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General relations to obtain the time-dependent heat capacity from isothermal

simulations

L.Klochko, J.Baschnagel, J.P.Wittmer, A.N.Semenova)1

Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess,

BP 84047, 67034 Strasbourg Cedex 2, France

(Dated: 17 March 2021)

It is well-known that time-dependent correlation functions related to temperature and en-

ergy can crucially depend on the thermostatting mechanism used in computer simulations

of molecular systems. We argue, however, that linear response functions must be consid-

ered as universal properties of physical systems. These features imply that the classical

fluctuation equation for the transient heat capacity, cv(t), is not applicable to the ther-

mostatted molecular dynamics (apart from long enough times). To improve on this point

we derive a number of exact general expressions for the frequency-dependent heat capacity

in terms of energy correlation functions, valid for the Nosé-Hoover and some other ther-

mostats. We also establish a general relation between auto- and cross-correlation functions

of energy and temperature. Recommendations on how to use these relations to maximize

the numerical precision are provided. It is demonstrated that our approach allows to obtain

cv(t) for a supercooled liquid system with high precision and over many decades in time

reflecting all pertinent relaxation processes.

a) Author to whom correspondence should be addressed: al.ni.semenov@gmail.com
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I. INTRODUCTION

Molecular systems are ubiquitely characterized by their response to small external perturba-

tions. The perturbations can range from a deformation (shear, extension or compression) to pres-

sure or temperature variation (not to mention dielectric response). It is also well-known that, by

virtue of the fluctuation-dissipation theorem (FDT)1–4, such macroscopic response functions are

related to correlation functions of the relevant physical variables measured for the unperturbed

equilibrium system. For example, the shear-stress relaxation modulus G(t) providing the shear

stress increment upon a step-like shear deformation is related to the shear-stress autocorrelation

function5–9. The bulk relaxation modulus Kb(t) defining pressure response to compression is pro-

portional to the autocorrelation function of the normal pressure (with an additional constant)8,10.

In the same spirit, the heat capacity cv is related to fluctuations of total energy (or entropy) for a

system kept at a constant temperature T and constant volume (in the canonical ensemble)1,2:

Ncvs =
1

T 2

〈

(E −〈E〉)2
〉

(1)

where N is the number of particles in the system, cvs is the static heat capacity per particle,

E = E(t) is the total energy of the system at time t, and 〈...〉 denote the canonical equilibrium

average.57

In systems with long relaxation times (reluctantly changing their configurations) the heat ca-

pacity depends on time, cvs → cv(t). Notable examples include polymer melts and concentration

solutions, supercooled liquids and all sorts of glasses2,11. The function cv(t) can be defined as the

amount of heat, q(t), absorbed during time t in response to a small step-like increase of tempera-

ture, ∆T , at t = 0: cv(t) = q(t)/∆T , t > 0. Here q is the heat per particle which under the assumed

isochoric conditions must be related to the energy change: q(t) = 〈E(t)−E(−∞)〉/N. The dy-

namic nature of cv can be alternatively expressed by its frequency dependence: c∗v(ω) = qω/Tω ,

where qω and Tω are the complex Fourier amplitudes of q(t) and ∆T (t) = T (t)−T (−∞), respec-

tively (in the case of a harmonic oscillatory perturbation ∆T (t)= Tωeiωt and q(t)= qωeiωt 58). The

complex dynamic heat capacity c∗v(ω) is related to cv(t) by:

c∗v(ω) = c′v(ω)+ ic′′v (ω) = iω
∫ ∞

0
cv(t)e

−iωtdt (2)

since

q(t) =

∫ t

−∞
cv(t − t ′)dT (t ′) =

∫ t

−∞
cv(t − t ′)

dT

dt ′
dt ′ (3)
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by virtue of the (Boltzmann) superposition principle of linear response theory. Note that eq. 2

follows from the definitions of cv(t) and c∗v(ω) discussed above. The definition of c∗v(ω) adopted

here is equivalent to the standard definition of the dynamic heat capacity commonly used in the

literature (cf. ref.56). Noteworthily, eq. 2 is analogous to the well-known relation between the

complex dynamic modulus G∗(ω) = G′(ω)+ iG′′(ω)11 and the shear relaxation modulus G(t).

The existence of a time-dependent specific heat in glasses and supercooled liquids near the glass

transition had been predicted13–15 and observed experimentally15–19. The time-dependent specific

heat was also considered theoretically within a generalized hydrodynamic approach (using Mori-

Zwanzig formalism)3,12,20,21.

In both experimental and simulation studies it is normally preferable to deal with systems

whose temperature is controlled by means of an appropriate thermostat. In this paper we dis-

cuss how to obtain cv(t) based on equilibrium dynamics of a model system studied by molecular

dynamics (MD) simulations.

Below we first outline the well-known relation between cv(t) and equilibrium energy fluctu-

ations in thermostatted systems. We then show that this relation is not applicable in the whole

time-range (section II). In section III we introduce a physical Ansatz stating that response func-

tions in general and cv(t) in particular must be universal (thermostat-independent). By contrast,

the dynamic correlation functions depend on the thermostat properties as demonstrated in sec-

tion II. This renders importance to the following question: Is it possible to get the time-dependent

heat capacity cv(t) based on correlation functions in isothermal simulations? In this paper we

show that while the answer is positive, it is not as trivial as it may seem to be. In sections III - VI

we derive a number of general relations which are expected to universally define cv(t) and c∗v(ω)

in terms of equilibrium correlation functions and demonstrate their validity for the Nosé-Hoover

thermostatting mechanism. The generalizations of these relations to non-canonical thermostats

(like Gaussian isokinetic thermostat) are presented in section VII A. The region of applicabil-

ity of the universality principle (cv(t) independence of the thermostat parameters) is discussed in

section VII B. The main results are summarized in the last section.

II. THE FDT RELATION FOR THE HEAT CAPACITY

While the total energy E is conserved in microcanonical simulations, it is often desirable to

impose a certain temperature T = Ti rather than energy. Such NVT simulations can be done
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using different mechanisms of temperature control10,22,23. A number of thermostatting methods24

have been proposed, including simulation techniques that sample a true canonical ensemble, in

particular, the Langevin and Nosé-Hoover (NH) canonical thermostats.25–27

For thermostatted systems the time-dependent heat capacity cv0(t) was defined via the energy

response to an infinitesimal step-like increase of the thermostat temperature Ti:

Ti → Ti + ε at t = 0 (4)

An exact expression for thus defined cv0(t) = 〈E(t)−E(−∞)〉/(Nε) (the additional subscript ‘0’

emphasizes its relation to a thermostat) in terms of the energy correlation function was derived in

ref.28 based on the FDT1–4:

cv0(t) =
1

T 2
i

[CE(0)−CE(t)] (5)

where CE(t) is the autocorrelation function of the total energy:

CE(t) =
1

N

〈

δE(t + t ′)δE(t ′)
〉

(6)

and δE(t) = E(t)− Ē is the energy fluctuation (Ē is the time-averaged energy). Similar expres-

sions for isobaric heat capacity cp(t) in terms of enthalpy (H = E + piV ) fluctuations have been

proposed long ago15,28 and have been used to interpret the results of dynamic heat spectroscopy

(ac calorimetry)15,29,30 and multifrequency calorimetric data31.

We employed eq. 6 to calculate cv0(t) for a two-dimensional (2D) polydisperse Lennard-Jones

(pLJ) liquid described in Appendix A. The energy correlation function was obtained based on

MD simulations with Nosé-Hoover (NH) thermostat as implemented in the LAMMPS code32. All

quantities will be given in Lennard-Jones (LJ) units in what follows (see Appendix A). The results

for N = 104 particles at T = 0.4 obtained using a single NH thermostat (LAMMPS parameter

‘tchain = 1’) and different thermal mass Q (cf. Appendix B), Q = 10T/3, 100T , NT/10, 2NT

(corresponding to the Nosé relaxation times33 τN =
√

2/ωQ = 0.013, 0.071, 0.22, 1, respectively,

where ωQ = (2T Nd/Q)1/2
is the Nosé frequency and the space dimension d = 2) are shown in

Fig. 1. It is obvious that cv0(t) strongly depends on the thermostat-related parameter Q and the

results for all 4 Q’s agree only for t > 200 where cv0(t) appears to be nearly constant, cv0(t)≈ cvs

(cvs ≈ 1.947 is the static heat capacity per particle obtained using eq. 1 by averaging the energy

fluctuations over the total sampling time ∆t = 105 of the production run, cf. Appendix A).59

Thus, it is obvious that while the relation, eq. 5, is applicable at long enough times, it dramati-

cally fails at short times: both cv0(t) and the energy correlation function CE(t) strongly depend on
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Q (more generally, on the thermostat properties) in this regime.

This issue was recognized before26,33,34 as reflected in the following extract from ref.34: ‘... the

problem is that there is no method by which to perform isothermal simulations without influencing

the energy fluctuations of the system in an artificial way, which clearly spoils the dynamic response

functions.’ However, to the best of our knowledge, no satisfactory solution to this problem was

provided for thermostatted systems.

