
HAL Id: hal-03255204
https://hal.science/hal-03255204

Submitted on 9 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active vibration control and stability analysis of a
time-delay system subjected to friction-induced

vibration
Jean-Jacques Sinou, B. Chomette

To cite this version:
Jean-Jacques Sinou, B. Chomette. Active vibration control and stability analysis of a time-delay
system subjected to friction-induced vibration. Journal of Sound and Vibration, 2021, 500, pp.116013.
�10.1016/j.jsv.2021.116013�. �hal-03255204�

https://hal.science/hal-03255204
https://hal.archives-ouvertes.fr


Journal of Sound and Vibration 500 (2021) 116013 

Contents lists available at ScienceDirect 

Journal of Sound and Vibration 

journal homepage: www.elsevier.com/locate/jsv 

Active vibration control and stability analysis of a time-delay 

system subjecte d to friction-induce d vibration 

J-J. Sinou 

a , b , ∗, B. Chomette 

c 

a Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, École Centrale de Lyon, 69134 Écully, France 
b Institut Universitaire de France, 75005 Paris, France 
c Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, F-75005 Paris, France 

a r t i c l e i n f o 

Article history: 

Received 23 September 2020 

Revised 11 December 2020 

Accepted 5 February 2021 

Available online 13 February 2021 

Keywords: 

Stability analysis 

Friction-induced vibration 

Control with time delay 

a b s t r a c t 

The use of active vibration control may induce a delay leading to detrimental degrada- 

tion of the performance of active vibration control. This is particularly true in the case 

of mechanical systems subjected to friction-induced vibration and noise for which such 

time-delays can lead to the appearance of undesirable instability. Furthermore, conducting 

a stability analysis of time-delay systems and estimation of the critical time delay are chal- 

lenging, due to the infinite nature of the characteristic (quasi) polynomial of the associated 

closed-loop system, having an infinite number of roots. 

The objective of this paper is to discuss a strategy for the estimation of the critical time 

delay for the problem of Friction-Induced Vibration and noisE (FIVE). To achieve such an 

objective, the prediction of the stability analysis of time delay systems and the estimation 

of the associated critical time delay are first performed by applying the frequency sweep 

test and the eigenvalue problem approximation using the Taylor series expansion of the 

delayed term. In a second time, a mixed approach is proposed to predict effectively the 

real critical time delay of autonomous controlled systems subjected to friction-induced vi- 

bration. The efficiency of the proposed approach is illustrated by numerical examples for 

the prediction of self-sustaining vibrations of a phenomenological model with two degrees 

of freedom for which it is possible to provide a clear understanding and illustration of the 

phenomena involved and observed. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

 

1. Introduction 

The problem of Friction-Induced Vibration and noisE (FIVE) is crucial due to its huge impact for both the acoustic dis-

comfort or the potential poor system performances [1–5] . Consequently the development of technological solutions making 

it possible to reduce or eliminate self-excited vibrations of a mechanical system subjected to friction-induced vibration is 

nowadays a crucial point. Many strategies can be used to control such a system. Thereby the use of passive or active vi-

bration control is an attractive option to mitigate such vibrations. Various passive methods have been investigated in the 

literature such as adding excitation [6–9] , nonlinear control by modulating the normal forces at the frictional interface [10] ,

dynamic vibration absorbers [11,12] or Nonlinear Energy Sink [13] . Other approaches based on active methods for controlling 

friction-induced oscillations have also been put forward by researchers [14–24] . For a more general point of view concerning
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the control of machines with friction, the reader can refer to the survey paper of Armstrong-Helouvry [25] that discusses

the problem of friction compensation in controlled mechanical systems survey with contributions from the tribology, physics 

and controls literature. 

For several reasons, some time delays are often present in various mechanical systems. They may come from not only 

inherent time-delays in the components of the systems where the propagation of effects takes time but also the necessity of

feedback controls to stabilize a system that can also introduce some inevitable delays. A special attention should be brought 

to the consideration of the concept of time delay to properly solve the problem of Friction-Induced Vibration and noisE. 

Effectively, such time-delays can cause some significant problems such as the appearance of instability for a mechanical 

system subjected to friction-induced vibration [26] . Consequently the performance of active vibration control suffers severe 

degradation for the case in which the time delay has to be taking into account. This explains why time-delayed feedback

control methods have received outstanding attention in the domain of mechanical systems subjected to friction-induced 

vibration in the past decades [15,17,20,21,26] . The interested reader can refer to the paper of Chatterjee [16] that gives an

overview of efficiency of the time-delayed feedback control for the three well-known mechanisms of friction-induced in- 

stabilities (i.e. Stribeck instability governed by velocity-weakening characteristics of friction force, mode-coupling instability, 

and sprag-slip instability). 

