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Chapter 4
Foraging Capacities, Behaviors
and Strategies of Otariids and Odobenids

Tiphaine Jeanniard-du-Dot and Christophe Guinet

Abstract Fur seals, sea lions and the walrus (Odobenus rosmarus) are breath-hold
divers that rely on swimming at depth to feed at sea. As their diving capacities are
more limited than phocids, otariids and odobenids are geographically constrained to
highly productive environments and relatively shallow dive depths. They are also
mostly coastal species, central place foragers with relatively limited foraging ranges.
Diving patterns and strategies are diverse among the otariid group—although fur
seals tend to be more pelagic and sea lions more benthic divers—, and driven by
extrinsic factors such as the type of habitat they occupy, environmental factors, intra-
or inter-specific density-dependent competition, predation risk and the behavior of
the prey they feed on; as well as intrinsic factors such as age, sex, reproduction
status, size and experience. There are usually several foraging strategies present
within a species, and individuals tend to specialize to one of these strategies, with a
degree of adaptability to changing conditions possible. Diving behaviors and strat-
egies define the feeding success and foraging efficiency of individuals, and as such
their capacities to successfully survive and reproduce in their environment. The
diversity of these behaviors within otariid and odobenid populations are likely
evolutionary stable strategies that provide a buffer under changing environmental
conditions.

Keywords Diving physiology · Diving behavior · Energetics · Foraging strategies ·
Otariids · Odobenids · Fur seals · Sea lions · Walrus
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4.1 Introduction

Accurately determining dive behavior and underwater foraging of marine predators,
including fur seals, sea lions and walruses (Fig. 4.1) is inherently difficult as they
cannot be directly observed in the open oceans, and yet it is essential to determine,
explain, and predict their foraging success, the use of prey resources in their
environment, as well as their consequences on energetics and fitness (Costa et al.

Fig. 4.1 Example of sea
lions and fur seals of the
family otariidae (a Steller
sea lions, Eumetopias
jubatus, b Antarctic fur
seals, Arctocephalus
gazella), and the family
odobenidae (c walruses,
Odobenus rosmarus).
(Picture credits:
a, b Tiphaine Jeanniard du
Dot, c Brian Battaile)
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1989; Boyd 2002; Austin et al. 2006; Bost et al. 2007; New et al. 2014). However,
technological advancements in the field of bio-logging and bio-telemetry,
i.e. archival and satellite-transmitting devices attached to animals while they go at
sea, has made it possible to collect information on these diving behaviors at an
increasingly fine scale.

The first bio-loggers used on marine mammals were time-depth recorders (TDR)
that recorded low resolution 2D dive patterns over a relatively short period of time
(Kooyman 1965). Nowadays, new and miniaturized sensors, as well as improved
processing capacities, large memory capabilities and battery life allows marine
mammal scientists to record data about dive behavior and foraging success at a
much finer scale and for up to several months. For example, tri-axial accelerometers,
magnetometers or gyroscopes, recording data at 20 Hz, allow reconstruction of 3D
underwater tracks of the animals. They can also provide indirect indices of swim-
ming effort, feeding attempts and foraging success (Viviant et al. 2014; Jeanniard du
Dot et al. 2016b; Ladds et al. 2017b). The field of bio-logging is in rapid develop-
ment (the International Bio-logging Society was born in 2015, https://www.bio-
logging.net). Currently, most loggers deployed on otariids incorporate pressure,
temperature and light sensors. More recently other types of sensors (passive or active
acoustics, salinity etc.) have allowed scientists to study animal behavior in relation to
their immediate environment. This has shed light on the links between foraging
behavior, feeding success and the oceanographic conditions.

Biologging-based studies of otariid diving behavior have exponentially increased
over the last 30 years (McIntyre 2014). Some species have been intensely studied:
Antarctic fur seals (Arctocephalus gazella), northern fur seals (Callorhinus ursinus),
followed by New Zealand sea lions (Phocarctos hookeri), Steller sea lions
(Eumatopias jubatus), and California sea lions (Zalophus californianus). On the
other end of the spectrum, there is little information on dive behavior of Juan
Fernandez fur seals (Arctocephalus phillippii phillippii) (Francis et al. 1998), Gua-
dalupe fur seals (Arctocephalus phillippii townsendi) (Gallo-Reynoso et al. 2008) or
southern sea lions (Otaria flavescens) (Werner and Campagna 1995; Mueller 2004).
In addition, a majority of studies have focused on diving behavior of adult lactating
females during the breeding season when they become central place foragers.
Significantly less information is available for males or juveniles, even though efforts
have been made to start bridging these gaps (Boyd et al. 1998; Baylis et al. 2017;
Knox et al. 2018; Salton et al. 2019). Consequently, general knowledge of diving
behavior of otariids and odobenids is inherently biased towards the taxa, season, and
sex/age groups from which we have the most information.

Fur seals and sea lions are mostly coastal species, especially during breeding
season, and their yearly movements can cover little variation in habitat use
(Australian sea lion, Neophoca cinerea) to thousands of km for those with a pelagic
phase (northern and Antarctic fur seals during their 8-month migration). Their
distribution is concentrated in areas of high productivity, mostly in temperate to
sub-polar latitudes, or near areas with cold upwellings for more tropical species
(i.e. Humboldt or Cromwell current, Fig. 4.2). This pattern is a consequence of their
relatively expensive lifestyle and their subsequent needs for high feeding rates to
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balance their energy budget (Boyd 2002; Costa and Toro, Chap. 2). As fur seals and
sea lions travel and rest at the surface of the ocean, the main purpose of their diving is
to feed at depth. Intrinsic factors such as phylogeny, sex, size, age, experience and
reproductive status, as well as extrinsic factors including habitat characteristics,
environmental factors, intra- or inter-specific density-dependent competition, preda-
tion pressure, food web structure and the distribution and behavior of the prey they
feed upon, all influence diving behavior in otariids (Schoener 1974; Gentry and
Kooyman 1986; Boyd 1996; Harcourt et al. 2002; Jeglinski et al. 2012; Benoit-Bird
et al. 2013; Leung et al. 2014). Ultimately, these factors will shape the foraging
efficiency of animals, i.e. the cost/benefit ratio of their foraging at sea and hence their
body condition, survival and reproductive success and the resulting trends in
population.