Is it possible, based on the thermostatted dynamics, to get universal response functions (like the

dynamic heat capacity) reflecting the dynamical properties of the original physical system? The

main goal of the present paper is not only to demonstrate that the answer is positive, but also to

provide straightforward practical recipes on how to calculate such universal responses.

III. THE UNIVERSAL DYNAMIC HEAT CAPACITY

To get the correct dynamic heat capacity c∗v(ω) (and its time-dependent counterpart, cv(t)) we

must use its appropriate physical definition. Following refs.10,12,34 we define cv(t) via the energy

response 〈∆E(t)〉 = 〈E(t)−E(−∞)〉 to a perturbation of the internal temperature of the system,

〈∆T (t)〉= 〈T (t)−T(−∞)〉, where the instantaneous temperature T (t) is related to the total kinetic

energy K(t):

T (t) = 2K(t)/g (7)

where g is the number of kinetic degrees of freedom.60 An excellent discussion on why this ‘ki-

netic’ definition is appropriate is given in ref.12. Using 〈∆T (t)〉 = Tωeiωt and 〈∆E(t)〉 = Eωeiωt

one gets

c∗v(ω) =
1

N

Eω

Tω
(8)

in the limit of an infinitesimal T -perturbation. The definition of the dynamic heat capacity given

in eq. 8 is generally adopted in the literature (cf., e.g., refs.12,56). The desired oscillations of the

kinetic temperature can be generated by perturbing the thermostat temperature Ti as61

Ti(t) = Ti0 + εeiωt (9)

with ε → 0. The Ti-oscillations lead to 〈T (t)〉= Ti0+Tωeiωt and 〈E(t)〉= Ē +Eωeiωt , so eventu-

ally c∗v(ω) can be obtained using eq. 8. By contrast, the heat capacity c∗v0(ω) defined by the r.h.s.

of eq. 2 with cv0(t) instead of cv(t) is equal to c∗v0(ω) = 1
N

Eω
ε . Generally 〈T (t)〉 is not equal to

Ti(t) and Tω 6= ε , so c∗v0(ω) 6= c∗v(ω). The inadequacy of eq. 5 (reflected in a deviation of cv0(t)
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from cv(t) stemming from the difference between c∗v0(ω) and c∗v(ω)) is therefore due to thermal

inertia of the system.

According to the FDT1–4,28 such a perturbation, eq. 9, leads to the following response of a

variable X , ∆X = X(t)−X(−∞):

〈∆X(t)〉= N

T 2

∫ t

−∞

[

CXE(0)−CXE(t − t ′)
]

dTi(t
′) (10)

leading to

〈Xω〉=
iωεN

T 2

∫ ∞

0
[CXE(0)−CXE(t)]e

−iωtdt (11)

where T = Ti0 and

CXY (t) =
〈

δX(t + t ′)δY (t ′)
〉

/N (12)

is the time-correlation function. Using eq. 8 and eq. 11 for Y = E, X = E and X = T yields:

c∗v(ω) =
[

cvs −CE(ω)/T 2
]

/
[

1−NCT E(ω)/T 2
]

(13)

Here cvs = CE(t = 0)/T 2, CE(ω) ≡ CEE(ω), and the frequency-dependent correlation functions

are defined according to the following equation (cf. eq. 2)

CXY (ω) = iω
∫ ∞

0
CXY (t)e

−iωtdt (14)

which resembles both Laplace and Fourier transforms (it will be called ‘ω-transform’ in what

follows). The time-dependent cv(t) can be obtained using eqs. 2, 13. Obviously c∗v(ω) is different

from

c∗v0(ω) = cvs −CE(ω)/T 2 (15)

(cf. eq. 5), so cv(t) 6= cv0(t).

The crucial point is that while the correlation functions CE(t) and CT E(t) do depend on the ther-

mostat properties (like the parameter Q), the function c∗v(ω) need not: it may reflect the original

system properties. This statement can be considered as the following Ansatz:

Response functions defined in terms of physical variables of the original system must be

universal, independent of the thermostat parameters in the thermodynamic limit.

The universality of response functions stated in the Ansatz is not entirely self-evident. Let us

consider specifically the heat capacity cv(t). On the one hand, cv(t) defines the kinetic temperature

response δT (t) to small heats dq(t ′) injected into the kinetic degrees of freedom at t ′ < t (the total

heat transmitted by the time t is q(t) =
∫ t
−∞ dq(t ′)). The injected heat can be a result (dqext) of an
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external perturbation of particle velocities (cf. eq. 16 below), or it can come from the thermostat

(dqi). It is a natural idea to assume that δT (t) depends only on the total heat q(t ′)= qext(t
′)+qi(t

′),

so that the two functions, δT (t) and q(t ′) are related in a universal linear fashion:

q(t) =
∫ t

−∞
Ncv(t − t ′)

dδT (t ′)
dt ′

dt ′

The Ansatz therefore says that it does not matter which source the heat is coming from (external

or from the thermostat), what matters is its amount (and its time dependence). In other words,

once a small heat perturbation q(t) is imposed, the process of heat transfer from purely kinetic

to vibrational and configurational degrees of freedom must depend solely on the physical system

properties (particle interactions). On the other hand, a strict validity of this universality property

requires certain conditions. Note first that we must consider here a ‘decent’ thermostat that just

weakly perturbs the particle dynamics: the thermostat related velocity perturbation must be much

smaller than the thermal velocity of a particle (cf. part (ii) of sect. VII B for details). It is also

assumed that the external heat is transmitted by velocity perturbations (cf. eq. 16) with the same

relative increment (ε/d) for all the particles. It is also important to demand that the mechanism

of heat transmission from the thermostat to the system must be similar (i.e., by perturbations of

particle velocities providing uniform heating of the system62; a more detailed discussion of the

sufficient conditions is delegated to section VII B). Under these conditions the properly defined

isochoric heat capacity (cf. eq. 8) is expected to be ensemble- and thermostat-independent.

The above Ansatz has non-trivial implications, as we show below. Importantly, we also provide

an evidence (both analytical and from simulations) that this Ansatz is valid in the thermodynamic

limit for a range of thermostatted systems as clarified in section VII B.

The above Ansatz can be used to get relations between correlation functions. To this end let us

consider a direct perturbation when all particle velocities are slightly increased at t = 0:

v → v(1+ ε/d) (16)

Applying FDT again we find the mean linear response of a variable X :

〈∆X(t)〉= N2ε

T
CXT (t), t ≥ 0 (17)

Using the above relation for X = E and X = T , eq. 3 with q(t) = ∆E(t), and eq. 2 we get

c∗v(ω) = NCET (ω)/CT (ω) (18)
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where CT (ω) ≡ N2CT T (ω). Again we see that c∗v(ω) is expressed in terms of 2 correlation func-

tions. Finally, using both eqs. 13 and 18 we obtain63:

CT (ω)
[

cvs −CE(ω)/T 2
]

= NCT E(ω)
[

1−NCT E(ω)/T 2
]

(19)

Note that condition (i) of sect. VII B is required for validity of the above equation. In this case

eqs. 13 and 18 define the same response function. Thus, eq. 19, which formally comes from

the Ansatz, is expected to be rather generally applicable to canonical thermostatted systems (cf.

section VII B for more precise criteria of its applicability; generalization of eq. 19 for some non-

canonical thermostats is given in section VII A). Eq. 19 shows that only 2 correlation functions

of T and E are independent. In the next section we rigorously prove this relation for the NH

thermostat and show that, surprisingly, the universal cv(t) can be expressed in terms of a single

non-universal correlation function (like CT (t) or CE(t)) in this case.

IV. HEAT CAPACITY FOR THE NH THERMOSTAT

One of the most popular thermostats is the canonical ‘Nosé-Hoover’ (NH) thermostat25–27,33,35

which is also a commonly used tool to investigate supercooled liquids (see e.g. refs.5–7,22). It is

implemented in the well-known MD software package LAMMPS.32 The basic properties of the

classical NH thermostat (corresponding to ‘tchain = 1’ in LAMMPS) are outlined in Appendix B.

Eq. B2 there implies that

Ė =−2ξ K (20)

where ξ is the friction parameter of the NH thermostat. Using eqs. 20, B3 one finds

Ė =−gξ Ti−
Q

2

∂

∂ t

(

ξ 2
)

(21)

leading to 〈ξ 〉= 0 (as long as the total energy is bounded) and the conservation law:

E(t)+gTi

∫

ξ dt +
Q

2
ξ 2 = const (22)

The typical energy fluctuation is δE ∼ T
√

Ncvs ∼ T
√

N (cf. eq. 1), while Q
2

ξ 2 ∼ T (cf. eq. B7).