Moreover the presence of time delays leads to more complex analysis including infinite-dimensionality than in the case 

of system without delay that corresponds to a finite dimensional case. So it is not possible to analyze such time-delay

systems with classical methods, especially, in checking stability. Such problems are often solved indirectly by using approxi- 

mation such as the Taylor series expansion or Padé approximants as a substitute for the exponential time-delay terms in the 

characteristic equation. The main interest of Padé approximants and general rational fractional approximants [27,28] is that 

they make it possible to often provide better approximation of the function than truncating its Taylor series. However Padé

approximants are rational functions and that artificial singular points may occur. Moreover Insperger [29] indicates that the 

approximation of delayed systems by Taylor series expansion must be used with care in engineering applications due to the 

fact that Taylor series approximation of the delayed term is not always an appropriate tool to analyze asymptotic behavior 

of time-delay systems. On the other hand methodology derived from the small gain theorem and based on the well-known 

receptance method can be applied in the case of linear systems with time-varying delay [30] and unstructured uncertain- 

ties [31] . This approach ensures the robust stability of the uncertain second-order system despite the time-varying delay. 

Other approaches can also be based on the frequency response methods combined to the receptance method as shown in 

[32] in the case of rank-one feedback controllers with time delay. The main advantage of the proposed method is to take

into consideration the time delays without approximations and without a posteriori stability verification by using frequency 

response calculation. 

Nowadays, one of the main scientific challenges is not only to investigate the effect of time delay for the problem of

Friction-Induced Vibration and noisE but also to predict the critical time delay for which instability appears. One of the 

main originality of the proposed study is to answer this question by developing a hybrid method which combines the ef-

ficiency of the frequency sweeping test [33] with an expansion based approach of the delayed term for approximating the 

eigenvalues problem. More specifically it will be shown in this paper that this hybrid method makes it possible to efficiently

calculate the critical time delay in the context of mechanical systems subjected to friction-induced vibration, as opposed to 

using the frequency sweeping approach alone. Note that this work can be considered as an extension study of the original

work of Singh and Ouyang [20] on the use of frequency sweeping test for estimating the critical time delay and a com-

plementary study in the continuity of the previous works of Singh [34] and Singh et al. [35] that are outstanding essential

steps referential in control of second-order mechanical systems with time delay. Until today only few works [22,36] have 

been published to discuss and contribute to this important subject in line with the work of Singh et al. in the field of

mode-coupling instability and friction-induced vibration. 

This paper is organized as follows. First of all, the mechanical system without control or regulated by state feedback 

control with time delay is briefly discussed. Then, some basic concepts based on the stability analysis of uncontrolled and 

controlled systems are presented. More specifically the frequency sweeping test and the approximation of the eigenvalues 

problem by using Taylor series expansion of the delayed term are discussed for predicting the stability analysis of time- 

delay systems and for estimating the associated critical time delay. Then numerical examples are undertaken to discuss the 

relevance of the two methodologies and a mixed strategy is developed to predict efficiency the critical time delay of the

controlled system. 

2. Preamble 

2.1. Mechanical system under study 

The mechanical system under study is shown in Fig. 1 . This two-degrees-of-freedom model corresponds to a phenomeno- 

logical model which makes it possible to analyze mono-instability and the generation of oscillations for mechanical systems 

subjected to friction-induced vibration. This phenomenological model has been previously proposed by Hulten [37,38] and 

extensively studied by Sinou and Jézéquel [39] and Sinou et al. [40] for predicting mode coupling instability in friction 

induced vibrations and its dependency on system parameters including damping. 
2 
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Fig. 1. Mechanical system under study. 

 

 

 

 

 

 

 

 

 

 

 

 

As a reminder, this model has one mass m 1 held against moving bands by two plates. Each contact between mass and

plates is modeled by linear springs and dampings: 
(
k X 1 , c X 1 

)
and 

(
k Y 1 , c Y 1 

)
. It is assumed that the moving band and the mass

are always in contact: the friction forces are determined with a classical Coulomb’s law and the friction coefficient at the

different contacts between the masses and the band is supposed to be constant and equal to μ j (for j = 1 , 2 , see Fig. 1 for

more details). The tangential friction forces F t are related to the normal forces F n by the following relation: F t = μ j F n . 

The second-order differential equations describing the dynamic behaviour of the mechanical system under study can be 

written in the following matrix form: 

M ̈X (t) + C ̇

 X (t) + 

(
K + K μ

)
X (t) = 0 (1) 

where X (t) defines the vector of the two degrees-of-freedom of the mechanical system (i.e. X = [ X 1 (t) Y 1 (t) ] 
T 
). The mass, 

damping and stiffness matrices as well as the contributions K μ due to the friction forces are defined as follows 

M = 

[
m 1 0 

0 m 1 

]
; C = 

[
c X 1 0 

0 c Y 1 

]
; K = 

[
k X 1 0 

0 k Y 1 

]
; K μ = 

[
0 μ2 k Y 1 

−μ1 k X 1 0 

]
(2) 

The main properties of the mechanical system under study are : m 1 = 1 kg; c X 1 = c Y 1 = 1 Ns/m; k X 1 = 60 0 0 N/m; k Y 1 =
30 0 0 N/m. For the sake of simplicity it is also assumed that the two coefficients of friction at each contact between the

plates of the moving band are equal (i.e. μ1 = μ2 ). 