Fig. 4.2 Distribution of otariid and odobenid species worldwide. Fur seals species are shown in
yellow and with numbers; sea lion species in red (with overlap between sympatric species resulting
in orange) and in single letters, and walruses in purple and double letters. Otariid species are
distributed worldwide in areas of cold ocean currents (blue arrows) or upwellings rather than warm
ocean currents (red arrows). Legends corresponding to numbers and letters are as follow: 1. Ant-
arctic fur seals—Arctocephalus gazella, 2. Sub-Antarctic fur seals—Arctocephalus tropicalis, 3.
New Zealand fur seals—Arctocephalus forsteri, 4. Australian fur seals—Arctocephalus pusillus
doriferus, 5. South American fur seals—Arctocephalus australis, 6. Juan Fernandez fur seals—
Arctocephalus philippii, 7. Cape fur seals—Arctocephalus pusillus pusillus, 8. Galapagos fur
seals—Arctocephalus galapagoensis, 9. Guadalupe fur seals—Arctocephalus townsendi, 10.
Northern fur seals—Callorhinus ursinus, A. Australian sea lions—Neophoca cinerea, B.
New Zealand (Hooker’s) sea lions—Phocarctos hookeri, C. South American sea lions—Otaria
flavescens, D. Galapagos sea lions—Zalophus californianus wollebaeki, E. California sea lions—
Zalophus californianus californianus, F. Steller sea lions—Eumetopias jubatus, WP. Pacific wal-
ruses—Odobenus rosmarus divergens. WA. Atlantic walruses—Odobenus rosmarus rosmarus
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This chapter focuses on diving and foraging activities of fur seals and sea lions as
a group—and to a lesser extent the walrus (Odobenus rosmarus)—, emphasizing
phylogenetic similarities or differences between them or with the other major
pinniped family, the phocidae. We look at how otariid diving is limited by physio-
logical capacities, what diving strategies they display in the wild and what biological
or environmental factors affect them. Finally, we discuss how diving patterns and
strategies can be used to assess and understand foraging energetics and efficiency
and ultimately how it shapes the capacity of fur seals and sea lions to survive and
reproduce successfully in their environment.

4.2 Morphological and Physiological Diving Capacities
of Fur Seals and Sea Lions

Diving behavior of fur seals and sea lions is constrained by their overall capacity to
balance the energetic costs of moving effectively through water, a medium ~800
times denser than air and 25 times more heat conductive, while on a limited oxygen
supply during apnea. The quantity of oxygen available in the body and the rate at
which it is consumed (and carbon dioxide produced) by metabolic processes during
a dive controls how long animals can remain underwater, given their total oxygen
stores. Fur seals and sea lions have developed morphological and physiological
adaptations to simultaneously decrease the costs of exercising underwater or diving
metabolic rate and increase the magnitude of body oxygen stores and transport.
Combined, these adaptations allow fur seals and sea lions to prolong the time spent
at depth to forage, and so is essential to understanding diving behavior and foraging
efficiencies of eared seals.

Morphologically, otariids have streamlined body shapes that reduce the drag
created by, and thus the energetic cost of, moving through water (Fig. 4.3). Their
body shape presents an average fineness ratio (~5.5, compared to the walrus with a
fineness ratio ~1 for example) and a position of the maximum diameter of their body
(shoulders area at ~40% of the total body length) close to the optimum for minimal
drag given the body volume (Feldkamp 1987). Unlike phocids and odobenids who
use caudal propulsion and lateral or vertical oscillations of their rear appendages to
move through water, fur seals and sea lions use their pectoral flippers for propulsion
in a 4-phase stroke pattern creating a horizontal thrust and vertical lift with little to no
resulting distortion of the body (Feldkamp 1987). Otariid fore-flippers are hydrofoil-
shaped and dorso-ventrally compressed which reduces pressure drag and improves
lift during propulsion underwater (Fig. 4.3). Fore-flipper propulsion also offers high
maneuverability at depth, as well as great speed and turning angle. These adaptations
ensure efficient mechanical performance for swimming underwater at a much
reduced energetic cost of swimming at depth (at optimum speed) compared to
terrestrial mammals of similar sizes (Costa and Williams 1999). Other particularities
of otariids amongst marine mammals are their limited fat content (especially in fur
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seals) and their diving with inflated lungs, which both affect buoyancy and thus
energetic costs of diving.

In addition to their morphology, fur seal and sea lion physiology has evolved to
adapt to breath-hold diving. They possess a series of physiological adaptations
which decrease the rate at which body oxygen stores are depleted underwater to
prolong dive duration. These physiological adjustments are ubiquitous amongst
marine mammals—although not to the same extent—and are together called the
‘dive response’ (Davis 2014). It mostly involves peripheral vasoconstriction and a
decrease in heart rate (bradycardia) compared to ‘resting’ heart rates in response to
asphyxia (diving heart rates decreasing to ~25% to 50% compared to eupneic levels,
Ponganis 2015). Together these adjustments reduce the perfusion of blood to ‘non-
essential’ organs—while maintaining adequate blood pressure and cardiac output to
the heart and the brain—thereby limiting the overall rate of oxygen consumption.
Free-ranging mammals (i.e. non-controlled and unrestrained conditions) show a
wide range of physiological plasticity while diving and the extent of the ‘dive
response’ cardiovascular adjustments is usually greater in longer dives
(i.e. requiring greater conservation of O2) (Andrews et al. 1997).

Diving physiology has mostly been studied in deep diving phocid species, and
few studies have measured these responses in the shallow and shorter-diver

Fig. 4.3 Morphological features of otariids with a view from above (a) or from the side (b). Notice
the streamline body shape closely resembling a technical body of revolution designed to minimize
drag underwater. The hydrofoil-shape fore-flippers are used for propulsion in a 4-phase stroke
pattern and delivers a forward thrust and lift movement with little to no resulting distortion of this
streamlined body shape (b)
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otariids—mostly California sea lions, Steller sea lions and Antarctic fur seals
(Andrews et al. 1997; Boyd et al. 1999; Hindle et al. 2010). Nevertheless, similar
responses have been found in California sea lions which show extreme bradycardia
to the same extent as the deepest diving phocid seals during very long dives
(McDonald and Ponganis 2014). In pelagic shallow diving fur seals, however, the
extent of these adjustments is not always as pronounced (Fig. 4.4). Even during long
dives, heart rate is reduced by only ~33% of surface resting heart rate in Antarctic fur
seals compared to up to 75% in other pinnipeds (Boyd et al. 1999). Interestingly,
while California sea lions show intense bradycardia in deep dives, the profile of heart

Fig. 4.4 Changes in heart rate (bpm) measured in free-ranging epipelagic Antarctic fur seals (upper
graph, data from Boyd et al. 1999) and mesopelagic California sea lions (lower graph, data from
McDonald and Ponganis 2014) during dives of various durations (see color-coded legend). For
easier comparison, the dives of Antarctic fur seals lasting between 60 and 120 s (in blue open
symbols) and between 120 and 180 s (in purple open symbols) were averaged (closed symbols) to
match the time bins for California sea lions
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rate decrease is slower than typical of phocid seals. This might be due to otariids
inhaling before diving and so gas exchange continues underwater, while phocid
seals exhale before diving (Hooker et al. 2005; McDonald and Ponganis 2014).