Therefore, the last term on the l.h.s. of eq. 22 can be neglected for N ≫ 1, and so

E(t)≃ const −gTi

∫

ξ dt (23)
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Recalling also eq. B3 we arrive at a linear relation between fluctuations of energy and temperature

considered as functions of time (note that Ë(t) is a linear functional of E(t))64:

Ë(t) =−g2Ti
Q

[

T (t)−Ti

]

Hence,

NCT E(t) =−k
∂ 2

∂ t2
CE(t), CT (t) =−kN

∂ 2CT E

∂ t2
= k2 ∂ 4

∂ t4
CE(t) (24)

where k = 2
d

1

ω2
Q

, ωQ =
√

2gTi/Q is the Nosé-Hoover frequency (cf. Appendix B). All energy

correlation functions (of E, K, U = E −K) can be thus expressed in terms of just one function.

Note also their relation with ξ -fluctuations:

NCT E(t) = TiQCξξ (t)

where Cξξ (t) = 〈ξ (t + t ′)ξ (t ′)〉, Cξξ (0) = Ti/Q. In the frequency domain (cf. eq. 14) the above

relations read:

NCT E(ω) =
2

d

ω2

ω2
Q

[

CE(ω)−T 2cvs

]

(25)

CT (ω) =
2

d

ω2

ω2
Q

[

NCT E(ω)−T 2
]

(26)

On using eqs. 25, 26 one can easily show that eq. 19 is identically satisfied thus supporting its

generality. On the other hand, this fact also demonstrates that the two definitions of c∗v(ω) given

by eqs. 13 and 18 are equivalent thus backing the idea of universality of the heat-capacity functions

cv(t) and c∗v(ω).

Using eqs. 13, 25 we find

1/c∗v(ω) = 1/c∗v0(ω)+
2

d

ω2

ω2
Q

(27)

where c∗v0(ω) is defined in eq. 15. Eq. 27 allows to calculate the frequency-dependent heat capacity

for the NH thermostat based solely on the energy autocorrelation function. It shows that c∗v(ω) ≃
c∗v0(ω) for ω ≪ ωQ. In terms of the real-time functions it gives (on recalling eq. 5):

cv(t)≃ cv0(t) = cvs −
1

T 2
CE(t), t ≫ 1/ωQ (28)

By virtue of eq. 27 a distinction between cv(t) and cv0(t) disappears in the limit ωQ → ∞ corre-

sponding to a vanishing thermal mass (Q→ 0). In the general case, as we know already (cf. Fig. 1),

cv0(t) depends on Q at short t in contrast to cv(t) which must be universal and Q-independent, be-

ing a physical property of the original energy-conserving system (cf. the Ansatz).
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Note that by definition

cv(t = 0) = c∗v(ω → ∞) = d/2

reflecting an obvious instant response of kinetic energy to a temperature increase. By contrast,

cv0(t = 0) = 0. Having in mind the universality of cv it may be useful to express c∗v0 in terms of c∗v :

c∗v0(ω) = c∗v(ω)/

[

1− 2

d

ω2

ω2
Q

c∗v(ω)

]

(29)

This equation shows, in particular, how c∗v0 depends on the Nosé-Hoover frequency ωQ. For

example, for a system without potential energy (like a system of hard spheres) c∗v(ω) = d/2. On

using eq. 29 it leads to

cv0(t) =
d

2
[1− cos(ωQt)]

which shows infinitely persisting oscillations. Alternatively, eqs. 26, 25 allow to express c∗v(ω) in

terms of the temperature autocorrelation function. The result is

c∗v(ω) =
d

2

ω2
Q

ω2
+

T 2

CT (ω)
(30)

The above equation generalizes the classical relation valid for a canonical ensemble with energy-

conserving dynamics12,34,36

c∗v(ω) = T 2/CT (ω) (31)

to the case of the Nosé-Hoover thermostat.65 The two equations (eq. 30 and 31) obviously coincide

in the limit of very large thermal mass, Q → ∞. Indeed, the Nosé-Hoover thermostat with Q → ∞

conserves the total energy E for finite time-intervals.

The asymptotic behaviors of the correlation functions at low and high frequencies (obtained

using the general equations derived in this section) and other useful correlation properties are

summarized in Appendix D.

V. HOW TO AVOID THE TODA DEMON: THE QUESTION REVISITED

The total energy or temperature of a classical system with NH thermostat often show persisting

oscillations. This problem is well-known2,22,35; it is also illustrated in Fig. 1. The frequency ω∗

and the relaxation rate γ∗ of these oscillations strongly depend on the thermostat mass Q. In some

cases the relaxation time 1/γ∗ gets extremely long, which deteriorates the velocity equilibration.

10



This wild oscillation effect was analyzed in ref.35 (where it was labeled as being due to a

‘demon’ of a Toda oscillator). Below we revisit this effect based on eqs. 29, 30 which allow to

get the energy and temperature correlation functions, CE(t) and CT (t), once the time-dependent

heat capacity cv(t) is known. We demonstrate analytically how the physical response function

cv(t) showing no oscillations can lead, by virtue of the NH thermostatting, to oscillating CE(t) and

CT (t).
66

Let us consider, for example, eq. 30. In effect, it defines the ω−transform of CT (t) in terms of

the ω-transform of cv(t):

CT (ω) = T 2/

(

c∗v(ω)− d

2

ω2
Q

ω2

)

(32)

Doing the inverse ω-transform one can get CT (t) as a sum of exponentials with complex decay

rates si = izi, where zi are the complex frequencies corresponding to the poles in the r.h.s. of eq. 32.

In other words, zi are the roots of the characteristic equation

2

d
z2c∗v(z)−ω2

Q = 0 (33)

where z=ω+ iγ (the same characteristic equation also comes from eq. 29). Generally all the roots

of eq. 33 are complex with positive ℑ(z) ≡ γ > 0.67 The slowest relaxation mode corresponds to

a pair of roots, z∗ = ±ω∗+ iγ∗, with the lowest γ = γ∗. Typically γ∗ is small compared to ω∗, so

a perturbation approach can be used. For ωQ ≪ 1/τmax, where τmax is the longest relaxation time

(associated with cv(t) or CT (t)), eq. 33 gives:

ω∗ ≃ ωQ/
√

2cvs/d, γ∗ ≃ ηEω2
Q/2 (34)

where ηE is a universal Q-independent constant defined in eqs. D4, D9.

In the opposite regime, ωQ ≫ 1/τ , where τ is the shortest relaxation time (of cv(t)), the char-

acteristic equation gives:

ω∗ ≃ ωQ, γ∗ ≃ η(ω∗)ω∗2/2 (35)

where the function η(ω) generalizes the constant ηE = η(0):

η(ω) =

∫ ∞

0
[cvs − cv(t)]cos(ωt)dt (36)

(The two asymptotics given in eqs. 34, 35 for the oscillation frequency ω∗ were obtained by

Nosé26.) With smooth analytical cv(t), the factor η(ω∗) becomes exponentially small for ω∗ ≫
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1/τ . This leads to extremely long-time damping of temperature oscillations in the high-ωQ

regime.35

Thus, γ∗ decreases at both high and low ωQ, so the optimal ωQ = ω∗
Q (corresponding to the

highest γmax = γ∗(ω∗
Q)) is expected in the regime ωQ ∼ 1/τ . To further justify this conclusion we

consider below a model example assuming that the time-dependent heat capacity can be approxi-

mated with two exponentials:

cv(t) =
d

2

[

1+A
(

1− e−αt
)

−A′
(

1− e−α ′t
)]

(37)

with A′ = A/κ , α ′ = Aκ (so that dcv(t)/dt = 0 at t = 0), and cvs = (d/2)(1+A−A′). We set

the static heat capacity to cvs = d which is close its values for the 2D pLJ system described in

Appendix A. The relevant ω∗+ iγ∗ was obtained by solving eq. 33.

The dependencies of γ∗/α vs. ωQ/α for κ = 2 and κ = 5 are shown in Fig. 2a (the curves

are independent of the basic relaxation rate α which is set to α = 1 for simplicity). A rather

pronounced peak, γmax = γ∗(ω∗
Q), is visible in both cases at ωQ = ω∗

Q. Clearly γ∗ gets very small

for ωQ ≫ ω∗
Q and ωQ ≪ ω∗

Q: the Toda demon works there. Based on Fig. 2 and other results for

this model we found that the decay rate γmax and the optimal ω∗
Q can be approximated as:

γmax ∼ (2cvs/d −1)/(2t1/2), ω∗
Q ∼ 2/t1/2 (38)

where t1/2 ∼ τ is the median time for the cv(t) relaxation as shown in Fig. 2b. The Nosé frequency

ωQ = ω∗
Q corresponds to the optimal parameter Q = Q∗ ∼ (d/2)NTt2

1/2
. The recommended ω∗

Q

given in eq. 38 is in harmony with conclusions of ref.35 arguing that the optimal ‘coupling’ of the

thermostat to the physical system is achieved at the inverse Nosé relaxation time 1/τN =ωQ/
√

2∼
ωE , where ωE is the Einstein frequency.