The stability of the system can be determined by using the well-known Complex Eigenvalue Analysis (CEA). If λ defines 

the complex eigenvalues of the system such as 

det 
(
λ2 M + λC + K + K μ

)
= 0 (3) 

stability is determined by considering the real part of λ. If all eigenvalues have negative real parts, the system is stable. If at

least one eigenvalue has a positive real part, the system is unstable. The imaginary part of the associated positive eigenvalue

defines the angular frequency of the unstable mode. 

For the case under study, the Hopf bifurcation point is detected at μHop f = 0 . 35 . The system is stable for the friction

coefficient μ ∈ 

[
0 ;μHop f 

[
and become unstable for μ > μHop f . The angular frequency of the unstable mode is equal to 67.1 

rad.s −1 at the Hopf bifurcation point. 

2.2. System regulated by state feedback control with time delay 

The previous system regulated by state feedback control with time delay can be represented as 

M ̈X (t) + C ̇

 X (t) + 

(
K + K μ

)
X (t) = b u (t − τ ) (4) 

with 

u (t − τ ) = −f 
T ˙ X (t − τ ) − g 

T X (t − τ ) (5) 

where τ corresponds to the constant time delay between the measurements of the state and the actuation of the control. 

To be noted that the time delays for the velocity and displacement state feedback are assumed to be equal. f and g are the

vectors of proportional velocity and displacement control gains. Substituting Eq. (5) in Eq. (4) , the closed-loop system with

time-delay can be defined as 

M ̈X (t) + C ̇

 X (t) + bf 
T ˙ X (t − τ ) + 

(
K + K μ

)
X (t) + bg 

T 
X (t − τ ) = 0 (6) 

As discussed in [41,42] , by considering X (t) = Z e st where Z is a constant vector, the eigenvalue problem of the closed-

loop system defined in Eq. (6) is given by (
s 2 M + s 

(
C + bf 

T 
e −sτ

)
+ K + K μ + bg 

T 
e −sτ

)
Z = 0 (7) 

To be noted that for the closed-loop system without time delay, the problem is reduced to (
s 2 M + s 

(
C + bf 

T 
)

+ K + K μ + bg 

T 
)
Z = 0 (8) 
3 



J-J. Sinou and B. Chomette Journal of Sound and Vibration 500 (2021) 116013 

 

 

 

 

 

 

 

 

 

The non-trivial solutions ( s i , Z i � = 0 ) for the closed-loop system with time delay (without time delay, respectively) are eigen- 

pairs of the system (7) (system defined in Eq. (8) , respectively). As a reminder Eq. (3) defines the eigenvalue problem of the

corresponding open-loop system. 

3. Stability analysis of time-delay systems and estimation of the critical time delay 

The aim of this section is to briefly described two approaches for predicting the stability of time-delay systems and more

particularly for estimating the critical time delay. The first approach is called the frequency sweeping tests [33] and the

second method is based on the approximation of the eigenvalues problem by using Taylor series expansion of the delayed 

term. 

3.1. Stability based on frequency sweeping tests 

The stability analysis of the closed-loop system with time-delay defined in Eq. (6) can be performed by considering the

well-known frequency-sweeping approach [33] . 

First of all, Eq. (6) can be rewritten in a state space form 

˙ Y (t) = A 0 Y (t) + A 1 Y (t − τ ) (9) 

where the state vector Y is defined by Y = 

[
X 

˙ X 

]T 
. The matrices A 0 and A 1 of size ( 2 p, 2 p ) (where p defined the number of 

degrees of freedom of the system) are given by 

A 0 = 

[
0 I 

−M 

−1 
(
K + K μ

)
−M 

−1 C 

]
; A 1 = 

[
0 0 

M 

−1 bg 

T 
M 

−1 bf 
T 

]
(10) 

The previous eigenvalue problem defined in Eq. (7) can be rewritten as the pseudo-polynomial 

det 
(
s I − A 0 − A 1 e 

−τ s 
)

= 0 (11) 

The system for a given value of time delay τ is asymptotically stable if and only if all roots of this transcendental function

lie in the open left half of the complex plane. Moreover, a system is said to be delay-independent stable if its stability does

not depend on the delay value (for τ ∈ [ 0 ; + ∞ [ ). Otherwise, the system is said to be delay-dependent stable. A necessary

and sufficient condition for stability independent of delay [33] is given by: 

• A 0 and A 0 + A 1 are Hurwitz matrices (or stable matrices, i.e. every eigenvalue of A 0 and A 0 + A 1 has strictly negative 

real part); 

• ρ
(
( jω I − A 0 ) 

−1 A 1 

)
< 1 ∀ ω > 0 where ρ( A ) corresponds to the spectral radius of the matrix A . 

