π′ or hb,∗j,π ≤ hb,∗i,π′ . Both are symmetric. So, we only
develop the first one. Therefore we build the following solution:

hb,DPi,π′ =hb,∗i,π′ − h
b,∗
i,π′ = 0

hb,DPi,π =hb,∗i,π + hb,∗i,π′

hb,DPj,π′ =hb,∗j,π′ + hb,∗i,π′

hb,DPj,π′ =hb,∗j,π − h
b,∗
i,π′

Since the rescue time ti,π satisfies the constraints ti,π < tj,π and ti,π′ > tj,π′ , the cost
of solution hb,DP is lower than hb∗. This is in contradiction with the assumption that
hb∗ is optimal. �

Example 4.1. Let (1, 2, 3) be the RCs and (a, b, c) the DPs:ab
c

 =

1 2 3
2 3 1
3 2 1


We suppose that RCs 1, 2 and 3 rescue the sectors of DP a so hw1,a, h

w
2,a, h

w
3,a > 0.

Hence, RC1 and RC2 do not have enough EVs to satisfy the requirement of DP a and
EVs are needed from RC3. It follows from this that the DP which has 2 before 1 can
not be rescued by RC1 if RC2 does not have enough EVs to satisfy the requirement of
this DP. So, hw1,b is equal to 0. More over, the DP that has 3 before 1 and 2 cannot be
rescued by RC1 or RC2 if RC3 does not have enough EVs to satisfy the requirement
of this DP. So, hw1,c, h

w
2,c are equal to 0.
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5. Resolution of the problem

In this section, an iterative algorithm is proposed to solve the problem. For simplicity
of notation, let F (hb) =

∑
π∈Π

∑
i∈C

ti,πh
b
i,π, F (hw) =

∑
π∈Π

∑
i∈C

ti,πh
w
i,π, K be the set of K

that meet the constraints (5.a)-(5.f), HK
b be the set of hb that meet the constraints

(5.g)-(5.h) and HK
w be the set of hw that meet the constraints (5.i)-(5.l). Now we are

able to reformulate the problem P as:

P : minK∈K( αminhb∈HK
b
F (hb)

+(1− α) maxhw∈HK
w
F (hw))

(6)

5.1. MIP reformulation of problem P

Unfortunately, the maximization part of the second stage may be considered as a
MIP problem, hence it is not possible to use dual theorem directly to transform the
maximization into a minimization as is usually done in robust optimization field.
Therefore, it is necessary to modify the formulation of the maximization problem
maxhw∈HK

w
F (hw).

Let X be the set of vectors x ∈ {0,1}|C||Π| which satisfy the DP constraints:
xi,π‘ + xj,π ≤ 1, ∀(i, j, π, π′) ∈ W. Moreover, Constraints (5.k) are taken into account
through a penalty depending on xi,π: ti,π → ti,π −M · (1 − xi,π). Then, the problem
maxhw∈HK

w
F (hw) can be reformulated as follows:

max
x∈X

max
hw

∑
π∈Π

∑
i∈C

(ti,π −M · (1− xi,π))hwi,π

s.t.
(a)

∑
i∈{C}

hwi,π = DPπ ∀π ∈ Π

(b)
∑

π∈{Π}
hwi,π = Ki ∀i ∈ C

(c) hwi,π ∈ N ∀π ∈ Π,∀i ∈ C

(7)

On one hand the problem maxhw∈HK
w
F (hw) has at least one feasible solution that

satisfies the DP constraints (see Proposition 1). On the other hand Problem (7) is a
Big M relaxation of maxhw∈HK

w
F (hw). Thus, the optimal solution of Problem (7) has

the same optimal value and optimal solution than problem maxhw∈HK
w
F (hw).