In addition to oxygen conservation mechanisms, oxygen stores in otariids are
primarily located in the lungs, blood and muscles, and depends on their volume/mass
as well as on hemoglobin (Hb) and myoglobin (Mb) concentrations in the body
(Ponganis 2015). However, amongst pinnipeds, otariids have more limited diving
capacities (shallower dive depths, shorter dive durations on average) than compara-
bly sized phocids, which as a group possess larger oxygen stores relative to their
mass than similar size otariids (Table 4.1, t-test p ¼ 0.01). This results from a lower
Hb concentration despite relatively similar blood volumes ( p ¼ 0.008) and arguably
similar O2 affinity (Qvist et al. 1981; Kooyman 1989; Meir et al. 2009; McDonald
and Ponganis 2013) as well as lower Mb concentration ( p¼ 0.001). Together, blood
and muscles represent ~75% to 90% of oxygen storage in fur seal and sea lions’
bodies (Ponganis 2015), and the remaining ~10% to 25% reside in the lungs
compared to only ~3% to 10% in phocids. The sixfold higher proportion of oxygen
in otariids’ lungs compared to blood—1:2.5 in otariids vs 1:12 in phocids—indicates
substantial differences in diving strategy (Hooker et al. 2005).

Interestingly, total O2 stores have a scaling factor of 1 with body mass while
metabolic rate a scaling factor of 0.75 (Costa 1993). This means that breath-hold
diving capacities increase with body size for a given mass-specific O2 store
(Fig. 4.5). Consequently, larger sea lions and fur seals should have greater diving
capacities than smaller ones (Baylis et al. 2015b). Alternatively, smaller animals
should increase their mass-specific O2 stores to maintain similar diving capacities as
larger ones. This was observed intra-specifically among females in southern sea lions

Table 4.1 Average oxygen carrying capacities of otariids compared to phocid seals

Otariids Phocids

Mass-specific total oxygen stores (ml O2/kg) 49.3 � 11.0a 69.6 � 16.4c

Hb concentration (g Hb/dl blood) 17.8 � 2.3a 22.9 � 3.3c

Mb concentration (g Mb/100g muscle) 3.7 � 1.2a 6.5 � 1.7c

Oxygen affinity, P50 (mmHg) 28 � 2b 26.9 � 1.2d/30.5 � 1.2e

Species used in calculating these averages are indicated in footnote below. Values used to calculate
these means can be found in Lenfant et al. (1970), Costa et al. (1998, 2001), Richmond et al. (2006),
Fowler et al. (2007), Weise and Costa (2007), Villegas-Amtmann and Costa (2010), Hückstädt et al.
(2016), Kirkman et al. (2019), Qvist et al. (1981), Kooyman (1989), Meir et al. (2009) and
McDonald and Ponganis (2013). Values for phocids can be found in Table 4.2, 4.7 and 4.10 in
Ponganis (2015). Values for the walrus O. rosmarus are 38 ml O2/kg, 16 g Hb/dl blood, and 3 g
Mb/100 g muscle (Lenfant et al. 1970)
aZ. californianus, Z. wollebaeki, E. jubatus, N. cinerea, C. ursinus, A. gazella, A. pusillus pusillus,
O. byronia
bZ. californianus
cP. vitulina, P. groenlandica, P. hispida, P. sibirica, L. carcinophagus, L. weddellii, H. leptonyx,
H. grypus, H. fasciata, C. cristata, M. angustirostris
dL. weddelli
eM. leonina
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(Hückstädt et al. 2016), as well as in California sea lions where females compensated
for their smaller body sizes and thus lower absolute oxygen stores, by having higher
mass-specific O2 stores compared to the larger males (Weise and Costa 2007).
Similarly, the Galapagos sea lion is the smallest of all sea lion species (60–95 kg
for females, Villegas-Amtmann et al. 2017), yet has the highest mass-specific
oxygen stores (74 ml O2/kg, Villegas-Amtmann and Costa 2010)—and thus greatest
diving capacities—, while the lowest mass-specific O2 store is found in Steller sea
lion (40 ml O2/kg, Richmond et al. 2006), the largest of otariids (150–300 kg for
females, Calkins et al. 1998) (Fig. 4.5).

The time required to consume O2 stores via aerobic metabolism while diving is
thought to be the major determinant of diving performance (Boyd and Croxall 1996;
Costa et al. 2004). The aerobic dive limit (ADL) is defined as the maximum dive
duration before blood lactic acid levels rise, because of an increase in anaerobic
metabolism. When seals exceed this aerobic threshold, the relative post-dive surface
interval increases greatly as extra time is necessary to clear lactic acid accumulated

Fig. 4.5 Mass-specific total oxygen stores (ml O2/kg) related to dive duration (min) in 10 otariid
species as well as the walrus for comparison. Different symbols indicate the species (NFS northern
fur seal, AnFS Antarctic fur seal, SSL Steller sea lion, SALS South American sea lions, CFS Cape
fur seal, CSL California sea lion, AuFS Australian fur seal, NZSL New Zealand sea lion, ASL,
Australian sea lion, GSL Galapagos sea lion, and W Walrus). The symbol color indicates
epi/mesopelagic otariid species in blue and benthic species in pink, with the walrus shown in
green. California sea lions and South American sea lions are shown twice as shallow epipelagic and
mesopelagic/benthic strategies are displayed in the population. Total oxygen store data from
Lenfant et al. (1970), Costa et al. (1998, 2001), Richmond et al. (2006), Weise and Costa (2007),
Fowler et al. (2007), Villegas-Amtmann and Costa (2010), Ponganis (2011) and dive duration data
from Kuhn and Costa (2014), Costa and Gales (2003, 2000), Villegas-Amtmann et al. (2017),
Jeanniard du Dot et al. (2018), Georges et al. (2000b), Gjertz et al. (2001). Australian fur seal and
meso/benthic California sea lion data are taken from Costa et al. (2004), South American sea lion
data from Hückstädt et al. (2016), and Cape fur seal data from Kirkman et al. (2019)
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during the previous dive (Burns 1999; Horning 2012) resulting in a disproportionate
increase in surface time and a decrease in foraging efficiency.