If the system defined in Eq. (9) is stable at τ = 0 and rank ( A 1 ) = q, the closed-loop system with time-delay is stable for

the interval delay value τ ∈ [ 0 ; τlim 

[ and becomes unstable at τ = τlim 

with 

τlim 

= min 

1 ≤i ≤q 
τ i 

lim 

(12) 

and 

τ i 
lim 

= 

⎧ ⎨ 

⎩ 

min 

1 ≤k ≤n 

θ i 
k 

ω 

i 
k 

if λi 

((
jω 

i 
k 
− A 0 

)
, A 1 

)
= e − jθ i 

k for some ω 

i 
k 

∈ ( 0 , ∞ ) , θ i 
k 

∈ [ 0 , 2 π ] 

∞ if ρ( ( jω I − A 0 ) , A 1 ) > 1 ∀ ω > 0 

(13) 

3.2. Taylor series expansion 

By considering a Taylor series expansion of the delayed term u (t − τ ) up to the n th order such as 

u (t − τ ) = 

∞ ∑ 

n =0 

(−1) n 

n ! 
τ n u 

(n ) (t) (14) 

where u 

(n ) denotes the n th derivative with respect to time, the closed-loop system (4) can be approximated by 

M ̈X (t) + C ̇

 X (t) + 

(
K + K μ

)
X (t) = B f 

T 

(
− ˙ X (t) + τ Ẍ (t) + · · · + 

(−1) n 

n ! 
τ n X 

(n +1) (t) 

)

+ B g 

T 

(
−X (t) + τ ˙ X (t) + · · · + 

(−1) n 

n ! 
τ n X 

(n ) (t) 

)
(15) 

Using the previous expression X (t) = Z e st with Z a constant vector and the first-order approximation of Eq. (14) , solving

eigenvalues of the problem corresponds to the quadratic eigenvalues problem (
s 2 

(
M − τB f 

T 
)

+ s 
(
C + B f 

T − τB g 

T 
)

+ K + K μ + B g 

T 
)
Z = 0 (16) 
4 
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So the associated first-order realization of the generalized eigenvalue problem is provided by 

( P 1 − s Q 1 ) V 1 = 0 (17) 

with 

P 1 = 

[
0 I 

K + K μ + B g 

T C + B f 
T − τB g 

T 

]
; Q 1 = 

[
I 0 

0 −M + τB f 
T 

]
; V 1 = 

[
Z 

s Z 

]
(18) 

Similarly the second-order approximations of Eq. (14) yields the cubic eigenvalue problems defined by (
τ 2 

2 

B f 
T 

s 3 + s 2 
(

M − τB f 
T + 

τ 2 

2 

B g 

T 

)
+ s 

(
C + B f 

T − τB g 

T 
)

+ K + K μ + B g 

T 

)
Z = 0 (19) 

and the associated first-order realization of the generalized eigenvalue problem is provided by 

( P 2 − s Q 2 ) V 2 = 0 (20) 

with 

P 2 = 

⎡ 

⎣ 

0 I 0 

0 0 I 

K + K μ + B g 

T C + B f 
T − τB g 

T M − τB f 
T + 

τ 2 

2 

B g 

T 

⎤ 

⎦ ; Q 2 = 

⎡ 

⎣ 

I 0 0 

0 I 0 

0 0 −τ 2 

2 

B f 
T 

⎤ 

⎦ ; V 2 = 

[ 

Z 

s Z 

s 2 Z 

] 

(21) 

More generally, the first-order realization of the generalized eigenvalue problem for a Taylor series expansion of the 

delayed term u (t − τ ) up to the n th order is given by 

( P n − s Q n ) V n = 0 (22) 

with the matrices P n and Q n of size ( n + 1 , n + 1 ) and the vector V n of size ( n +1) such as 

P n = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 I 0 · · · 0 

0 0 I · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 0 · · · I 

K + K μ + B g 

T C + B f 
T − τB g 

T M − τB f 
T + 

τ 2 

2 

B g 

T · · · (−1) (n −1) τ n −1 

(n − 1)! 
B f 

T + ( −1) n 
τ n 

n ! 
B g 

T 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(23) 

Q n = diag 

(
I , · · · , I , (−1) n 

τ n 

n ! 
B f 

T 

)
; V n = 

[
Z s Z · · · s n Z 

]
(24) 

As discussed in [42] , the characteristic equation of a controlled system with time delay has infinite number of roots over

the complex field. For a p-dimensional system without time delay, the location of the 2 p roots in the complex plan defines

the stability of the controlled system. As previously discussed in Section 2 , the system is unstable if at least one eigenvalue

has a positive real part. In the case of a controlled system with time delay, the characteristic equation has infinite number of

roots over the complex field [42] . Due to the fact that the approximated generalized eigenvalue problem up to the n th order

give only 2 × ( p + n − 1 ) roots, unstable closed-loop poles that are roots of the eigenvalue problem (7) may be missing. So

additional stability analysis needs to be performed to ensure that all the poles of the controlled system with time delay are

stable. 