Let us focus on the second part of Problem (7) that consists on computing the max-
imal value of the objective function for a given vector x∗ ∈ X . It can be seen that for a
given vector x∗, this problem is a transportation problem. Hence, the linear relaxation
of Problem (7) is equivalent to the integer formulation due to the unimodularity of the
matrix. Hence, we can apply the dual theorem to Problem (7). Therefore, Problem (7)
is equivalent to Problem (8). We note:

• λπ: the dual variable of Constraints (7.a)
• βi: the dual variable of constraints (7.b)

12



max
x∈X

min
∑

π∈Π λπDπ +
∑

i∈C βiKi

s.t.
(a) (1− xi,π) ·M + λπ + βi ≥ ti,π, ∀i ∈ C,∀π ∈ Π

(8)

To linearize the maximization over the set X , we note xq,i,π the value of xi,π of the
qth element of X . Hence, the dual variables λπ and βi become λπ,q and βi,q respectively,
the dual variables for the qth element of X . We note W the maximal value over the
set X . So, by using min−max theorem (Sion, 1958) and the linearization of the max
function, Model (8) can be transformed into Model (9).

minW
s.t.
(a)

∑
π∈Π λπ,qDπ +

∑
i∈C βi,qKi ≤W, ∀q = 1, ..., |X |

(b) (1− xq,i,π) ·M + λπ,q + βi,q ≥ ti,π, ∀i ∈ C,∀π ∈ Π,∀q = 1, ..., |X |

(9)

Using Formulation (9), Problem (6) becomes:

P : minαF (hb) + (1− α)W
s. t.
(a)

∑
π∈Π λπ,qDπ +

∑
i∈C βi,qKi ≤W, ∀q = 1, ..., |X |

(b) (1− xq,i,π) ·M + λπ,q + βi,q ≥ ti,π, ∀i ∈ C,∀π ∈ Π,∀q = 1, ..., |X |
hb ∈ HK

b
K ∈ K

(10)

Proposition 5.1. If α = 1 then Problem (10) is a MIP with a polynomial number of
constraints:

minF (hb)
s. t.

hb ∈ HK
b

K ∈ K

(11)

and can be solved directly by an MIP solver.

Nevertheless, Problem (10) is not tractable in the current form (for α < 1, see
Proposition 5.1) since it contains concave constraints (10.a) and an exponential number
of constraints due to |X |. To deal with the first problem, we linearize the concave
constraints using a binary variable:

• yi,e: binary variable equal to 1 if the value Ki is below the eth interval.
• bi,q: the approximation of βi,q ·Ki

• K̂inf
i,e ,K̂i,e and K̂sup

i,e are the lower, middle and upper values, respectively, of the

eth interval for the RCi ∈ C

Model (10) can be equivalent to Model (12) under the condition on K̂inf
i,e ,K̂i,e.

Remark 2. Since K ∈ N|C| Model (12) is equivalent to Model (10) when K̂i,e = a, a ∈
{N|Kmin

i ≤ a ≤ Kmax
i } and K̂inf

i,e > a− 1 and K̂sup
i,e < a− 1.
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Finally Problem P can be formulated as MIP with exponential number of con-
straints:

P : minK,hb,λ,β αF (hb) + (1− α)W
s. t.
(a)

∑
π∈Π λπ,qDπ +

∑
i∈C bi,q ≤W, ∀q = 1, ..., |X |

(b) Ki ≤ (1− yi,e) ·M + K̂sup
i,e , ∀e ∈ E,∀i ∈ C

(c) Ki ≥ (yi,e − 1) ·M + K̂inf
i,e , ∀e ∈ E,∀i ∈ C

(d)
∑

e∈E yi,e = 1, ∀e ∈ E
(e) (yi,e − 1) ·M + βi,q · K̂i,e ≤ bi,q, ∀e ∈ E,∀q = 1, ..., |X |,∀i ∈ C
(f) (1− xq,i,π) ·M + λπ,q + βi,q ≥ ti,π, ∀i ∈ C,∀π ∈ Π,∀q = 1, ..., |X |

hb ∈ HK
b

K ∈ K

(12)

5.2. Iterative algorithm

Since |X | is too big, we propose an iterative algorithm based on the constraints gener-
ation method to compute the optimal solution. Let X sub ⊆ X , so that solving Problem
(12) for the subset X sub is a lower bound of Problem (12). Clearly, for a given capacity
vector K∗, α · Fmin(hb,K∗) +(1 − α) · Fmax(hw,K∗) is an upper bound of Problem
(12) (with Fmin(hb,K∗) and Fmax(hw,K∗) respectively the optimal values of models
minhb∈HK

b
F (hb) and maxhw∈HK

w
F (hw)).