For the 2D pLJ system described in Appendix A we find: t1/2 ≈ 0.06 for T = 0.4, so ω∗
Q ∼ 30 (in

LJ units). In practice, the median time can be estimated using the correlation function of potential

energy, CU(t) (cf. eq. D10), which closely follows the dynamics of cv (see the next sections): t1/2

can be defined by the condition CU(t1/2) =CU (0)/2. The function CU (t) may be obtained from a

trial simulation run for a high ωQ ≫ 1/τ , which means ωQ & 100 for the system we simulated.68

VI. THE TIME-DEPENDENT cv

Eqs. 13, 27 or 30 allow to obtain the complex frequency-dependent function c∗v(ω) based on

the Laplace-Fourier-like ω-transforms of correlation functions (cf. eq. 14). To this end one should
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first produce a time-dependent correlation function (say, CE(t)) for a long time-interval, and then

to calculate its ω-transform according to eq. 14. However, calculation of CE(ω) or CT (ω) is gen-

erally a non-trivial task12 for several reasons: First, the power spectrum of, say, E(t) is not enough

to get CE(ω):
〈

|Eω |2
〉

defines only the imaginary part of this function. Therefore, it appears that

evaluation of time-dependent correlation functions (CE(t), CT (t)) with high accuracy and over

many decades in time is a necessary intermediate step demanding a massive numerical work (in

particular, in the case of supercooled liquids). Moreover, these functions typically show strong

oscillations (see Fig. 3a,b) which may ruin the numerical precision of the ω-transforms defined in

eq. 14. Below we describe an efficient approach to calculate cv(t) avoiding such problems.

A. The classical NH thermostat

The starting point is that the correlation function of the potential energy U , CU(t) ≡ CUU(t),

exhibits much weaker oscillations than the kinetic energy (cf. Fig. 3a). Therefore it would be

beneficial to use a relation between c∗v(ω) and CU(ω) (the ω-transform of CU(t) defined in analogy

with eq. 14). Such a relation can be found using eqs. 25, 26, 27; it reads:

c∗v(ω) = (d/2)(1+ϕ(ω)+ψ(ω)) (39)

where

ϕ(ω) =
2

d

(

cvs −CU (ω)/T 2
)

−1, ψ(ω) =
ω2ϕ(ω)2

ω2 (1−ϕ(ω))−ω2
Q

(40)

Interestingly, it follows from these equations that ϕ(ωQ) = 0,69 so

CU(ωQ) = T 2 (cvs −d/2) (41)

This is a remarkable result. From the definition, eq. 14, we know that CXY (t → 0) =CXY (ω → ∞),

so using eqs. D2, D3 we find

CU(ω → ∞) = T 2 (cvs −d/2)

and, hence, CU (ω → ∞) =CU(ωQ). This relation provides yet another indication that fluctuations

of potential energy are generally affected by the thermostat: otherwise we would have to con-

clude that CU(ω) = const (since ωQ can be varied independently of the original physical system

properties). Eq. 41 also means that the power spectrum of U =U(t) vanishes at ωQ:

PU(ω)≡ 1

π

∫ ∞

−∞
CU(t)e

iωtdt =
2

πω
ℑ[CU(ω)] = 0 at ω = ωQ

13



Taking into account that PU(ω)≥ 0 (cf. Appendix C) we conclude that PU(ω) has an absolute min-

imum at ω = ωQ meaning that fluctuations of U are always suppressed near the Nosé frequency.

Eqs. 39, 40 also show that ψ(ω)≪ ϕ(ω) at low ω ≪ ωQ, hence

c∗v(ω)≃ cvs −CU (ω)/T 2, ω ≪ ωQ (42)

Apart from c∗v(ω), it is also of great interest to obtain the heat capacity function cv(t) in the

time domain. To this end one may apply the inverse ω-transform to c∗v(ω). However, the whole

procedure (to obtain cv(t) based on CU(t)) then becomes rather complicated and can suffer from

another problem near or below the glass transition temperature: In this case a significant relax-

ation of CU (t) occurs beyond the total simulation (sampling) time ∆t rendering it difficult to obtain

CU(ω) at low ω . To deal with this matter one can try to extrapolate CU(t) at longer times, or to ap-

ply a low-frequency cut-off for CU (ω). In both cases one has to rely on additional approximations

to obtain cv(t).

Below we describe a different approach allowing to avoid these problems. The idea is to use a

direct relation between cv(t) and CU (t) which can be derived from eqs. 39, 40. It reads:

cv(t) =
d

2
(1+ϕ(t)+ψ(t)) , ϕ(t) =

2

d

(

cvs −CU (t)/T2
)

−1 (43)

where ψ(t) is a solution of the following equation
∫ t

0
ϕ̈(t − t ′)

[

ϕ̇(t ′)+ ψ̇(t ′)
]

dt ′ = ω2
Qψ(t)+ ψ̈(t) (44)

and ψ̇(t) ≡ dψ(t)/dt, etc. This integral equation can be solved iteratively by small time steps

starting from t = 0 with the initial conditions ψ(0) = 0 (coming from ϕ(0) = 0 and cv(0) =

d/2) and ψ̇(0) = 0 (since both ψ(t) and ϕ(t) are even functions, cf. Appendix C). Remarkably,

eqs. 43, 44 show that cv(t) is totally independent of the behavior of CU (t
′) at longer times, t ′ > t.

All 3 functions cv(t), ϕ(t) and ψ(t) are also invariant with respect to a constant shift of CU(t),

CU(t) → CU(t)+ const , which may result from relaxation processes beyond the total sampling

time.

For long t the ψ(t)-term in cv(t) becomes negligible, so

cv(t)≃ cvs −CU(t)/T 2, t ≫ 1/ωQ (45)

in agreement with eq. 42. We used eq. 44 to calculate cv(t) of the model system (cf. Appendix A)

for different thermal mass Q at the same T = 0.4. The results shown in Fig. 4 confirm our idea

that cv(t) must not depend on Q. We also found that eq. 45 is valid (with relative error . 5 ·10−4)

for tωQ & 100.
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B. Canonical thermostats

In the previous sections we considered the general relations between the dynamic heat capacity

and the energy correlation functions, eqs. 27, 30, 39, 40, 43, 44, valid for classical NH thermostat-

ted systems (with a single NH thermostat). We are now in a position to extend the analysis to a

wider range of canonical systems. Such systems include, in particular, the ‘NH chain’ thermostat-

ting mechanism38,39 implemented in LAMMPS32 and the stochastic Langevin thermostat22 (cf.

sect. VII B). As discussed in sections V, VI A the energy and temperature correlation functions

typically show unwanted persistent oscillations which render less precise numerical transforma-

tions of the correlation functions and slow down equilibration of the systems with single NH

thermostat. The ‘NH chain’ is a general approach to suppress these adverse oscillation effects as

illustrated in Fig. 3 (compare its parts (a) and (c)). From Fig. 3(c) it is also clear that the gen-

eral approach to deal with fluctuations of the potential energy U (cf. the previous section) is also

efficient with NH chains.

The goal therefore is to get a general expression (not involving any thermostat parameters) for

c∗v(ω) in terms of U -correlations. Clearly, it is impossible to directly relate cv(t) with CU (t) as the

very existence of such a relation would imply that CU(t) is thermostat-independent which is not

the case. However, the dynamic heat capacity can be defined in terms of 2 correlation functions,

CU(ω) and CUK(ω). Using the general eqs. 13, 18, 19 we obtain70

c∗v(ω) =
d

2
+

d

2

cvs −d/2−CU(ω)/T 2

d/2−CUK(ω)/T 2
(46)

In practice, both correlation functions, CU/T 2 and CUK/T 2, get small for t ≫ τ (this regime

corresponds to ωτ ≪ 1), so the above equation can be simplified as

c∗v(ω) ≃ cvs −CU(ω)/T 2 +(2/d)cvspCUK(ω)/T 2 for ωτ ≪ 1 (47)

Here cvsp = cvs −d/2 is the potential energy contribution to the static heat capacity.

While eq. 46 defines the dynamic (frequency-dependent) heat capacity, it can be also trans-

formed to the time-domain in analogy with eqs. 43, 44 (here ċv(t)≡ dcv(t)/dt):

cv(t) = cvs −
1

T 2
CU (t)+

2

T 2d

∫ t

0
ċv(t

′)CUK(t − t ′)dt ′ (48)

This equation has a unique and stable solution with cv(0) = d/2 and ċv(0) = 0 (the latter condition

comes from CUK(0) = 0 for canonical systems). It can be found iteratively like for eq. 44. The
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stability of eq. 48 is addressed in Appendix C. For t ≫ τmax the integral in the r.h.s. can be

approximated as

[cvs − cv(0)]CUK(t)

leading to

cv(t)≃ cvs −
1

T 2
CU (t)+

2

d
cvsp

1

T 2
CUK(t), t ≫ τmax (49)

We solved eq. 48 feeding it with the simulated correlation functions obtained for the model of

Appendix A using NH chain thermostat (tchain= 3) for T = 0.4, Q= 4/3 (corresponding to ωQ ≈
110, which is about 4 times larger than the optimal ω∗

Q ∼ 30 considered in section V). The results

for both single NH and NH chain thermostats are shown in Fig. 5. The two curves practically

coincide in the whole time-range, the relative difference being extremely small, . 3 · 10−4. This

discrepancy is rather close to the theoretical limit of precision which is ∼ 1/N. The Nosé-Hoover

chain algorithm is known to produce ergodic behavior22 and correct heat capacity results40. The

close agreement between the cv(t) functions obtained for tchain = 3 and tchain = 1 indicates that

the classical NH method is also likely to ergodically sample the canonical ensemble, at least for

the system we consider. The same conclusion was also drawn from simulations of supercooled

polymer melts41 and films42 (using a Kremer-Grest-like bead spring model) where systems with

a single NH thermostat were found to give dynamic properties in agreement with microcanonical

simulations.