For the interested reader, it should be noted that Araujo [36] proposed to resume the work of Singh [34] and Ram et al.

[42] by using the classical Padé approximation for the time delay exponential instead the truncation of the Taylor series. To 

give a fair comparison, a detailed analysis is conducted for the k th order Padé and (k + 1) th order Taylor series that give the

same final order of approximated system to evaluate the eigenvalue problem. The results indicate that the well-known Padé

approximants for time delay in frequency domain is shown to be as accurate as that the truncation of the Taylor exponential

expansion proposed in [42] . 

4. Application and numerical examples 

In this section the relevance and effectiveness of the two previous methodologies (i.e. the frequency sweeping approach 

and the Taylor series expansion) are discussed for the prediction of the stability analysis of time-delay systems and estima- 

tion of the critical time delay. Finally a mixed strategy is proposed to predict efficiency the value of the critical time delay.

Four reference cases will be considered for all the rest of the study. In the case of no active control with time delay, these

four reference cases can be defined as follows: the first one for μ = 0 . 34 corresponds to a stable system with a friction

coefficient just before the Hopf bifurcation. The second case for μ = 0 . 36 corresponds to the unstable system with a fric-

tion coefficient just after the Hopf bifurcation. The last two cases (for μ = 0 . 4 and μ = 0 . 6 ) are two configurations far from
5 
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Table 1 

Poles chart for the uncontrolled system and the controlled system without time delay. 

Case μ Mode 

Uncontrolled system Controlled system 

ω (rad.s −1 ) Real part ω (rad. s −1 ) Real part 

1 0.34 1 64 −0.5 64 −0.5 

2 70 −0.5 70 −0.5 

2 0.36 1 67 1.6 67 −1.6 

2 67 −2.6 67 −2.6 

3 0.4 1 67 5.4 67 −5.4 

2 67 −6.4 67 −6.4 

4 0.6 1 69 14.5 69 −14.5 

2 69 −15.5 69 −15.5 

Table 2 

Estimation of τlim based on the fre- 

quency sweeping approach. 

μ τlim 

0.34 0.0005 

0.36 0.00482 

0.4 0.0123 

0.6 0.0097 

Fig. 2. Evolution of (a) the spectrum radius ρ and (b) the critical time delay τ versus the angular frequency ω based on the frequency sweeping approach 

( μ = 0 . 34 ; μ = 0 . 36 ; μ = 0 . 4 ; μ = 0 . 6 ) ; � : prediction of (ω c , τc ) based on direct numerical simulations. 

 

 

 

 

 

 

 

 

 

the Hopf bifurcation point. Table 1 summarizes the stability analysis for each case (see the columns corresponding to the 

uncontrolled system). 

First of all, we consider the stability analysis based on frequency sweeping tests. In this case, the matrices A 0 and A 0 + A 1 

are Hurwitz matrices for the case of the system regulated by state feedback control with time delay. As a reminder, the

uncontrolled system is stable for μ ∈ 

[
0 ;μHop f 

[
with μHop f = 0 . 34 which is consistent with the fact that the matrix A 0 

is Hurwitz stable. For the other three case studies (i.e. μ = 0 . 36 , μ = 0 . 4 and μ = 0 . 6 ), only the matrix A 0 + A 1 is a stable

matrix (i.e. every eigenvalue of A 0 + A 1 has strictly negative real part). Then Fig. 2 (a) gives the spectrum radius of the matrix

( jω I − A 0 ) 
−1 A 1 for the four cases under study. Due to the fact that this quantity can be superior to one for the frequency

range of interest, we conclude that the system is delay-dependent stable for each case (to be noted that the black dashed

line in Fig. 2 (a) corresponds to the spectral radius equal to one). In addition Fig. 2 (b) illustrates the curves ( ω, τ ) that

defines the system stability border predicted by the frequency sweeping approach. The critical time delay value τlim 

for the 

frequency range of interested corresponds to the minimum value of τ, as also indicated in Eq. (12) . Values of τlim 

for the

four cases under study are given in Table 2 . 

Then, Table 3 gives estimation of the critical time delay and the associated angular frequency of the system by perform-

ing direct numerical simulations for various values of τ . Theses values are respectively denoted τc and ω c in the rest of the
6 
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Table 3 

Estimation of τc and ω c based on di- 

rect numerical simulations. 