Remark 3. Nevertheless, if the subset X sub is too small, the problem can be un-
bounded since the primal problem over the set X sub is infeasible. To deal with this
problem at the beginning of the algorithm, we compute the optimal assignment of
capacity and transportation for α = 1 (Kα=1,h1,α=1) and we add the constraint
W ≥ F (h1,α=1,Kα=1) to obtain a capacity assignment.

Our algorithm (Algorithm 1) starts (k = 0) with LB equal to the solution of Prob-
lem (11), the capacity assignment KKK0 = KKKint and empty set, X sub := ∅.

At each iteration k, a vector x∗ ∈ X is computed by solving max{F (hw) |hw ∈
HKk−1

w }. Then the set X sub is updated X sub = X sub ∪ {x∗}. Moreover, the UB is

computed by solving min{F (hb) |hb ∈ HKk−1

b } and max{F (hw) |hw ∈ HKk−1

w }. Then
a new capacity assignment with the new LB is computed by solving Model (12) for
the set X sub. If a termination criterion is fulfilled (Step 2 of Algorithm 1), then the
algorithm stops with the assignment of capacity, which is an approximation of an
optimal affection.

Theorem 5.2. For K̂i,e = a, a ∈ {N|Kmin
i ≤ a ≤ Kmax

i }, K̂inf
i,e > a − 1 and

K̂sup
i,e < a−1, Algorithm (1) gives an approximation of the optimal solution of Problem

(6) in a finite number of steps for a given tolerance ε > 0.

Proof. For K̂i,e = a, a ∈ {N|Kmin
i ≤ a ≤ Kmax

i }, K̂inf
i,e > a − 1 and K̂sup

i,e <

a− 1, Model (10) is equivalent to Model (12). Since, Model (10) has the same optimal
value than the problem expressed in (6). Therefore, the optimal solution and the
corresponding objective value given by Model (12) are equivalent to those given by
the problem P (see expression 6). The proof of convergence of Algorithm (1) for Model
(12) is similar to the one given in Guillaume, Kobylanski, and Zielinski (2012). Hence,
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Algorithm 1: Finding an optimal capacity assignment.

h! Input: Parameters of Model (12), LB, a convergence tolerance
parameter ε > 0.

Output: A capacity assignment K∗.
Step 0. k := 1, KKK0 = KKKint, X sub := ∅.
Step 1. Compute the new vector xxxk and UB for capacity assignment KKKk−1:
max{F (hw) |hw ∈ HKk−1

w } and min{F (hb) |hb ∈ HKk−1

b }, X sub = X sub ∪ {xk}
Step 2. ∆ := UB − LB. If LB > 1 then ∆ := ∆/LB. If ∆ ≤ ε then output
KKKk, and STOP.
Step 3. Compute the new capacity assignment Kk for set X sub and LB using
Model (12).

Step 4. k := k + 1 and go to Step 1.

Table 1. Experimental results.

|C| 6 8 10 12
|Π| 12 16 20 24

Time min(s) 0.63 28 48 93
Time avg(s) 3.2 171 434 1180
Time max(s) 22 562 2934 3450

Nb min it 2 3 3 2
Nb avg it 4 6 6 5
Nb max it 14 12 18 15

Algorithm (1) gives an approximate solution with tolerance error ε from the exact
solution found by Problem (6). �

In order to check the efficiency of Algorithm 1, we performed some computational
tests on a set of artificial instances inspired from real data provided by the SDIS of
Haute-Garonne Department. The generated data have the same order of magnitude
as those recovered from the SDIS (number of Emergency Vehicles, number of Rescue
Centers, Deployment Plans, average times needed for an EV from a given RC to reach
the scene of accident).
For every |C| = 6, 8, 10, 12 with |Π| = 2.|C|, 30 instances of Problem (10) were gener-
ated. In every instance, ∀π ∈ Π and ∀(i, j) ∈ C, the following parameters are randomly
generated: DPπ, ti,π the average times that respect the constraints due to DPs, Tmaxi,j

the maximal transfer between RCi and RCj , and TRCi the maximal transfer for a
given RCi. The latter is randomly chosen from the set {0, 1, 2, . . . , 5}. We assume
that ∀i ∈ C, Kmax

i −Kmin
i = 5, and both demand and initial capacity are randomly

generated to satisfy the constraints
∑

i∈CK
int
i =

∑
π∈ΠDπ.

In order to solve the generated instances, we used GUROBI solver and a computer
equipped with an Intel Core i7-4500U 1.8 GHz. Table 1 presents the minimal, average
and maximal computation times in seconds, and the minimal, average and maximal
number of iterations required to find approximations of optimal capacity assignment
with the convergence tolerance parameter ε = 0.0001. Thus, the evaluations of the
computed capacity assignments are no more than 0.01% from optimality. As can be
seen from the results obtained, Algorithm 1 enables quite large problems with up to 12
RCs and 24 DPs to be solved. The number of iterations seems independent of the size
of the problem. However, the resolution time increases with the size of the problem
due to the computation at each iteration of two MIPs.
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6. Illustration with an example

In this section, we show how practitioners can use our model in a decision support
approach. In fact, it is difficult to give an optimistic degree for practitioners. Hence, the
optimistic degree is more often used to compute a set of possible assignments taking
optimism into account. Here, we illustrate the method on an area of a department such
as Haute-Garonne (France). We consider 7 RCs and 14 DPs. The initial, maximal and
minimal capacities of RCs are:
Kinit =(18, 17, 17, 9, 16, 20, 11)
Kmax =(20, 20, 20, 10, 18, 20, 13)
Kmin =(15, 15, 15, 5, 13, 15, 8)
The simultaneous requirements are: Dπ =(7, 11, 13, 5, 10, 9, 8, 7, 6, 5, 5, 5, 10, 7), and
the maximal transfers for RCs are: TRC =(5, 4, 3, 5, 4, 5, 5). The maximal transferred
quantities and the average times are given in Tables 2-3.

Table 2. The maximal transferred quantities.

T RC1 RC2 RC3 RC4 RC5 RC6 RC7

RC1 0 4 4 2 3 3 3
RC2 2 0 2 3 3 1 4
RC3 2 1 0 2 1 3 1
RC4 3 3 0 0 4 4 0
RC4 1 4 3 4 0 2 2
RC6 0 0 4 3 0 0 0
RC7 3 1 1 4 4 3 0

Table 3. The average times.

t RC1 RC2 RC3 RC4 RC5 RC6 RC7

DP1 19 15 5 13 3 6 8
DP2 5 13 18 10 21 16 25
DP3 14 19 12 8 5 1 6
DP4 6 5 7 3 12 15 19
DP5 6 17 5 12 8 9 22
DP6 18 19 7 3 1 15 11
DP7 24 20 8 15 12 4 1
DP8 8 18 14 3 10 19 11
DP9 5 14 17 15 8 10 1
DP10 11 19 5 22 16 7 26
DP11 12 7 23 18 14 4 8
DP12 3 17 12 19 9 8 6
DP13 6 5 20 18 11 14 13
DP14 4 10 8 9 14 17 13