We also established that the approximate eq. 49 is valid with relative accuracy ∼ 10−4 for t > 1

(for tchain = 3). Rather amazingly it also turns out that another approximate eq. 45 is even more

precise (for tchain = 3): its relative error for t > 1 is ∼ 5 · 10−5.71 Moreover, the latter equation

works (for Q = 4/3) in the whole time-range (0 < t < 105) with a reasonable relative error . 1%

(for both tchain = 1 and tchain = 3). Thus, it appears that for low Q’s (ωQτ ≫ 1) the simple eq. 45

does a fairly good job.

Let us return to the general relation between the correlation functions, eq. 19. It can be easily

transformed as

CUK(ω)

[

d

2
T 2 −CUK(ω)

]

=CK(ω)
[

cvspT 2 −CU (ω)
]

(50)

where CK(ω) = CKK(ω) is the ω-transformed autocorrelation function of the kinetic energy,

CK(t) = (1/N)〈δK(t + t ′)δK(t ′)〉. Eq. 50 shows that cross-correlations of kinetic and poten-

tial energies are generally defined by the corresponding autocorrelation functions. This equation

must be valid for all NH or NH-chain systems (with a relative error ∼ 1/N), and for other canonical
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thermostats (satisfying the conditions discussed in sect. VII B).

Noteworthily, Eq. 50 must be valid for any (complex) ω with ℑ(ω) ≤ 0 including ω = −is

with real s. We numerically verified this equation using the data obtained for the 2D pLJ system

(described in Appendix A) with the NH-chain thermostat (LAMMPS parameter tchain = 3). We

found that it works with accuracy ∼ 2% for s in the range 20 & s & 2. The error increases both at

higher and lower s; it is due to somewhat oscillating character of the correlation functions and the

smallness of CK(−is) at low s, while discretization errors (related to finite sampling time-step δ t)

are relevant at high s. Note that the accuracy of cv(t) obtained based on CU(t) and CUK(t) over the

whole range of more than 5 decades in time is much higher (by a factor of ∼ 100). This is because

(i) we used the direct relation, eq. 48, between cv(t) and time-dependent correlation functions,

avoiding the ω-transforms (cf. eq. 14), and (ii) the oscillating autocorrelation function of kinetic

energy is not involved in eq. 48. Hence, the numerical scheme based on eq. 48 (involving CU ,

CUK) is preferable for 3 reasons: its high stability, its high precision due weak oscillations of input

functions, and independence of the resultant cv(t) of the total sampling time.

VII. DISCUSSION

A. Non-canonical thermostats

So far we implicitly assumed that the equilibrium distribution of the extended system in the

phase space is canonical.22 Indeed, introducing eqs. 5 and 11 we referred to the generic FDT (a

relevant argument can be found in section IV of ref.28) which assumes such canonical equilibrium

distribution. Thus, eqs. 13, 18, 19 are applicable only to canonical thermostats.72

The canonical equilibrium distribution density in the phase space, ρ0(x, p), is an exponential

function of the total energy E only. The ‘canonical thermostat’ requirement may be weakened by

allowing ρ0 to depend on both the kinetic energy K and the potential energy U : ρ0 = f (K,U), E =

K +U with virtually arbitrary function f (which of course must decrease exponentially, or faster,

for high energies). In this more general case (which we refer to as a quasi-canonical ensemble)

the static fluctuations of K and U may not obey the well-known relations with thermodynamic

derivatives. Accordingly, the basic relations, eqs. 13, 18, 19, must be generalized to compensate

for this effect. The main idea is simple: In the canonical case the initial (in the case of eq. 16) or
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terminal (in the case of eq. 4) perturbations can be described as

ρ = ρ0 +δρ = ρ0(1+ ε(X −X0))

where X0 is the averaged X for the ρ0-distribution, ε is the perturbation magnitude and X = N
Ki

K

or 1

T 2
i

E, respectively (here Ki = (d/2)NTi). In the non-canonical case the conjugated variable X

must be modified to provide the correct responses, ∆T and ∆E (or, equivalently, ∆K and ∆U ), to

the perturbation. For example, the velocity perturbation of eq. 16 leads to: ∆T = 2
d

εT , ∆E = εK =

εNT , ∆E/∆T =Nd/2 at t = 0. The Ti-perturbation (eq. 4) corresponds to ∆E/∆T = cvsN at t =∞.

Thus

X =
N

Ki
(K−βE) , v-perturbation

X =
1

T 2
i

(

E +β ′K
)

, Ti-perturbation

with

β =
CUK

CUE
, β ′ =

CEE − c̃vsCKE

c̃vsCKK −CEK

where c̃vs = (2/d)cvs is the reduced static heat capacity and CXY ≡ 〈δXδY 〉/N =CXY (t = 0) are

the static correlators.

After some algebra we get the following generalizations of eqs. 13, 18, 19:

c∗v(ω) =
d

2

CEK(ω)−βCE(ω)

CK(ω)−βCKE(ω)
(51)

c∗v(ω) =
d

2

c̃vs −αCE(ω)

1−αCKE(ω)
(52)

α [CE(ω)CK(ω)−CKE(ω)CEK(ω)]−β [CE(ω)− c̃vsCKE(ω)]+CEK(ω)− c̃vsCK(ω) = 0 (53)

where

α = (c̃vs −1)/CUE , β =CUK/CUE (54)

Note that the above equations do not require time-reversibility of the dynamics. Apart from

canonical systems, these equations are applicable, for example, to the Gaussian isokinetic (GIK)

thermostat43–46 whose equilibrium distribution density ρ0 is a function of U and K47. (Note,

however, that eq. 51 is useless for the GIK systems: its r.h.s. gives 0/0 since K = const in this

case.) Using eq. 52 we get a simple equation for the time-dependent heat capacity with a GIK

thermostat:

cv(t) = cvs − (d/2)αCE(t) = cvs −T−2CU(t) (55)
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where CU(t) is defined in eq. D10 and we take into account that the equilibrium distribution of

potential energy for a GIK system (but not the distribution density as a whole) is canonical47, so

CU(t = 0) = (cvs −d/2)T 2.

B. The region of applicability of the Ansatz and the general relations between response

and correlation functions

In section III we introduced the basic Ansatz stating the universality of response functions, i.e.

their independence of the thermostatting method and the related coupling parameters. Justification

of this principle for the NH dynamics is hinged on the idea that it does not matter how a particular

T -perturbation is generated, by an external perturbation of particle velocities (cf. eq. (16)) or by

the thermostat-related force, −ξ p (cf. eq. (B2)): the ensemble-averaged energy-response must be

the same (or, equivalently, the temperature response is defined by the amount of injected heat, no

matter which source it comes from). This equivalence stems from the weakness of instantaneous

temperature fluctuations (δT ≪ T ) at equilibrium. The physical idea behind the Ansatz is thus

similar to that underlying the famous random phase approximation (RPA) widely used in statistical

physics.

Based on this Ansatz we obtained a number of the general relations, eqs. 13, 18, 19, 52, 51, 53,

valid for canonical and quasi-canonical systems (the latter class is described in the previous sec-

tion). Are there any general conditions for these equations to be asymptotically exact (in the

thermodynamic limit)? The answer is yes: we believe that the following conditions are sufficient

(although may be not necessary):

(i) The temperature control must be maintained by virtue of artificial friction forces depending

on particle velocities. More precisely, the thermostat-related force f ′ on a particle must depend on

its momentum p only:

f ′ =−ξ p+η

where ξ is a constant or time-dependent damping coefficient, which must be the same for all

particles, and η is a stochastic force uncorrelated with particle positions and velocities.

The above condition is obviously valid for a range of thermostats including the deterministic

NH25,26,33 and NH-chain38,39) thermostats with ξ = ξ (t) and η = 0, the stochastic Langevin dy-

namics22 (with a single damping constant), and the Gaussian isokinetic (GIK) model43. Indeed,

in section IV we proved that the general ‘canonical’ eq. 19 is valid for systems with the classical
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NH thermostatting mechanism. Its validity for the Langevin thermostat (with a single damping

constant) can be proved in a similar way.