μ τc ω c (rad. s −1 ) 

0.34 0.00195 68 

0.36 0.0069 69 

0.4 0.01436 78 

0.6 0.01118 94 

Fig. 3. Time responses of the controlled system for μ = 0 . 6 and χ = 0 . 01 (a) just before the critical time delay with τc ( 1 − χ) and (b) just after the critical 

time delay with τc (1 + χ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

study. In practice, numerical simulations have been carried out for different values of τ . For each simulation, a temporal inte-

gration of the system given in Eq. (6) has been performed and the stability of the system regulated by state feedback control

with time delay has been carried out by considering the growing (unstable behaviour) or decreasing (stable behaviour) in 

vibration amplitudes. The critical time delay τc is then identified when the system goes from decreasing oscillations to in- 

creasing oscillations. Fig. 3 illustrates the time responses of the controlled system just before and just after the critical time

delay τc for the case μ = 0 . 6 . The numerical simulations are performed with τ = τc ( 1 ± χ) and χ = 0 . 01 . To be noted that

a small disturbance on the displacement vector (i.e. initial conditions at time t = 0 given by X = [ ε ε] 
T and 

˙ X = 0 ) has to be

initially applied on the time-delay system. Several initial conditions for the temporal integration scheme have been tested 

and the results obtained for the estimation of the values ( ω c , τc ) are always the same. It is clearly observed that the system

is stable for τ = τc ( 1 − χ) with a decreasing of the initial oscillations (see Fig. 3 (a)), whereas the system becomes unstable

for τ = τc ( 1 + χ) with an increase of oscillations (see Fig. 3 (b)). These results demonstrate that the critical value τlim 

given

by the frequency sweeping test does not correspond to τc . More precisely it is observed that the controlled system is stable

for a time delay greater than the critical value τlim 

(i.e. τc > τlim 

). 

In addition, values ( ω c , τc ) are plotted in Fig. 2 (b) (see the square symbol � for each case under study). It is clearly

shown that the identified value of (ω c , τc ) corresponds to a specific point of the stability border predicted by the frequency

sweeping approach. 

The value τc for which the system regulated by state feedback control with time delay becomes unstable does not coin- 

cide with the critical time delay value τlim 

. Moreover it is observed that the range [ τlim 

; τc [ is not negligible, which means

that the system may remain stable even if the time delay is much higher than τlim 

. In fact τlim 

indicates only the minimum

value of τ for which the system remains stable whatever the pulsation frequency of the system. Therefore, for a mechan- 

ical system subjected to friction-induced vibration (i.e. an autonomous system without external excitation), the interesting 

quantity to find for the critical time delay corresponds to the couple of values ( ω, τ ) where ω defines the angular frequency

of the autonomous system (which is a priori an unknown quantity for a given τ ). 

So all these results demonstrate without any ambiguity the limitation of the use of the frequency sweep approach alone 

to efficiently estimate the real value of the critical time delay τc which does not generally correspond to the lower bound

τlim 

of the system stability border (ω, τ ) . Now the question to answer is how to estimate this quantity (ω c , τc ) as accurately

as possible. The novelty of the proposed study will be to develop a hybrid method based on the extension of the frequency

sweeping test with an expansion based approach of the delayed term for approximating the eigenvalues problem. This new 

hybrid approach will make it possible to efficiently calculate the real critical time delay τc and the associated pulsation ω c 

in the context of mechanical systems subjected to friction-induced vibration. 
7 
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Fig. 4. Evolution of ( ω, τ ) based on the Taylor expansion of n th order for (a) μ = 0 . 36 and (b) μ = 0 . 4 ( 1st order; 2nd order; 3rd order; 

4th order; 5th order); ---- τ ( ω ) based on the frequency sweeping approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In an attempt to meet this objective, we first propose to investigate the stability analysis by considering the generalized

eigenvalue problem for a Taylor series expansion of the delayed term u (t − τ ) up to the n th order as previously explained

in Section 3.2 . The eigenvalue problem of the closed-loop system defined in Eq. (7) has generally infinite number of roots

over the complex field. Considering a Taylor series expansion of n th order leads to the calculation of a limited finite number

of eigenvalues. Fig. 4 (a) and (b) illustrate the imaginary parts (i.e. ω versus τ ) of eigenvalues calculated with Taylor series

expansions of n th order for μ = 36 and μ = 4 , respectively. The primary and secondary eigenvalues [42] for τ � = 0 changed

continuously (to be noted that the associated real parts are not shown for the sake of simplicity). 

As suggested by Ram et al. [42] , the system with no time delay (i.e. without τ ) that has precisely 2 p eigenvalues (with

p the number of degrees of freedom) can be assimilated as the limiting situation of the time-delay system. This fact can

be useful to distinguish between the primary and secondary eigenvalues for τ � = 0 : by increasing continuously τ with the

starting point τ = 0 , the location of each primary eigenvalue evolves continuously. Hence, assuming that the dynamic be- 

haviour of the system evolves continuously from τ = 0 to the critical time delay τc , it is possible to predict the evolution

of the primary resonances and the associated stability behaviour by considering Taylor series for a chosen order. If one real

part of eigenvalues which are linked with primary resonances is superior to zero then the system is unstable. By increasing

continually the time delay τ, the first crossing from negative to positive value for real parts of the primary resonances give

the critical time delay τT n . The associated imaginary part ω T n corresponds to the angular pulsation of the self-excited vi- 

bration. The notation T n denotes the value of the quantity of interest by using a n th Taylor series expansion of the delayed

term. 