To overcome the technical difficulties of measuring blood lactate in free-ranging
seals, two indirect estimates have been widely used in eared seal studies. Based on
observations that most dives in wild seals are shorter than the measured ADL
(Kooyman et al. 1980, 1983), the behavioral aerobic dive limit (ADLB), has been
estimated as the dive duration below which 95%–97% of dives occur and after which
surface intervals begin to disproportionately increase (Burns and Castellini 1996;
Hindle et al. 2011). Alternatively, the calculated aerobic dive limit (ADLC) repre-
sents the total O2 stores divided by the diving metabolic rate (Costa et al. 2004)
(Fig. 4.6).

Since its first mention in the 1980s (Kooyman et al. 1983), ADL has become a
fundamental concept in the interpretation of diving physiology, diving behavior, and
more widely foraging ecology of diving animals. Irrespective of the differences due
to the ADL estimation method (2.0 min ADLB versus 1.6 min ADLC in Antarctic fur
seals (Costa et al. 2004; Viviant et al. 2016); 2.3 min ADL in captive California sea
lions versus 2.7–3.8 min ADLC in wild counterparts (Ponganis et al. 1997; Costa
et al. 2004)), there is a wide variation in ADL between species of eared seals from
1.3 to 1.7 min in southern sea lions and Australian fur seals (Costa et al. 2004;

Fig. 4.6 Example of post-dive interval durations (s) as a function of dive duration (s) of a female
Antarctic fur seal during a foraging trip at sea used to determine, via broken-line models (solid black
lines), the individual behavioral aerobic dive limit (bADL, dotted grey line, data from Viviant et al.
2016). For comparison, the average (�SD) bADL for 11 Antarctic fur seal females in Viviant et al.
(2016) is shown in blue dashed line and shaded area, and the average (�SD) calculated aerobic dive
limit (cADL) for 15 Antarctic fur seal females in Costa et al. (2004) is shown in green dashed line
and shaded area
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Hückstädt et al. 2016) to 3.2 min in Galapagos fur seals (Horning 2012)—and
10.5–14.8 min for walrus (Wiig et al. 1993; Noren et al. 2015) (Table 4.2).

More interestingly, the difference in tendencies to exceed ADL between otariid
species appears to depend on their foraging ecology (pelagic versus benthic divers)
rather than their phylogeny (fur seals versus sea lions). Benthic fur seal and sea lion
divers tend to exceed their ADL more often than pelagic divers (Costa and Gales
2000; Costa et al. 2004; Hückstädt et al. 2016). For example, benthic Australian sea
lions exceed their ADLC in almost 80% of their dives (Costa and Gales 2003),—
likely to maximize time on the sea floor—, while the pelagic Antarctic fur seal only
surpass it in ~16% of their dives (Viviant et al. 2016).

ADL should also not be considered a fixed unalterable threshold (see Costa and
Valenzuela Toro, Chap. 2). In California and South American sea lions, exposure to
different habitats and geographical locations dramatically altered individual ADL
and overall diving physiology (Hückstädt et al. 2016). Shallow epipelagic California
sea lions from San Nicholas island had an ADL of 2.7 min compared to 3.8 min for
deeper mesopelagic counterparts off Los Islotes (Costa et al. 2004), while benthic
southern sea lions in Southern Chile had greater mass-specific O2 stores than shallow
diver counterparts in Uruguay (Hückstädt et al. 2016). This ‘training effect’ or ‘local
adaptation’ from greater hypoxic exposure indicates that the physiology of fur seals
and sea lions can be adjusted and improved to a certain extent depending on the
ecological conditions to which they are routinely exposed. Consequently, diving
behavior and overall foraging efficiency result not only from physiological con-
straints and capacities outlined above but from a complex interaction between
genetics, physiology and the environment.

4.3 Diving Strategies of Fur Seals and Sea Lions

Diving strategies are diverse among the otariid group and can be classified as epi-/
meso-pelagic (i.e. within the water column) or benthic (on the seafloor) (see also
Costa and Toro, Chap. 2). Pelagic divers typically perform bouts of short shallow
dives (10–60 m depth for 0.5–3.0 min) with a diurnal variation in dive depths
(greater at dawn and dusk and shallow at night) that reflect the circadian migration
of their prey to the surface. They spent 20%–35% of their time at sea diving. On the
other hand, benthic divers forage mostly on continental shelf areas perform relatively
deep and long dives with no obvious diurnal pattern (25–400 m depth for
1.5–7.0 min on average) with long periods at the bottom of their dive. They invest
50%–60% of their time at sea diving, performing 10–20 dives/h with bottom time
representing 45%–55% of each dive (Werner and Campagna 1995; Thompson et al.
1998; Costa and Gales 2000, 2003) (Fig. 4.7 and Table 4.2). The maximization of
bottom time for deeper dives can be achieved by faster descent rates through ‘burst
and glide’ transit without an increase in swimming costs (Crocker et al. 2001). The
deepest diving otariid is thought to be the benthic-feeding New Zealand sea lion,
which can dive as deep as 600 m and as long as 20 min (Chilvers 2008b; Chilvers,
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Fig. 4.7 Foraging tracks (a, b) and dive profiles over a full foraging trip (c, d), and a 5-min period
of diving (e, f) for lactating northern fur seals from Reef Rookery on St. Paul Island in the Bering
Sea in 2011. Fur seals foraged either pelagically off the shelf in oceanic waters where bathymetry
reaches 3000 m, (left panels, n ¼ 8) or benthically on the shallow (~100 m deep) shelf in neritic
waters (right panels, n ¼ 12). Notice that pelagic divers display a typical circadian diving cycle
(only at night, shallow at night and deeper at dawn and dusk, c), while benthic divers dive night and
day at similar depths (d). Orange dots show spatial distribution of prey capture attempts in panels a,
b (with yellow representing no prey capture attempt) and distribution of prey capture attempts over
time and depth profiles in panels (c–f). Figure from Jeanniard du Dot et al. (2018)
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Chap. 25), although recent studies have shown that the Galapagos sea lion can also
perform dives within this range despite its smaller size (Villegas-Amtmann et al.
2017; Costa and Toro, Chap. 2).