The proposed method allows the decision maker to estimate the performance of the
redeployment for the best-case sequence and the worst-case sequence. To chose a rede-
ployment plan the decision maker computes a set of optimal solutions which focus more
or less on the worst/best-case sequences (using the parameter α). Table 4 summarizes
different results depending on α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The ex-
pected time for the best-case sequence is given in column Best and the expected time
for the worst-case sequence in column Worst. First, we can remark that the expected
times for the best sequence and the worst one are different. Moreover, we can not opti-
mize both expected time at the same time since they are opposite (when one decreases
the other increases). Nevertheless, in this example we only have three different optimal
solutions according to α parameters. One for the optimistic DM (α ∈ [0.8, 1]), one for
the pessimistic DM (α ∈ [0, 0.3]) and one other (α ∈ [0.4, 0.7]). It can be seen that
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(i) if we optimize Best, the best solution corresponds to the optimistic DM, (ii) if we
optimize Worst, the best solution is given for a pessimistic DM, and (iii) RC1, RC4

and RC6 are independent of the level of pessimism of the DM. On the other hand,
RC2 and RC3 have variations of 3 EVs.

We can see that the solution, for α ∈ [0.4, 0.7], is a good compromise since it is just
1 second worse than the pessimistic (α = 1) optimal solution and just 3 seconds worse
than the optimistic (α = 0) optimal solution. Moreover the proposed approach enables
other aspects of the solution to be taken into account such as its stability (number of
redeployed EVs). As can be seen from these results, the pessimistic solution seems to
be the most stable.

Table 4. Intervals of the expected evaluations of the solutions.

K1 K2 K3 K4 K5 K6 K7

Initial 18 17 17 9 16 20 11

α Best Worst K1 K2 K3 K4 K5 K6 K7

[0.8, 1] 3min25s 8min35s 19 15 18 9 16 19 12
[0.4, 0.7] 3min28s 8min22s 19 17 15 9 17 19 12
[0, 0.3] 3min31s 8min21s 19 18 15 9 17 19 11

This study is the first step towards a decision tool that takes into account the
optimism of the decision maker (by using the parameter α) and human resource con-
straints. Our approach could be applied to define a redeployment plan by computing
a set of optimal solutions which focus more or less on the worst/best-case sequences.

7. Conclusion

In this paper, we deal with the re-assignment problem of EVs to RCs based on the
simultaneity of requirement of EVs, taking into account the uncertainty on the se-
quences of accident. The studied problem is a specific redeployment problem which
can be situated between the Covering Facility Location Problem and the Real Time
Redeployment Problem. Nevertheless, the focus is different as we introduce the no-
tion of DPs and the simultaneity of requirements, which have not been studied in the
literature. Based on the Hurwicz criterion, we propose a non-probabilistic two-stage
approach to deal with the uncertainty which is due to the simultaneous requirement
of EVs. For a given degree of optimism of the decision maker, the proposed iterative
algorithm calculates the optimal mid-term redeployment of capacity. A study of the
performance of the proposed algorithm and an illustration from the DM point of view
are presented. It shows that the algorithm is applicable to a reasonable size of problem.
In future work, we want to add constraints on the maximal time to reach an accident
and improve the algorithm by investigating a colony generation approach to solve the
master problem. Moreover, we want to investigate a multi-criteria optimization to take
into account the cost of transferring capacity, even if the expected rescue time is the
most important criterion. Another perspective is to couple the possibility of modifying
the DP with the capacity redeployment, since the DP impacts the load of each RC.
In other words, by modifying the DPs, there would be fewer changes in the initial
capacities of the RCs.

17



References

Aboueljinane, L., Sahin, E., & Jemai, Z. (2013). A review on simulation models applied to
emergency medical service operations. Computers & Industrial Engineering , 66 (4), 734–
750.

Akbari, A., Eiselt, H. A., & Pelot, R. (2018). A maritime search and rescue location analysis
considering multiple criteria, with simulated demand. INFOR: Information Systems and
Operational Research, 56 (1), 92–114.

Aringhieri, R., Bruni, M. E., Khodaparasti, S., & van Essen, J. (2017). Emergency medical
services and beyond: Addressing new challenges through a wide literature review. Computers
& Operations Research, 78 , 349–368.

Bélanger, V., Ruiz, A., & Soriano, P. (2012). Déploiement et redéploiement des véhicules
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