The requirement of equal damping parameter ξ for all particles is essential as argued below.

Consider a binary mixture (say, of large and small particles). Let us modify the NH dynamics by

applying different damping to the two sorts of particles: say, ξlarge = ξ and ξsmall = ξ/1000.

Obviously, it must lead to a much less efficient temperature regulation for small particles. Suppose

in addition that interactional coupling between small and large particles is very weak. Then a step-

like increase of the imposed temperature Ti would result in a fast increase of the instantaneous T

for large particles, but (for a long time) in a little T -effect for the subsystem of small particles.

These effects must lead to an incorrect overall response cv(t) at intermediate times (reflecting the

properties of the large-particle subsystem only).

Note that while the above condition (i) may be sufficient for the validity of the general rela-

tionships like eqs. 19, 50, 53, it does not guarantee that the response functions of the system are

(almost) not perturbed by the thermostat effect. Another condition must be added to ensure the

latter property:

(ii) The system/thermostat coupling must be weak at the particle level, so that it virtually does

not affect the particle velocity autocorrelation function (or the mean-square displacement).

By weak coupling here we mean that the thermostat-related variation δv of a particle velocity

during collision/vibration time τ must be small: δv ≪ v. This condition is always valid with NH

dynamics25,33: in this case δv/v . ξ/ωQ ∼ 1/
√

N (cf. Appendix B, eq. B7 and the text below

it)73, hence δv/v ≪ 1 for N ≫ 1. Therefore, eqs. 13, 18, 19 are valid with NH dynamics for any

thermal mass Q, and the time-dependent heat capacity cv(t) does not depend on Q.

The situation is different with the Langevin dynamics: in this case cv(t) may depend on the

damping parameter ξ . Yet, eq. 19, is always valid with the Langevin thermostat (the proof is simi-

lar to that given in sect. IV), and, on the other hand, the full universality of cv(t) (its independence

of ξ ) is approximately restored for weak enough ξ , in the regime ξ τ ≪ 1.

Finally, we note that the condition (i) is not really satisfied in the case of the dissipative par-

ticle dynamics (DPD) algorithm, where the frictional forces depend on the relative velocities of

interacting particles10. In this case the dynamic heat capacity can be still obtained using eq. 13

(or, alternatively, eq. 48), but the result may depend on the strength of system/thermostat frictional

coupling. Nevertheless we anticipate that the formalism developed in this paper may be approxi-

mately applicable for the momentum-conserving DPD simulations with weak frictional coupling.
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VIII. SUMMARY AND CONCLUSIONS

In this paper we demonstrated that correlation functions of large thermostatted systems (like,

for example, supercooled liquids) generally depend on the temperature-control mechanism (see

section II). More precisely, the idea that correlation functions obtained with different ther-

mostats (for example, with NH and GIK methods) are the same33 (and are independent of the

system/thermostat coupling strength) may be valid in some regimes (e.g. in the liquid state) and

only for those variables whose fluctuations are essentially decoupled from temperature fluctuations

(like, for example, the shear stress or a particle velocity component25). However, it is generally not

valid for other variables like energy and its potential part, or pressure and its virial (excess) part:

auto- and cross-correlation functions of these variables are perturbed by the thermostat and hence

must depend on the thermostat parameters like the thermal mass Q (for Nosé-Hoover simulations)

or the friction constant (for Langevin simulations). In other words, these correlation functions

are spoiled by the temperature regulation mechanism. This property is immanent in thermostatted

systems; with respect to kinetic energy fluctuations it was recognized in refs.26,33,34.

By contrast, the properly-defined response functions (like the dynamic heat capacity c∗v(ω)

defined via eq. 8) must be universal, independent of the thermostat properties (for ‘decent’ ther-

mostats described in sect. III). We formulated this statement as a physical Ansatz (section III) and

argued, focusing on c∗v(ω), that it is valid for a range of thermostatting mechanisms including the

Nosé-Hoover (NH), NH-chain, and Gaussian isokinetic (GIK) thermostats. The whole class of

eligible thermostats is outlined in sections VII A, VII B.

The fact that the correlation functions of energy or temperature do depend on the thermostat

properties together with universality of c∗v(ω) means that there is no general relation between

c∗v(ω) and a single correlation function. In fact, the known FDT relations28,34, eqs. 5, 31, are not

really applicable generally: eq. 31 is valid only for microcanonical (NVE) ensemble (which is not

a thermostatted system), while eq. 5 is never valid at short times.

To fill the gap for the classical NH thermostatting mechanism, we obtained an exact expression

for c∗v(ω) in terms of the ω-transform (cf. eq. 14) of the potential energy autocorrelation function

CU(t) (cf. eqs. 39, 40). Moreover, we found a general relation, eq. 50, between 3 correlation func-

tions: CU(t), the autocorrelation function of the kinetic energy, CK(t), and the cross-correlation

function, CUK(t), deriving it directly from the Ansatz for canonical thermostats. Importantly,

the validity of this relation, eq. 50, was also proved based on the NH dynamical equations and
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validated numerically for the NH-chain dynamics (cf. sections IV, VI B). An even more gen-

eral equation for c∗v(ω) in terms of two correlation functions, CU and CUK (eq. 46) is derived in

sect. VI B. This equation is applicable to all canonical thermostats respecting the criteria discussed

in section VII B.

The whole theory was also generalized (cf. section VII A) to non-canonical thermostats with

arbitrary U - and K-fluctuations and their cross-correlations. On this basis we derived a simple

general equation defining cv(t) for the GIK thermostat (cf. eq. 55).

Furthermore, we derived useful direct relations between cv(t) and the time-dependent correla-

tion functions, eqs. 43, 44, 48. These equations possess the following feature: cv(t
′) obtained on

their basis in the range 0 < t ′ < t does not depend on the behavior of the energy correlation func-

tions at t ′ > t, which allows to avoid long-time extrapolations of correlation functions. Solving

eqs. 43, 44 using simulation data for the NH dynamics (on the 2D pLJ supercooled liquid described

in Appendix A) with different values of thermal mass parameter Q we demonstrated universality

of the time-dependent heat capacity cv(t): the resultant cv(t) proved to be independent of Q (cf.

Fig. 4). Moreover, solving eqs. 43, 44, 48 for the lowest Q we obtained cv(t) over many decades in

time based on correlation functions of the potential energy. The function cv(t)was calculated twice

using the data from 2 independent NH and NH-chain simulations (LAMMPS parameter tchain = 1

and 3, respectively). The two curves (shown in Fig. 5) coincide with remarkable precision (relative

error . 3 ·10−4).74 In this figure one can observe a fast process (collisions/vibrations) at t ∼ 0.05,

then a weak overshoot and a shoulder followed by a broad terminal relaxation at 1 . t . 30. Note

that the α-relaxation time derived from the shear-stress relaxation modulus (not shown) is τα ∼ 2,

so it seems that an even slower process is reflected in the transient heat capacity.

It is worth noting that all relations considered in the present paper are valid in the thermody-

namic limit, for a finite N their relative accuracy is ∼ 1/N.

In conclusion, let us emphasize the main achievements reported in the present paper:

(i) We derived a number of general relations between the universal transient heat capacity cv(t)

(and its frequency-dependent transform, c∗v(ω)) and the non-universal (thermostat-dependent) en-

ergy correlation functions, valid both in frequency- and time-domains (eqs. 39, 40, 46 and 43, 44, 48,

respectively) for a range of thermostatting mechanisms.

(ii) Equally general relations between the energy correlation functions are established for

canonical (eq. 50) and non-canonical (eq. 53) thermostats.

(iii) We propose 3 approaches (altogether efficient) to increase the precision of cv(t) by avoiding
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the adverse effect of oscillations in the energy correlation functions: (a) To use low thermal mass

parameter Q corresponding to a high Nosé frequency ωQ exceeding the highest relaxation rate

of the system: ωQ & ω∗
Q, corresponding to Q . (d/2)NTt2

1/2
(cf. section V). (b) To use direct

relations between cv(t) and time-dependent correlation functions, thus bypassing the inverse ω-

transforms which may be detrimental to numerical precision. (c) To employ eqs. 43, 44, 48

defining cv(t) in terms of the potential energy correlation functions, CU(t) and CUK(t), showing

much weaker oscillations than the autocorrelation function CE(t) of the total energy E.

