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Heading for motor imagery brain-computer interfaces (MI-BCIs) usable
out-of-the-lab: Impact of dry electrode setup on classification accuracy

Maria-Isabel Casso1, Camille Jeunet2, and Raphaëlle N. Roy1

Abstract— A primary challenge to make motor-imagery
Brain-Computer Interfaces (MI-BCIs) technologies usable and
actually used out-of-the-lab consists of providing EEG systems
that are efficient in terms of classification accuracy- and easy
to install, e.g., using a minimal number of dry electrodes. We
hypothesize that the optimal signal processing method might
depend on the number of (dry) electrodes that are used.
Therefore, we compared for the first time the classification
accuracy associated with different dry electrode setups, i.e.,
7 configurations from 8 to 32 channels, and various signal
processing methods, namely (1) regularized Common Spatial
Pattern (rCSP) + Linear Discriminant Analysis, (2) rCSP +
Support Vector Machine (SVM), (3) Minimum Distance to
Riemannian Mean and (4) SVM in the Riemannian Tangent
Space. This offline comparison was performed on the data of
10 participants (one session each). Our results suggest that
whatever the method, MI-BCI performances drop significantly
for 8 and 12 channels (p < 0.01). Moreover, method 3 was
associated with the lowest performances (p < 0.05). Finally,
post-doc analyses suggest that methods 1 and 2 perform best
with the highest numbers of electrodes 28 and 32. For method
4 the best performances are obtained using 20 and 24 channels,
which seems to be the optimal combination (p < 0.05). These
results show the importance of selecting the signal processing
pipeline as a function of the number of electrodes used.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) are closed-loop systems
that operate with brain signals obtained by recording methods
such as electroencephalography (EEG) or functional near
infra-red spectroscopy (fNIRS). These systems provide a
user with the possibility of controlling other systems by
translating their brain activity into commands [1]. A typical
BCI paradigm, or task, is motor imagery (MI), a process in
which the user imagines a limb movement, which generates
specific EEG power amplitude variations [2]. The signal
processing and machine learning steps necessary to achieve
a high performance in BCIs, and more particularly in EEG-
based MI-BCIs, have been designed and benchmarked by
the growing BCI community [3]. An important step towards
out-of-the-lab MI-BCI use is to evaluate i) how dry-EEG
systems perform when using a reduced number of electrodes,
and ii) which processing pipeline enable the achievement
of high classification accuracy with setups including a low
number of dry electrodes. Indeed, gel electrode systems
present some challenges such as the time needed for subject
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preparation, signal stabilization, and equipment cleaning for
every EEG recording [4], as well as the user’s comfort that
is critical for acceptability [5]. In a survey from 2015 on
BCI users with spinal cord injury [6], it was concluded that
the simplicity of a BCI setup was as crucial as the BCI
functions. Among the surveyed patients, 89% demonstrated
an acceptance for dry electrodes compared to 62% who
advocated for gel electrodes. Moreover, in recent years the
need for out-of-the-lab and wearable EEG equipment has
become a major need in BCI research. A survey revealed that
about 90% of neurologists agreed that wireless EEG systems
were useful and very much needed and concluded that
more work investigating the efficiency of various algorithms
in this context should be done [7]. Several studies have
been performed over the years to compare both types of
electrodes, usually by using a similar electrode setup for
both dry and gel systems [8], [9], [10], [11], including
the performance analysis of new dry electrode wearable
and mobile patents [12], [13], [14], [15]. In [8], an 8 dry-
electrode helmet was compared to a 22-gel electrode setup
with 2 subjects in 2 MI sessions. Classification accuracies
of 67.5% and 71.9% were obtained with the dry electrode
system using random forest and Support Vector Machine
(SVM) algorithms respectively, with a preliminary spatial
filtering step using Common Spatial Patterns (CSP), while
80% was reached with the gel system. Also, in [9], similar
performances were obtained with dry and gel electrode EEG
systems. The data quality of 2 dry electrode EEG systems
was compared in [16], with the conclusion that both were of
satisfying quality and much more usable than EEG systems
using gel. Nonetheless, to our knowledge no study has yet
directly compared the impact of the electrode setup, and
more specifically the electrode number, using a dry EEG
system, for several classification pipelines. In order to head
towards out-of-the-lab MI-BCI use, this preliminary study
evaluates how 7 dry-electrode setups -decreasing from 32
to 8 electrodes- impact the classification accuracy of left-
vs. right-hand MI with four state-of-the art classification
pipelines.

II. METHODS
A. Graz-BCI paradigm

The paradigm of this study is based on the Graz-BCI
experimental paradigm [17] implemented in OpenVIbe [18].
During the MI-BCI session, participants initially have to wait
for 40s to stabilize the signal and begin the trials. At each
trial, they have to focus on a centered green cross displayed
on screen and 2s later, a red arrow pointing either left or right



cues for left or right-hand MI, respectively. Participants have
to perform the instructed task until the cross disappears, after
which they can relax for 3s before the new trial starts (figure
1). Participants took part in one session including 20 trials
per task, pseudorandomly distributed.