It is generally recognized that fur seals are nocturnal epi-/meso-pelagic divers,
while most sea lions—and walruses—are benthic divers. This general pelagic/
benthic distinction is thought to result from a difference in insulation capacity
and/or in size between taxa (Arnould and Costa 2006). Fur seals are indeed overall
smaller (25–80 kg for females, Table 4.2) with consequently lower diving capacities,
and rely on a layer of air trapped in their very dense fur for thermoregulation. On the
other hand, sea lions are larger (70–300 kg for females, Table 4.2) with concomitant
greater diving capacities and rely on a blubber layer for insulation. This taxon-
derived dichotomy in diving strategy is however not entirely so clear cut. Australian
fur seals are exclusive benthic divers (Kirkwood and McIntosh, Chap. 27) while
California sea lions are epi/meso-pelagic divers (Weise et al. 2010; Kuhn and Costa
2014, Costa and Toro, Chap. 2).

In addition, as the number of bio-logging studies increases and more individuals
of different sex/age are tracked repeatedly over time, our understanding of intra-
individuals/inter-populations variability gets refined. Several species of fur seals and
sea lions seem to employ more than one of these diving strategies (Arnould and
Hindell 2001; Chilvers and Wilkinson 2009; Kuhn et al. 2010b; Villegas-Amtmann
et al. 2013; Baylis et al. 2015b). For example, northern fur seal females display
epipelagic, benthic or mixed strategies when foraging in the Bering sea (Gentry et al.
1986; Kuhn et al. 2010a; Jeanniard du Dot et al. 2018) (Fig. 4.7 and Table 4.2). On
the other hand, adult female southern sea lions breeding in northern Patagonia or the
Falklands (Werner and Campagna 1995; Baylis et al. 2015b), New Zealand sea lions
(Chilvers and Wilkinson 2009) and Galapagos sea lions (Villegas-Amtmann et al.
2008) have all been reported to show a pelagic strategy in tracked animals (Mattlin
et al. 1998). Rarely have three foraging patterns (epipelagic, mesopelagic and
benthic) been found in one species, with the exception of sea lions from the Zalophus
genus (California and Galapagos sea lions) that seem to have high behavioral
flexibility (Villegas-Amtmann et al. 2008, 2011; McHuron et al. 2016).

Individuals from the same species have a wide range of diving behaviors at their
disposal likely driven by both intrinsic and extrinsic circumstances. Age, sex, and
size can affect diving behavior. Younger animals are ontogenetically limited in their
diving capacities and dive shallower than adults (Horning and Trillmich 1997;
Baylis et al. 2005; Fowler et al. 2006; Verrier et al. 2011), while larger adult
individuals have greater diving capacities than smaller ones as mentioned earlier
(Boyd et al. 1998; Lea et al. 2006; Baylis et al. 2015b). There is also evidence that
males have a very different foraging ecology compared to females in Antarctic and
New Zealand fur seal males for example, but not necessarily in others species (Fea
et al. 1999; Staniland and Robinson 2008; Kernaléguen et al. 2015b; Drago et al.
2016; de Albernaz et al. 2017). Alternatively, variation in diving strategies can be
attributed to habitat characteristics, targeted prey type, behavior or prey availability
in these habitats, and competition or predation pressure (Chilvers and Wilkinson
2009; Baylis et al. 2015b; Arthur et al. 2016; Paez-Rosas et al. 2017; Jeanniard du

80 T. Jeanniard-du-Dot and C. Guinet

https://doi.org/10.1007/978-3-030-59184-7_25
https://doi.org/10.1007/978-3-030-59184-7_2
https://doi.org/10.1007/978-3-030-59184-7_27
https://doi.org/10.1007/978-3-030-59184-7_2


Dot et al. 2018). For example, Galapagos sea lions foraging west of the archipelago
displayed pelagic diving and fed on mesopelagic fish such as the Galapagos sardine
(Opisthonema berlangai), while females foraging benthically south west of the
Galapagos archipelago preyed upon larger fish from the Serranidae and Scorpenidae
families in deep areas with rocky substrates (Villegas-Amtmann et al. 2017).

While several diving strategies exist amongst fur seal and sea lion species, it
appears that adult individuals tend to remain faithful to specific diving strategies. A
high degree of specialization was for example observed in female New Zealand sea
lions (both within and between years, Chilvers 2008a, b, 2017), Australian sea lions
(Lowther et al. 2013), Australian fur seals (Kernaléguen et al. 2015a) and Antarctic
fur seals (Arthur et al. 2015), although it is less clear for New Zealand fur seals and
California sea lions (Melin et al. 2008; Kuhn and Costa 2014; McHuron et al. 2016).
Individual specialization is expected to occur more frequently in generalist top
marine predators with a wide range of potential prey as it provides the ecological
opportunity for different strategies to occur (Araújo et al. 2011), and when compe-
tition for resources is strong. This can be the case for breeding females nursing their
offspring. As central place foragers, they are constrained to forage within limited
areas around the breeding grounds and experience stronger intraspecific competition
for resources, resulting in foraging niche segregation. Foraging niche segregation
also occurs inter-specifically for sympatric otariid species such as Galapagos sea
lions and Galapagos fur seals, New Zealand fur seals and Australian fur seals, and
southern sea lions and South American fur seals with one of the two species being
benthic and the other pelagic foragers.