By applying this methodology, evolution of the two primary resonances based on the Taylor expansion of n th order (with

n =1 , . . . , 5 ) are given in Fig. 5 for the four cases under study ( μ = 0 . 34 , μ = 0 . 36 , μ = 0 . 4 and μ = 0 . 6 ). For the interested

reader, the system with no time delay (i.e. the starting point) is located by a circle ◦. Table 4 gives results for the detection

of (ω Tn , τTn ) at which the system becomes unstable (i.e. for τ > τT n at least one eigenvalue is outside the stability area).

The couple of values (ω Tn , τTn ) are also represented in Fig. 5 by a cross. Analyzing these results in detail, we can conclude

that: 

• a low order Taylor expansion does not allow to detect a critical time delay in some cases (see for example the 1st order

for μ = 0 . 4 and μ = 0 . 6 ) while in other cases the estimated value (ω Tn , τTn ) is sometimes far from the desired reference

value (see for example the 1st order for μ = 0 . 34 and μ = 0 . 36 or the 2nd order for μ = 0 . 4 and μ = 0 . 6 ); 

• upon reaching a certain order of the Taylor expansion, a perfect agreement between the estimate of the critical time 

delay value τc and the prediction of τT n is observed for all the cases under study. Moreover, it is found that the value

of ω T n (i.e. the imaginary part of the eigenvalue crossing the stability area at τT n ) fits with the value of the angular

frequency ω c of the self-excited vibrations; 

• for an order of Taylor series expansion of sufficiently large, it is of course found that the couple (ω Tn , τTn ) is very close

to the frontier line defined by the frequency sweeping approach; 

• the angular frequencies of the stable and unstable modes evolve in a non-negligible way as a function of τ . This is one

of the explanations for the fact that the value predicted by τlim 

is not very close to the critical time delay τc . 

Finally, it may also be noted that considering high orders of the Taylor series expansion may lead to ill-conditioned

matrix for τ → 0 . The problem is that the matrix Q n can be very close to being singular for τ → 0 , although it is not.

Nothing can be done to solve it due to the fact the expression of Q is the starting input of the generalized eigenvalue
n 
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Fig. 5. Evolution of ( ω, τ ) based on the Taylor expansion of n th order for (a) μ = 0 . 34 (b) μ = 0 . 36 (c) μ = 0 . 4 (d) μ = 0 . 6 ( 1st order; 2nd order; 

3rd order; 4th order; 5th order); + prediction of ( ω Tn , τTn ) ; ---- τ ( ω ) based on the frequency sweeping approach; ◦ angular frequency for 

the system without time delay. 

 

 

 

 

 

 

 

 

 

 

 

 

problem for a Taylor series expansion of the delayed term u (t − τ ) up to the n th order. This implies that the continuous

tracking of primary resonances close to τ = 0 can be difficult to achieve in practice for a high order in the Taylor series

expansion. A basic solution is then to go back to a low order of the Taylor series (i.e. 1st or 2nd order for example) which

is generally sufficient to initiate the process and then switch to a higher order to find a fine prediction of the critical time

delay. 

In this last part of this paper, we propose a mixed approach for the determination of the critical time delay. The proposed

methodology is based on both the frontier stability curve estimated by the frequency sweeping approach and the generalized 

eigenvalue problem for a Taylor series expansion up to the n th order. The main idea is to find the specific point of the

frontier stability curve that coincide with the unstable eigenvalue of the closed-loop system with time-delay. In order to 

achieve such an objective we propose to solve the generalized eigenvalue problem (22) for different values of τ by moving

only along the frontier curve defined by the frequency sweeping and to focus on output eigenvalues of the problem that

coincide with the input starting couple point (ω, τ ) . Among the advantages of this approach, we can mention that no

eigenvalue resolution for τ → 0 is requested, and only one eigenvalue is searched during the resolution process. The general 

process can be summarized as follow: 

• step 1: definition of the frontier stability curve (ω, τ ) based on the frequency sweeping tests for ω = [ ω min ;ω max ] where

ω min and ω max are the minimum and maximum limits for the angular frequency range of interest; 

• step 2: i th calculation of the first approximated eigenvalue λi closest to the frontier curve for a specific value τ i = τ and

by scanning the angular frequency interval on the frontier stability curve (ω , τ ) with ω the i th iteration on the angular
i i i 
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Table 4 

Estimation of τTn and ω Tn based on the Taylor expansion and 

the detection of positive real part of eigenvalues for primary 

resonances. 