Fig. 1: Experimental paradigm

B. Participants and Data Acquisition
Ten volunteer students, 8 of them BCI-naive, 6 females,

with an average age of 25.5 years old (± 1.13 years),
participated in this study. The later took place between Sept.
and Oct. 2020, following the sanitary protocol in force at the
time to prevent COVID-19 contagion. The recording sessions
were carried in a computer room, with common distractions.
Each subject participated in two recording sessions, one for
training and the second for online feedback. In this paper
only the data from the training session is considered, as
it allows for the offline investigation of different electrode
setups and classification pipelines. All participants were
seated in a chair facing a 19in. monitor at an approximate
distance of 1m. Signals were recorded with an Enobio32
wireless EEG cap using the following 32 comb-shaped dry
electrodes positioned according to the 10-20 system: FP1,
FP2, AF3, AF4, F7, F3, FZ, F4, F8, FC5, FC1, FC2, FC6,
C3, CZ, C4, T7, T8, CP5, CP1, CP2, CP6, P7, P3, PZ,
P4, P8, PO3, PO4, O1, OZ, O2.The Correlated-Multiple-
Sampling (CMS) and Driven Right Leg (DRL) channels
where placed on the left and right mastoid respectively. The
participants were instructed to stand still, and that the MI
should involve as much finger movement as possible.

C. Electrode setups
Starting from the 32-electrode setup that covers the whole

scalp, we defined 7 electrode placement configurations by
removing 4 electrodes at each step, until reaching the min-
imum 8-electrode setup centered on C3 and C4 above the
motor areas (figure 2).

D. Processing Pipelines
Four standard and state-of-the-art classification pipelines

-here called “methods”- were used to evaluate the impact of
the dry-electrode setup on MI classification accuracy. Open-
VIbe was used for offline data processing. The first method
(rCSP+LDA) was composed of a regularized CSP filtering
step and a Linear Discriminant Analysis classification step
(LDA); the second (rCSP+SVM) also comprised a rCSP
step, but with an SVM classification. The last two methods
were based on Riemannian Geometry: Minimum Distance to
Mean (MDRM) and SVM in the Riemannian Tangent Space
(RTS+SVM). All methods were tested using a 10-fold cross-
validation procedure.

(a) 32 Electrodes (b) 28 Electrodes (c) 24 Electrodes

(d) 20 Electrodes (e) 16 Electrodes (f) 12 Electrodes

(g) 8 Electrodes

Fig. 2: Electrode setups: from 32 whole scalp coverage to 8
central electrodes above motor areas.

1) Preprocessing
The data was bandpass-filtered between 8 to 30 Hz with

a Butterworth filter. Epoching was performed using 1s-long
sliding windows with1/16s overlap [19]. The classification
pipeline was applied to each window. Then, the outputs were
averaged in order to obtain a mean classification accuracy for
each trial.

2) Method 1: rCSP with LDA classifier (rCSP+LDA)
The main idea of the CSP algorithm is to find a linear

transform to enhance the discriminability of data and thereby
ease the classification process. This method aims to find
spatial filters that maximize the variance of the signal for one
class and minimize it for the others, and so on, for all classes
[3]. Due to its susceptibility to noise, CSP regularization
(rCSP) has been proven to be a more robust option [20]. This
pipeline follows the Tikhonov method, which regularizes
the CSP algorithm’s objective function by adding a penalty
function and a regularization parameter defined manually,
which in our case was 0.5.We obtained 6 filters per condition
with a chunk average covariance update. Next, the filtered
data is used for training an LDA classifier that finds a linear
combination to separate data into two classes (namely, left-
and right-hand MI)[3]. Although the estimates might not be
optimal, linear classifiers have proven to be efficient with
single-trial classification [3].

3) Method 2: rCSP with SVM classifier (rCSP+SVM)
Here, the same rCSP spatial filtering step as in method 1

was used before classification, but combined with an SVM.
The SVM classifier projects the data to a higher-dimensional
space with kernel functions and finds an hyperplane that will
separate the classes with the highest margin possible. The
optimization problem and classifier’s performance depends
not only on the training data but also on the right choice
of a penalty and kernel parameters [3]. For this study, this



Fig. 3: Average classification accuracy for all electrode setups and classification pipelines

pipeline’s penalty term was 200 and we used the Radial Basis
Function (RBF) kernel, based on the parameter selection
scheme presented in [21].