It is difficult to know whether different diving strategies within a population have
recently emerged as a result of changes in habitat characteristics or have been
retained over time as Evolutionary Stable Strategies (Hines 1987). Regardless,
they entail different trade-offs in terms of risks and benefits. Benthic foragers dive
deeper for longer periods of time which results in animals surpassing their ADL
more frequently with likely greater overall energy expenditure (Costa et al. 2004).
However, one of the benefits of preying upon benthic prey is that they tend to be
evenly distributed, predictable, relatively large and overall less susceptible to acute
environmental changes or events such as El Niño (Miller and Sydeman 2004). By
contrast, pelagic divers perform short and shallow dives rarely exceeding ADL, and
prey upon small size fish that occur in high densities when they find them. However,
mesopelagic prey tend to be patchily distributed, less predictable and more sensitive
to oceanographic perturbations (Boyd 1996; Harcourt et al. 2002). Consequently, the
different strategies might be more or less beneficial depending upon annual envi-
ronmental conditions, and the existence of diversity in diving behaviors and strate-
gies within population provides a buffer for species occupying changeable habitats
(Villegas-Amtmann et al. 2008; Lowther et al. 2012; McHuron et al. 2016).

An essential component of understanding these diving strategies and the trade-
offs they entail is to estimate the energetic costs associated with them. Studies on
northern and Antarctic fur seals, and on Galapagos, Australian and New Zealand sea
lions that simultaneously measured field metabolic rates (FMR) and foraging strat-
egies in otariids show that energy expenditures of foraging otariids are influenced by
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the variability of their behaviors at sea, i.e. their time-activity budget comprised of
diving, traveling, and resting (Arnould et al. 1996; Costa and Gales 2000; Jeanniard
du Dot et al. 2017b). Diving was found to be the most energetically expensive
activity at sea in free-ranging northern and Antarctic fur seals (however, see Arnould
et al. (1996)), in semi-captive Steller sea lions and others (Butler et al. 1995;
Goundie et al. 2015; Jeanniard du Dot et al. 2017b), and deeper dives more costly
than shallower dives of similar duration (Halsey et al. 2006). In addition, the most
energetically efficient pattern of diving resides in sequences or bouts of multiple
dives close to the ADL with short surface intervals (Goundie et al. 2015).

Consequently, benthic divers that dive deeper, for longer, and that overall exceed
their ADL more often than pelagic divers, should have greater rates of energy
expenditure at sea. It is, however, difficult to make definite conclusions about the
relative energetic costs of each strategy in free ranging studies. First, fur seals and
sea lions all seem to operate within a narrow range of FMR (6.25–7.05 W/kg,
Table 4.2) with the exception of the deep diving Galapagos sea lions (4.08 W/kg,
closer to the 3.36 W/kg of walruses) (Arnould et al. 1996; Costa and Gales 2000,
2003; Acquarone et al. 2006; Jeanniard du Dot et al. 2017a, 2018; Villegas-
Amtmann et al. 2017). Second, finer patterns of field energy expenditures are not
always consistent between and within otariids. Galapagos and California sea lions
show a slight decrease in FMR when their time spent diving increases (Hurley and
Costa 2001; Villegas-Amtmann et al. 2017). Deep diving New Zealand Sea lions
experience lower FMR than shallow diving conspecifics (Costa and Gales 2000),
whereas deep diving and shallow diving northern fur seals and California sea lions
have similar FMR (Jeanniard du Dot et al. 2018; McHuron et al. 2018).

Otariids can adapt to different foraging habitat and/or environmental changes
either behaviorally or physiologically. They tend to increase their time at sea rather
than their FMR in poor foraging conditions (Trillmich 1990; Boyd 1999) (noting
that foraging trip duration does not appear to impact FMR in either northern fur seals
or New Zealand sea lions, Costa and Gales 2000; Jeanniard du Dot et al. 2018).
Pelagic divers that forage at night on prey with a circadian migration pattern are
limited in the opportunities to increase their diving effort in years of poor foraging
conditions, as prey are not accessible to them during daylight. They have to respond
by increasing their total time at sea. Deeper divers, or divers with more flexible
foraging strategies such as California sea lions, can access prey during the day and
increase their diving effort locally without the need to extend their total time at sea.
Nevertheless, even for the few species that can increase their FMR, total metabolic
changes remain limited. The overall low metabolic plasticity indicates that fur seals
and sea lions most probably operate close to their metabolic ceiling with important
implications for the scope of their adaptive capacities to environmental changes
(Costa and Gales 2000, 2003; Arnould and Costa 2006; Ladds et al. 2017c; Villegas-
Amtmann et al. 2017).
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4.4 Dive Metrics to Infer Behaviors and Energetics

Unlike phocids who travel and sleep underwater, fur seals and sea lions transit and
rest at the surface of the ocean. The function of their diving is thus mainly to find and
access patchily distributed prey resources in a three dimensional and dynamic
environment. Ecologists have long attempted to transpose dive profiles into foraging
behaviors, as well as use dive metrics—such as dive duration, maximum dive depth,
surface interval duration, bottom duration, 2D dive shape, time-at-depth, ascent and
descent rates, residuals of dive depth-duration models indicative of longer than
average dives for a given depth, etc.—to quantify and predict energetic costs of
diving and feeding success. The relationship between dive shape and behavior may
however not be consistent between species, age classes or life history stages (Kuhn
et al. 2009a; Carter et al. 2016).

More recently with high resolution datasets, different methods have emerged to
partition and quantify time-activity budgets, foraging efforts and diving activities:
the vertical area-restricted search, the vertical sinuosity at the bottom of dives, the
vertical velocity used in hidden Markov models or behavioral state-space models for
example (Joy et al. 2015; Arthur et al. 2016; Heerah et al. 2017) (Fig. 4.8). It is
important to keep in mind however, that the application and the accuracy of each of

Fig. 4.8 Foraging behaviors of a northern fur seal female breeding on St Paul Island, in the Bering
sea during the breeding season 2006 inferred from a behavioral state-space model (results from
model parameters a1 and a2 are shown with the green lines and original estimates with black dots),
based on time series of vertical velocity (black lines). The yellow, pink and grey blocks correspond
to active diving, exploratory diving, and non-diving, respectively (as diagnosed from values of a1
and a2 from the model). Figure from Joy et al. (2015).
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these methods and metrics depend on the resolution of the data and the temporal
scale of analysis (Carter et al. 2016) as well as the minimum depth taken into account
to define a dive. This parameter varies widely between studies (2–6 mminimum dive
to define a dive, see Table 4.2) and induces significant variations in the mean diving
depth and the percentage of time spent diving.