The ideas and approaches proposed in the present paper can be used to obtain many other re-

sponse functions for variables whose fluctuations are correlated with T -fluctuations, in particular,

the pressure relaxation modulus (dynamic compression modulus), the transient isobaric heat ca-

pacity cp(t), the time-dependent pressure response to a T -perturbation, and also the wave-vector

q-dependent generalizations of these and other response functions.
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Appendix A: The model and simulation approach

We study a 2-dimensional (2D) polydisperse system of N = 104 Lennard-Jones (LJ) particles

with the same mass mp
7,8,48. The particle diameters, σl with l = 1, ...,N, are uniformly distributed

between (1−∆) σ̄ and (1+∆) σ̄ with ∆ = 0.2 and σ̄ being the mean diameter of the particles. The

mean-square particle size is σ 2 =
(

1+∆2/3
)

σ̄ 2, leading to the size polydispersity index of δp =

σ 2/σ̄ 2−1=∆2/3. Each pair of particles (of diameters σl and σk), a distance r apart, interacts with

energy uLJ(s), where s = r/σlk, σlk = (σl +σk)/2 and the LJ potential uLJ(s) = 4ε(s−12 − s−6)
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was truncated at scut = 27/6 ≈ 2.24 and shifted to avoid discontinuity (u(s) = 0 for s > scut). All

quantities in the main text are given in LJ units: mp, σ̄ , the energy ε , and the Boltzmann constant

kB are set to unity. In particular, the Lennard-Jones time τLJ =
√

mpσ 2/ε = 1.

We used a standard molecular dynamics (MD) with velocity-Verlet algorithm and periodic

boundary conditions as implemented in the LAMMPS code5,32. The system was equilibrated at

constant pressure P0 = 2 and T = 1 (using a Nosé-Hoover thermostat and barostat) to prepare

m = 100 well-relaxed independent configurations. Starting from the initial temperature T = 1

these configurations were then continuously cooled down at P0 = 2 with rate dT/dt = −10−5.

These slow cooling runs allowed to determine the glass transition temperature, Tg ≈ 0.26, using

a dilatometric criterion7,8. Each configuration was then tempered for ∆t1 = 2 · 105 in the NPT

ensemble at P = P0 to further equilibrate the system and then for another ∆t1 in the canonical

NVT ensemble (using Nosé-Hoover thermostat). Finally, the production runs (served to obtain

all correlation functions) were performed during the total sampling time ∆t = 105 in the NVT

ensemble. The MD step was tMD = 0.001 with tchain = 1 (except for the analysis of K̄, cf. end of

Appendix D) and tMD = 0.002 with tchain = 3. The linear dimension of the simulation box was

L ∼ 100, the system volume V = L2 and the 2-dimensional particle concentration c0 = N/V ∼ 1.

Appendix B: The Nosé-Hoover (NH) thermostat

Consider a system of N classical particles in a d-dimensional space, with mass mi for the i-

th particle, i = 1, ...,N. The system microstate in its phase space is given by the coordinates

x = {xiα , i = 1, ...,N, α = 1, ...,d} and momenta p = {piα = miviα} of all particles, where xiα

is Cartesian α-coordinate of particle i and viα is α-component of its velocity. The canonical

Hamiltonian dynamical equations for the system are

ẋ = v, ṗ =−∂U

∂x
(B1)

where U =U(x) is its potential energy.

The classical NH thermostat involve an auxiliary variable ξ and 2 additional parameters, the

imposed temperature Ti and ‘thermal mass’ Q22,25–27. The NH equations of motion are

ẋ = v, ṗ =−∂U

∂x
−ξ p (B2)

ξ̇ =
g

Q
(T −Ti) (B3)
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where T = T (t) is instantaneous temperature,

T =
2

g
K, K = ∑

iα

p2
iα/(2mi) (B4)

and g is the number of kinetic degrees of freedom, g ≃ dN (see note60 after eq. 7). The NH

approach is therefore equivalent to dealing with an extended Newtonian system whose phase-

space is enriched by auxiliary variables. The NH thermostat provides reliable results for both

equilibrium and non-equilibrium properties (like thermal conductivity)33,40,49.

Consider an element of the extended phase space (x, p,ξ ) transforming in time according to

the dynamical equations B2, B3. Its volume Ω then changes with rate39

d(lnΩ)/dt =−gξ (B5)

The above equation generalizes the Liouville’s theorem on phase-volume conservation in Hamil-

tonian systems1,22 to the NH thermostatted systems.

The NH dynamics is time-reversible (as follows from eqs. B2, B3) and canonical. The latter

feature means that if the initial distribution, ρ = ρ(x, p,ξ ), of an ensemble of NH systems in the

extended phase space is

ρ = ρ0(x, p,ξ ) ∝ exp
(

−
(

H +Qξ 2/2
)

/Ti

)

(B6)

where H(x, p) = K(p)+U(x) is the total energy (the Hamiltonian), ρ = ρ0 will remain unchanged

in time.25,26 This feature comes directly from eqs. B5 and 22. It implies (assuming the ergodicity)

that any initial distribution ρ must evolve to ρ0(x, p,ξ ) after a sufficiently long relaxation, so

the equilibrium distribution (after reduction to the classical phase-space) is always canonical. In

particular, at equilibrium 〈K〉= gTi/2 and

〈

ξ 2
〉

= Ti/Q (B7)

There are some concerns about possible lack of ergodicity for the NH dynamics.22,39 These

concerns however seem to be exaggerated: there is no reason to expect that NH dynamics is

less ergodic than, say, energy-conserving Newtonian dynamics if sampling is allowed for long

enough time. The real problem with ergodicity is related to the emergence of slow configurational

relaxation modes (say, due to vitrification) which are independent of the thermostatting approach.

Here the challenge is to accelerate the configurational equilibration, and certain techniques were

devised to this end23,50–54.
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Interestingly, eqs. B2, B3 imply that in an ideal system with U ≡ 0 both ξ and T would oscillate

indefinitely with the Nosé frequency ωQ =
(

2gTi/Q
)1/225,26. In some NH systems with particle

interactions the temperature may still take a very long time to relax.35,55 However, this problem

can be healed by tuning the thermal mass parameter Q (to get the optimal ωQ ∼ 1/τ , where 1/τ is

the decay rate of a significant fast relaxation process35; cf. section V), or by using chains of NH

thermostats38. Yet another possibility is to prepare the initial independent configurations using a

different, more efficient equilibration method (for example, MC dynamics9,50,54).

Appendix C: Stability of eq. 48

Let us first recall some general properties of the correlation functions CXY (t) with X ,Y being

linear combinations of potential (U ) and kinetic (K) energies. These functions are even in time,

so they can be represented as

CXY (t) =

∫ ∞

0
PXY (ω)cos(ωt)dω (C1)

with real PXY (ω). Moreover, for Y = X the power spectrum PXX(ω) ≥ 0 due to the Wiener-

Khinchin theorem. The response function cv(t) is physically defined only for t ≥ 0. However, it

can be also defined mathematically using inverse Laplace transform of, say, eq. 46. This way cv(t)

may be analytically continued to the region of negative t. It is easy to show that cv(−t) = cv(t)

(for example, using eq. 48), and that in analogy with eq. C1

cvs − cv(t) =

∫ ∞

0
Pcv(ω)cos(ωt)dω (C2)

where

Pcv(ω) =
2

π
ℑ

(

cvs − c∗v(ω)

ω

)

≥ 0 (C3)

Note that Pcv(ω) ≥ 0 is due to the condition of non-negative energy dissipation (entropy produc-

tion)15,34:

ℑ(c∗v(ω))≤ 0 for real ω ≥ 0 (C4)

The properties mentioned above are related to the fact that all poles of the expression in the

r.h.s. of eq. 46 are located at ℑ(ω)≥ 0. To formally prove this statement it is enough to show that

there are no solutions of equation

CUK(ω)−dT 2/2 = 0 (C5)
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with ℑ(ω) < 0 since all singularities of the function CU(ω) in the numerator of eq. 46 are nec-

essarily located in the semi-plane ℑ(ω) ≥ 0 (as follows from eq. 14). Finally, we note that by

virtue of eq. 50 the latter property (concerning the roots of eq. C5) is true if both CK(ω) and

cvspT 2 −CU(ω) = CU (ω → ∞)−CU(ω) are nonzero for ℑ(ω) < 0. Below (at the end of this

section) we show how to prove the first part of the statement concerning CK(ω). The second part

concerning CU(ω) can be proved in a similar way.

Let us now return to eq. 48. Stability of its solution at long times means that there is no expo-

nentially increasing function f (t), f (t) ∝ exp(s0t) with ℜ(s0) > 0, satisfying the corresponding

homogeneous equation

f (t)− 2

T 2d

∫ t

0
ḟ (t − t ′)CUK(t

′)dt ′ = 0 (C6)

For long t eq. C6 leads to

1− 2

T 2d
s0

∫ ∞

0
CUK(t)e

−s0tdt = 0

which, in turn, is equivalent to

1− 2

T 2d
CUK(ω =−is0) = 0 (C7)

Clearly, eq. C7 is equivalent to eq. C5 with ℑ(ω)< 0. As stated above there are no such solutions

of eq. C5, hence the solutions of eq. 48 must be stable. Moreover, it is easy to show that if eq. C6

is imposed at all times, then Laplace transform of its solution f (t) must be identically zero, hence

f (t)≡ 0. This proves that eq. 48 has a unique solution.