μ Order n τTn ω Tn (rad. s −1 ) 

0.34 1 0.00169 68 

2 0.00191 68 

3 0.00192 68 

4 0.00192 68 

0.36 1 0.0081 70 

2 0.0065 69 

3 0.0067 69 

4 0.0067 69 

5 0.0067 69 

0.4 1 - - 

2 0.01324 80 

3 0.01366 78 

4 0.01438 78 

5 0.01435 78 

0.6 1 - - 

2 0.01025 97 

3 0.01078 93 

4 0.01122 93 

5 0.01119 94 

Table 5 

Estimation of τ mix 
Tn and ω 

mix 
Tn based on the mixed approach. 

μ Order n τ mix 
Tn ω 

mix 
Tn (rad. s −1 ) 

0.34 1 0.00166 68 

2 0.00193 68 

3 0.00192 68 

4 0.00192 68 

0.36 1 0.0074 69 

2 0.0067 69 

3 0.0066 69 

4 0.0066 69 

5 0.0066 69 

0.4 1 - - 

2 0.01518 82 

3 0.01419 78 

4 0.01423 78 

5 0.01431 78 

0.6 1 - - 

2 0.01149 97 

3 0.01111 93 

4 0.01115 93 

5 0.01117 94 

 

 

 

 

 

 

 

 

frequency range of interest. The estimation of eigenvalues is performed via the generalized eigenvalue problem (22) for 

a Taylor series expansion up to the n th order. The notion of ”closest to the frontier curve” can be easily performed by

searching the eigenvalue with the imaginary part close to the angular frequency ω. 

• step 3: inquiry on the compatibility between λi and (ω i , τi ) . If the imaginary part of the first approximated eigenvalue

λi is equal to ω i it means that the calculated eigenvalue is at the stability border. In this case, the real of part of λi 

is examined: if the real part is negative, this eigenvalue λi corresponds to the stable primary resonance of the system 

(given by ω i ), i.e. the system remains stable. On the contrary, if the real part of λi is greater than zero, it means that the

couple (ω i , τi ) of the frontier stability curve corresponds to the detection of the unstable mode and thus to the detection

of the critical time delay and the associated angular frequency (ω c , τc ) . 

One of the main advantage of the proposed mixed approach is that the problem of ill-conditioned matrix for Q n tends

to disappear due to the fact that the calculation of eigenvalues is no longer carried out for τ → 0 but only for the specific

values of τ that describe the frontier stability curve (ω, τ ) based on the frequency sweeping approach. 

Table 5 gives the critical time delay τmix 
T n 

and the associated angular frequency ω 

mix 
T n 

. Results are in perfect agreement with

the critical time delay previously calculated by the direct numerical simulations (to be compared with Table 3 ). Moreover
10 
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Fig. 6. Detection of the critical time delay based on the mixed approach for (a) μ = 0 . 36 and (b) μ = 0 . 4 - Predictions: + ( ω T1 , τT1 ) , ( ω T2 , τT2 ) , 

( ω T3 , τT3 ) , ( ω T4 , τT4 ) and ( ω T5 , τT5 ) ; ---- τ ( ω ) based on the frequency sweeping approach and Taylor expansion for the 1st order, 2nd 

order, 3rd order, 4th order and 5th order. 

 

 

 

 

 

 

 

 

Fig. 6 illustrates the position of the critical time delay (ω 

mix 
Tn 

, τmix 
Tn 

) based on the mixed approach for various n th order of

the Taylor series expansion and for μ = 0 . 36 and μ = 0 . 4 . To be noted that the evolutions of ( τ, ω ) based on the Taylor

expansion of n th order are also visible (i.e. the dashed lines) even if these curves are not used in the mixed approach. They

are only plotted in Fig. 6 to illustrate the fact that the mixed approach can also be understood as a way of finding the

intersection between the evolution of the primary resonance of the system that becomes unstable and the stability frontier 

curve. 

5. Conclusion 

The stability analysis of a mechanical system regulated by state feedback control with time delay and the determination 

of the critical time delay τc are discussed. Based on comparison with direct time responses of the controlled system, it is

demonstrated that the real critical time delay τc for the mechanical system subjected to friction-induced vibration does not 

coincide with the critical time delay τlim 

predicted by the frequency sweeping approach; it corresponds to a specific point of 

the stability border predicted by the frequency sweeping approach. More precisely, it is shown that the interesting quantity 

to find corresponds to the couple ( ω c , τc ) where ω c defines the angular frequency of the autonomous system (which is a 

priori an unknown quantity for a given time delay). 

A first approach is to use the generalized eigenvalue problem approximation using the Taylor series expansion of the 

delayed term and to follow the evolution of the primary eigenvalues with the starting point corresponds to the system 

with no time delay (i.e. τ = 0 ). This approach has the drawback of potentially causing ill-conditioned matrix if τ → 0 for

high order of the Taylor series expansion and therefore makes it difficult to follow the evolution of the eigenvalues for low

values of τ . Thereby we proposed a mixed approach for the determination of the critical time delay τc . This methodology is

based on solving and analyzing the generalized eigenvalue problem approximation using the Taylor series expansion of the 

delayed term by focusing only on the frontier stability curve estimated by the frequency sweeping approach. 
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