In addition, inferring tri-dimensional behaviors from two-dimensional informa-
tion is inherently subjective as 2D dive profiles do not account for lateral displace-
ment—or lack thereof—while underwater at a given depth (Harcourt et al. 2000).
The development of new sensors such as tri-axial accelerometers and magnetometers
have provided means to derive dive profile of animals in 3D (Figs. 4.9 and 4.10), as
well as their body position in the water column, pitch, roll and yaw angles, as well as
relative swimming effort (Fig. 4.10), and detailed behaviors using varied methods
for example spectral analyses of tri-axial acceleration with unsupervised signal
categorization (using available ethographer software, Battaile et al. 2015a), classifi-
cation tree algorithms (Jeanniard du Dot et al. 2017b), or random forest models
(Ladds et al. 2016). This new but complex information has shown that pinniped
foraging behavior can be varied and complex and that 2D profiles used on their own

Fig. 4.9 Example of the 3D track of a foraging trip at sea from a female northern fur seal from
St. Paul Island reconstructed using tri-axial acceleration, dive depths and GPS data from high-
resolution biologger (and using package TrackReconstruction in R colored by depth). Detailed 3D
paths during a benthic (typically classified as U-shape in 2D) and a pelagic (typically classified as
V-shape in 2D) are shown as examples
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may be overly simplistic (Davis et al. 1999; Harcourt et al. 2000; Simpkins et al.
2001; Hindell et al. 2002).

In addition, without direct validation, it remains unclear whether any of these dive
and behavioral characteristics can be used to differentiate successful from unsuc-
cessful foraging in diving pinnipeds. Stomach temperature pills (Kuhn and Costa
2006; Kuhn et al. 2009b) and head- or back-mounted accelerometers have been
combined with TDR and video data to identify prey capture attempts in several fur
seal and sea lion species (Fig. 4.11, and see Fig. 4.7 for example at sea) (Viviant et al.
2010; Volpov et al. 2016). The combination of dive profiles with these new indices
of feeding attempts or events have provided opportunities to ground-truth time-at-
depth dive metrics as indicators of foraging behaviors and success (Sala et al. 2011).
For example Viviant et al. (2016), deployed accelerometers (measuring
jaw-openings as a proxy for prey capture attempts) in conjunction with TDRs in
Antarctic fur seals to test dive metrics including bottom duration, ascent and descent
rates and maximum dive depth as predictors of foraging success. They concluded
that the metrics to best predict foraging success depends on the timescale considered
(from single dives, to bout or to nights).

Fig. 4.10 Example of dives performed by a female Steller sea lion from Lovushki Island, Russia,
displayed in 3D, color-coded by swim speed and with the black dots representing the beginning of
the dives. Graph (a) shows a typical benthic ‘U-shape’ dive with steep descent and ascent angles.
The animal speeds up from surface to bottom of the dive, likely due to buoyancy-driven gliding
strategy, displays a slow swimming speed at the benthos before barrel-rolling back to the surface
(as observed in several species of otariids), slowing down towards the end of the ascent. Graphs (b,
c) illustrate pelagic dives with more moderate descent and ascent angles. Graph (b) shows a dive
where changes in swim speed are typical of a prey chase behavior. Graph (c) illustrates a typical
pelagic ‘V-shape’ dive with a smaller range of swim speeds displayed. Figures from Olivier (2015)
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Fig. 4.11 Example of an otariid equipped with a head accelerometer showing the surge (X) and
heave (Y) axes, and the process of identification of attempted prey captures (APC) from the
recorded signal of depth and acceleration. Dive depth for a single dive is shown in panel (a), and
raw surge acceleration (in g) in panel (b). Head movements were isolated from body movements
with a 3 Hz high-pass filter (panel c) and variance of acceleration (g2) was calculated for each
individual dive (panel d). Peaks in variance of acceleration above a threshold and within a minimum
time interval (i) were used to estimate attempted prey capture (APC, panel d). Figure from Volpov
et al. (2015)
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Dynamic tri-axial acceleration metrics such as ODBA or VeDBA (Overall—or
Vectorial—dynamic body acceleration) were hypothesized to be directly related to
metabolic rate in free ranging animals (Gleiss et al. 2011). While studies have shown
promising relationships between metabolic rate and ODBA on terrestrial animals
(Halsey et al. 2009), this relationship is more controversial in captive or wild fur
seals and sea lions (Fahlman et al. 2008; Dalton et al. 2014; Ladds et al. 2017a). In
Antarctic and northern fur seals, ODBA did not correlate with doubly-labeled water
measures of field metabolic rates over a full foraging trip at sea (Jeanniard du Dot
et al. 2016a). This was argued to be due, amongst other reasons, to the difference in
time-activity budgets between individuals by the authors, but it was later shown that
relationships between ODBA/VeDBA and energy expenditure metrics was likely
found significant due to a ‘time trap’, i.e. time being inherently conflated into the
2 tested variables (Halsey 2017; Ladds et al. 2017a). Whether or not ODBA/VeDBA
can accurately measure field metabolic rate in free-ranging fur seals and sea lions,
dynamic acceleration can certainly provide a relative index of swimming effort
underwater between phases of dives, between dives, and over total foraging trips
for a given individual (Miller et al. 2012). This refines the scale at which changes in
swimming effort during dives can be estimated to an unprecedented level.

In addition to using dive profiles, ecologists have built theoretical frameworks to
infer foraging efficiency in diving animals. These models were specifically adapted
to diving animals from the Optimal Foraging Theory (OFT, MacArthur and Pianka
1966) taking into account the physiological needs to regularly return to breath at the
surface of the water, i.e. leave the prey patch. OFT stipulates that natural selection
favors animals that forage more efficiently, with foraging efficiency defined as the
ratio of energy gained to energy expended to acquire food per unit of time. Conse-
quently, individuals should maximize rate of energy intake while minimizing the
rate of energy expenditure associated with prey searching, capture and handling, and
thus concentrate their time in areas of successful feeding. Given this and the
previously mentioned assumption that most foraging occurs during the bottom
phase of dives, Optimal Diving models hypothesized that divers should maximize
their time at the bottom phase, i.e. at the feeding depth, effectively increasing the
probability of capturing prey while minimizing the time and energy spent traveling
from and to the surface (descent and ascent phase), as well as the time recovering at
the surface after the dive (post-dive surface interval) (Kramer 1988; Houston and
Carbone 1992; Thompson et al. 1993). Within this framework, foraging success
should thus increase with dive duration, bottom phase duration and dive frequency.