Let us now show that CK(z) 6= 0 if ℑ(z)< 0, where z is used instead of ω; z = ω0− iγ with real

ω0 and real γ > 0. Using eq. C1 we get CK(z) =−zI, where

I =
∫ ∞

0
PK(ω)

z

ω2 − z2
dω

leading to

ℑ(I) =−γ
∫ ∞

0
PK(ω)

ω2 + |z|2

|ω2 − z2|2
dω (C8)

Recalling that PK(ω) ≥ 0, and that PK(ω) ≡ 0 is excluded (as this would mean that CK(t)≡ 0 in

contradiction with canonical relation CK(t = 0) = T 2d/2 > 0), we find that the integral in eq. C8

is necessarily positive, hence CK(z) 6= 0.

In conclusion, we demonstrated that eq. 48 yields a well-defined (unique) and stable solution.
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Appendix D: Some properties of the correlation functions

Below we list some general relations for the correlation functions obtained with the classical

NH dynamics (tchain = 1) at short times and at low frequencies. These relations come directly

from eqs. 25, 26, 29, 30 and the fact that the time-dependent functions are even (due to the time

reversibility) and analytical.

Eq. 29 allows to predict cv0(t) at short t based on cv(0) = d/2:

cv0(t) =
d

2

[

(ωQt)2

2
− (ωQt)4

24
+O(t)6

]

, ωQt ≪ 1 (D1)

It leads to (at ωQt ≪ 1):

CE(t) = T 2

[

cvs −
d

4
(ωQt)2 +

d

48
(ωQt)4 +O(t6)

]

, (D2)

NCET (t) = T 2

(

1− 1

2
(ωQt)2 +O(t4)

)

, CT (t) =
2T 2

d
+O(t2) (D3)

Note that the first 3 terms of CE(t) expansion do not reflect any properties of the physical system

(but only the thermostat-related frequency ωQ).

Turning to ω-dependent functions at low frequencies, ω/ωQ ≪ 1, we get:

CE(ω) = iωηET 2 +O(ω2), ηE =
1

T 2

∫ ∞

0
CE(t)dt (D4)

NCT E(ω) =
2

d

ω2

ω2
Q

T 2
(

−cvs + iωηE +O(ω2)
)

(D5)

CT (ω) =−2T 2

d

ω2

ω2
Q

(

1+
2

d

ω2

ω2
Q

cvs +O(ω3)

)

(D6)

c∗v0(ω) = cvs − iωηE +O(ω2) (D7)

Noteworthily, the above relations are consistent with the general property of the ω-dependent

functions: changing sign of a real ω results in the complex conjugated function.

In view of eq. 27 the expansion given in the r.h.s. of eq. D7 is also valid for the heat capacity

c∗v(ω):

c∗v(ω) = cvs − iωηE +O(ω2) (D8)

Using eqs. D4, D5, D6, D7, D8 the constant ηE can be expressed as

ηE =

∫ ∞

0
[cvs − cv0(t)]dt =

∫ ∞

0
[cvs − cv(t)]dt = T−2

∫ ∞

0
CU(t)dt (D9)
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where

CU(t) =
1

N

〈

δU(t + t ′)δU(t ′)
〉

(D10)

is the autocorrelation function of the total potential energy U (cp. eq. 6).

Therefore ηE must be universal, independent of Q. This constant, ηE > 0, defines the low-

frequency energy dissipation rate related to a T -perturbation.15,34

Another interesting feature comes from eq. D6:

∫ ∞

0
CT (t)dt = 0 (D11)

This relation is exact (no 1/N corrections): it can be derived from the exact equation of NH

dynamics

CT (t) =−NQ2

g2

∂ 2

∂ t2
Cξξ (t) (D12)

Eq. D11 implies that fluctuations of the time-averaged kinetic energy

K̄ ≡ 1

∆t

∫ ∆t

0
K(t)dt

are extremely weak if ∆t ≫ τmax, where τmax is the longest relaxation time associated with CT (t).

In this case the dispersion of K̄ can be approximated as

var(K̄) =
(g

2

)2 1

N

2

(∆t)2

∫ ∆t

0
CT (t)(∆t − t)dt ≃−

(g

2

)2 1

N

2

(∆t)2

∫ ∞

0
tCT (t)dt

where the second step uses ∆t ≫ τmax and eq. D11.75

Using eqs. D12, B7 we get
∫ ∞

0
tCT (t)dt =−NT Q

g2
(D13)

and

var(K̄)≃ QT

2(∆t)2
(D14)

It should be compared to the variance of instantaneous K:

var(K) =
Nd

2
T 2 (D15)

For the system described in Appendix A with N = 104, ∆t = 105, Q/T = 10/3, d = 2 we obtain

from eqs. D14, D15:
var(K̄)

var(K)
≃ Q

T

(

Nd(∆t)2
)−1

=
5

3
·10−14

This result was verified using our simulation data (with sampling time-step δ t = 0.01 and MD

time-step of 0.005) giving var(K̄)/var(K)≈ 1.60 ·10−14.
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means no dissipation at the frequency z, cf. eq. C4.

68Of course the system must be first equilibrated at ωQ ∼ ω∗
Q since velocity equilibration at very

high ωQ (with NH dynamics for tchain = 1) may be totally inefficient.

69To prove this let’s assume the opposite: ϕ(ωQ) 6= 0. In this case the second eq. 40 ensures

that ϕ(ωQ)+ψ(ωQ) = 0, which gives c∗v(ωQ) = d/2 on recalling eq. 39. Finally, using eq. 29

we arrive at c∗v0(ωQ) = ∞ and CE(ωQ) = ∞, which is physically impossible (as CE(t) must

exponentially decrease at long enough t). We thus get a contradiction implying that ϕ(ωQ) = 0.

70For simplicity here we also assume that the system dynamics are time-reversible.

71These observations indicate that CUK(t)/T2 is really small for t > 1.

72An additional clarification may be useful here: some canonical thermostats (like NH thermostat)

involve auxiliary variables (ξ in the NH case) and the corresponding coupling parameters (like

thermal mass Q). The basic equation 11 is valid provided that the perturbation of the imposed

temperature Ti is supplemented by such adjustment of the coupling parameters that conserves the

equilibrium distribution of the thermostat variables. However, this formal requirement (which

reduces to setting Q/Ti = const in the NH case) is not really important. Eqs. 11, 13 remain valid

in the thermodynamic limit even without the Q-adjustment: for a finite N the relative error still

scales as 1/N.

73More precisely, δv/v ∼ ξ/ωQ for ωQτ & 1, and δv/v ≪ ξ/ωQ for ωQτ ≪ 1.

74Following a reviewer’s request we introduced a random noise in the CUK(t) correlation function

and found that a noise of relative amplitude ∼ 5% did not lead to any detrimental effect for

cv(t): the precision of final data remained virtually the same (∼ 3 · 10−4). In practice, the noise

in CUK(t) is weaker, whereas CUK(t) itself is also much smaller than CE(t) (see also note71 and

the beginning of sect. VI A).

75Note that here we consider variations of kinetic energy across the ensemble, rather than along

the trajectory, and that is why the integrand in the above equation is proportional to CT (t), and

not to the difference CT (0)−CT (t).
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FIGURE CAPTIONS

FIG. 1. The approximate time-dependent (transient) heat capacity, cv0(t), eq. 5, for the 2D pLJ

model (of Appendix A) obtained using the NH thermostat with tchain= 1 and different thermal

mass parameters Q: Q = 4/3 (blue), 40 (black), 400 (red), 8000 (brown). Temperature T = 0.4;

t is time in LJ units.

FIG. 2. (a) The dependence of the relaxation rate γ∗ of the temperature autocorrelation function

CT (t) on the Nosé frequency ωQ for the model of eq. 37 with α = 1 and κ = 2 (solid line),

κ = 5 (dotted line). The maxima are indicated with crosses. (b) The transient heat capacity

cv(t) for the same model. The solid and dotted curves correspond to κ = 2 and 5, respectively;

the vertical dashed segments indicate t1/2. Note that the shape of all the curves does not depend

on α .

FIG. 3. Time-dependent correlation functions obtained based on NH simulations of the 2D pLJ

system at T = 0.4, total sampling time ∆t = 105 (in LJ units): CU (t)/T2 (solid curve), CK(t)/T2

(dashed curve), CE(t)/T2 (dots) for (a) tchain = 1, Q = 4/3; (b) tchain = 1, Q = 400; (c)

tchain = 3, Q = 4/3.

FIG. 4. The time-dependent heat capacity cv(t) calculated based on the correlation function CU(t)

for T = 0.4, tchain=1, Q= 4/3 (black curve), 40 (red), 400 (blue), 8000 (brown). The sampling

time step δ t = 0.01 for Q = 4/3; δ t = 0.05 otherwise.

FIG. 5. The transient heat capacity cv(t) in semilog scale for T = 0.4, Q = 4/3 obtained based on

NH (tchain = 1) and NH-chain (tchain = 3) simulations. The 2 curves coincide to the precision

of the data. The horizontal line indicates the static heat capacity cvs ≈ 1.9431.
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