4) Method 3: Minimum Distance to Riemannian Mean
(MDRM)

A significant advantage of methods based on Riemann
geometry is that the algorithms directly process the data
covariance matrices that have embedded spatial information
necessary for classification, thus saving computation time.
For the MDRM, it is first necessary to estimate the covari-
ance matrix of training data, denominated as the Sample
Covariance Matrix (SCM), in our case, done with an Oracle
Approximating Shrinkage (OAS) estimator. The SCM matrix
is considered a positive definite matrix, thus belonging to the
Riemannian manifold. The optimization problem becomes
finding the minimum mean Riemannian geodesic distance
between a set of training data SCM matrices and every intra-
class covariance matrix [22][23].

5) Method 4: SVM in the Riemannian Tangent Space
(RTS+SVM)

As with an SVM classifier, classification with the Rieman-
nian Tangent Space is based on hyperplane projection. This
main idea of this method is to map the SCM matrices into
the Riemannian tangent space, found in the data’s geometric
mean [23]. This projection allows finding spatial vectors,
treated as feature vectors for classification of dimension
n(n+1)/2, where n is the number of variables [22], [24].The
classifier used in this method is SVM with the same penalty
term and kernel configurations as method 2.

III. RESULTS

The classification accuracy for each electrode setup was
obtained using the four methods described in section II.
Figure 3 presents the average classification accuracy for each

processing pipelines and electrode setup. As a comparison
for the obtained accuracies, the adjusted chance level limit
for a 95% confidence (α = 5%), for two classes and 40
trials has been computed [25].

A statistical analysis (2-way ANOVA for repeated mea-
sures and Tukey’s post-hoc tests) also revealed that the
electrode setup/number had a significant impact on classi-
fication accuracy across all methods (F (6, 54) = 8.23, p <
0.01) with a significant drop in classification accuracy for
the 12 and 8 electrode setups compared to the other ones
(p < 0.01). There was also a significant interaction between
the electrode setup and the method on the classification
accuracy (F (18, 162) = 2.58, p < 0.01). Indeed, there was a
significant drop in accuracy for the 8 and 12 electrode setups
compared to the other setups for both the rCSP + LDA and
rCSP + SVM pipelines, with the highest accuracy reached
for the 32 and 28 electrode setups (p < 0.05). However, for
the MDRM pipeline, there was no significant difference in
classification accuracy between electrode setups, the classifi-
cation accuracy remaining stable, although the significantly
lowest of all pipelines (p < 0.05). Lastly, regarding the RTS
+ SVM pipeline, there was a significant drop in classification
accuracy for the 8 electrode setup compared to the highest
accuracy reached with this method, i.e., with the 20 and 24
electrode setups (p < 0.05).

IV. DISCUSSION

The BCI research community’s need for usable BCI
systems has been repeatedly reported [4], [6], [7]. A first
step to head towards out-of-the-lab BCI use would be to
provide users with a portable and dry-EEG system. We
hypothesise that the optimal signal processing method might
depend on the number of (dry) electrodes that are used
to record the brain activity. Therefore, we compared for



the first time the classification accuracy associated with
different dry electrode setups (7 configurations from 8 to
32 channels) and various state-of-the-art signal processing
methods (rCSP+LDA, rCSP+SVM, MDRM and RTS+SVM)
through the offline analysis of the data of 10 participants
who took part in one session each. Our results show the
importance of selecting the signal processing pipeline as
a function of the number of electrodes and suggest that
a minimum of 16 electrodes is required to maintain the
classification accuracy above the adjusted chance level for
the rCSP+LDA and rCSP+SVM pipelines and a minimum
of 12 for the RTS+SVM pipeline. All results from the
MDRM pipeline remained below the adjusted chance level.
The highest classification accuracy was reached using the
RTS+SVM pipeline with an average of 70% for the 20-
electrode setup. Interestingly, this pipeline’s classification
accuracy increased when reducing the setups from 32 to
20 electrodes; the setups with 32 and 28 electrodes attained
an average accuracy below the adjusted chance level. This
increase in accuracy suggests that the signal from the frontal
electrodes (kept only in the 32 and 28 electrode setups) might
harm the MI classification process when no spatial filtering
step is applied, or that there is some overfitting phenomenon
involved with this pipeline. Hence, a setup of 12 or 16
dry electrodes centered on C3 and C4 is the best option to
maintain the classification accuracy to an acceptable level.

These preliminary results have to be taken with caution as
the data used were only gathered from 10 participants -eight
of them BCI-naive- during a single training session. The lack
of BCI experience among the subjects [26] and the sanitary
restrictions to prevent COVID-19 contagion that limited the
number of participants and recording sessions in this study
might have also influenced the classification performance.
Nevertheless, this study is a first step to evaluating portable
MI-BCI for out-of-the-lab BCI to advise research headed for
practical, easily operated options. In future studies, further
data should be collected in order to assess the relevance of
this promising result on long-term performance, but also to
evaluate the influence that the selected method may have on
the participants’ ability to learn how to control an MI-BCI
efficiently.
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