This was however not verified for wild benthic diving Australian fur seals
regularly diving at the fairly constant benthos of the oceans. Neither bottom duration
nor post-dive surface intervals were indicative of whether prey capture attempts
occurred during dives, while descent rate was the best predictor of successful feeding
dives (Volpov et al. 2016). In Australian and Antarctic fur seals, bottom time
duration was not the best predictor of successful foraging which rather depended
on the temporal scale at which the analyses occurred from single dives, to bout,
nights etc. (Iwata et al. 2015; Foo et al. 2016; Viviant et al. 2016). This highlights the
importance of the time scale and initial research question since predictors of foraging
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success for a particular dive bout may not perform as well when applied across an
entire foraging trip.

The distribution, accessibility and quality/density of prey patches, the level of
competition for a given prey patch, as well as the physiological needs, capacities or
degree of plasticity of diving animals are likely to influence their foraging strategies.
Adding inferences about prey patch density and quality in the decision making
process of diving seals (Marginal Value Theorem, Charnov 1976; Thompson and
Fedak 2001) hypothesized that individuals should terminate a dive earlier
(i.e. shorter dive and bottom durations) when there are no prey present or prey
density is low, but that the benefit of early dive termination is reduced for deeper
dives. These assumptions are however not clearly validated in wild otariids either.
Antarctic fur seal females increased their foraging effort by diving more and
spending more time searching for prey at the bottom of dives in poor-quality patches
(Mori and Boyd 2004; Viviant et al. 2014). Similarly, Australian fur seals decreased
bottom duration with increasing prey encounter rate at the scale of a dive, possibly to
come back to the surface to consume larger prey items, but not at the scale of a bout
(Foo et al. 2016). It is however interesting to note that Antarctic fur seals did tend to
dive and forage at a depth shallower than the depth with the highest rate of prey
capture attempts (Viviant et al. 2016). This is in accordance with Mori’s model
(1998) that postulates that if species are physically capable of reaching depths of
highest prey densities, they will tend to dive at depths slightly shallower than the
maximum prey density as a trade-off with physiological constraints of diving. This
indicates that species favor foraging efficiency (i.e. the net energy gain taking into
account diving costs) rather than just maximizing prey intake.

The wide breadth of these results highlights the complexity of the decision
making process of fur seals and sea lions in the wild. They modify their dive
behavior based on real-time evaluation of prey encounter rates during a given dive
(especially if the first prey encounter occurs early in the dive, Foo et al. 2016), or
during several preceding dives (Iwata et al. 2015; Viviant et al. 2016; Volpov et al.
2016) all while within their physiological constraints. Information gathered at any
point in the foraging experience is thus essential in the multifactorial decision
making process, and current theoretical foraging models using dive metrics only
may be too simplistic to accurately represent such a complex ecological system.

To conclude, there is no doubt that dive-related data are a powerful resource to
assess underwater behavior and quantify foraging efficiency in animals which
cannot be observed directly. This is particularly relevant given the new types of
data accessible from a wide range of additional sensors. However, these data should
be used with a clear understanding of their limitations given the wide diversity of
behaviors and the complexity of factors affecting the decision making process of
individual animals even within the single otariid taxon itself.
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4.5 Conclusion: Impacts of Diving Strategies on Fitness
and Population Trends

The identification and behavioral characterization of foraging strategies is an impor-
tant first step towards understanding the energetic consequences of the variability in
foraging behaviors of fur seals and sea lions. In a population of Antarctic fur seal
with a single foraging strategy, the time lactating females spend ashore was posi-
tively correlated with pup weaning mass (Doidge and Croxall 1989; Lunn et al.
1994); and mothers with diving patterns yielding a greater foraging efficiency during
their trips at sea produced heavier pups more likely to survive during their first year
at sea (Jeanniard du Dot et al. 2017a). Consequently, the resulting foraging effi-
ciency ultimately impacts survival and reproductive capacities of individuals and the
trend of their population both intra- and inter-specifically.

It has been suggested that the benthic feeding strategy inherently results in a
higher foraging cost for likely similar energy gain (thus lower foraging efficiency)
(Costa et al. 2004). In addition, benthic foragers usually exhibit smaller population
sizes and lower population growth rates compared with those that feed in the water
column (Arnould and Costa 2006). In northern fur seals and California sea lions, the
pelagic strategy offers greater foraging efficiency than the benthic strategy, but
females often have to travel further and spend more time at sea away from their
pup to reach their foraging ground (McHuron et al. 2016; Jeanniard du Dot et al.
2018). Pup growth rates of benthic and pelagic females could not be measured in
these two studies so it is difficult to tease apart what strategy would be more
beneficial, if any. However, the population of northern fur seals from Bogoslof
island, a breeding ground where only the pelagic diving strategy exists, is increasing
while the Pribilof Island breeding population where both the pelagic and benthic
strategies can be seen has been decreasing by 3.5% per year for the last 20 years
(Muto et al. 2018). Similarly, adult female southern sea lions in northern Patagonia
feeding on ‘offshore’ pelagic prey had higher pup growth rates than females with an
‘inshore’ benthic prey diet (in this particular study year, Dragon et al. 2010).
Southern sea lions which have only a benthic feeding strategy in Uruguay are
decreasing, while the population in the Falklands where some individuals display
limited pelagic feeding is showing signs of recovery (Baylis et al. 2015a). Beyond
the benthic/pelagic dichotomy, the deeper dive depths of Antarctic fur seals breeding
on Heard Island compared to fur seals from Bird Island is hypothesized to be a
reason for their low population growth rates and limited population recovery
(Staniland et al. 2010). All these studies indicate that behavioral decisions related
to diving and foraging affect pup growth and survival for income-breeding species,
and shape population trends and structure.

Despite evidence that pelagic strategies seem to lead to higher population growth
rates than benthic ones, the fact that diverging strategies are retained and co-exist
within and between populations indicates that they have valuable benefits on the
evolution time-scale. While the benthic diving strategy may inhibit rapid population
growth compared to pelagic feeding, benthic prey are more predictable and stable
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and so benthic strategies may buffer populations during times of drastic environ-
mental change (see also Costa and Toro, Chap. 2). Given that our oceans are now
facing major biochemical, biological and trophic alteration of marine ecosystems,
there is a growing need to understand which factors influence long-term persistence
of different strategies within and between species and hence what the broader
implications of foraging decisions are over evolutionary time.
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