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Abstract: 

Equilibrium structure of the polyelectrolyte (PE) complex coacervates and homogeneous 

multilayers formed by polycations and polyanions with incompatible backbones in a poor 

solvent is studied using a mean-field approach. The state diagrams involving symmetric and 

asymmetric homogeneous phases are obtained in terms of interaction parameters, ionic strength 

and composition. It is found that interfacial tension between two coexisting uniform PE phases 

vanishes at a certain line, where both phases remain stable and (unlike the classical critical 

behavior) highly distinct in composition and charge. It is also shown that a microdomain 

structure of the coacervate phase gets thermodynamically stable at low enough salinity. Lamellar 

structures arising in symmetric coacervates are investigated in all segregation regimes (weak, 

strong and intermediate). The mechanism of an exponential growth of uniform multilayer 

thickness upon layer-by-layer deposition is elucidated. It is predicted that the exponential growth 

rate increases with the solution ionic strength in agreement with experimental data. 
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1. Introduction 

 The ability of polyelectrolytes (PEs) to form complex coacervate phases and multilayers 

as well as their decisive role in the functioning of living systems make these objects interesting 

for experimental study and theoretical analysis and it also allows them to be used for a variety of 

applications.
1-4

 In the last decades, significant progress has been made in understanding the 

behavior of PE systems.
5
 Meanwhile, many questions related to the self-assembly of charged 

polyelectrolyte chains into various spatial structures, including the formation of polyelectrolyte 

multilayers, remain open. Progress in this field is important for the development of new 

functional materials. 

Polymer chains get charged as a result of electrostatic dissociation of ionic groups. It is 

well-known that in dilute solutions such PE chains adopt an extended conformation.
6,7

 In good 

solvents at low ionic strength (low salinity) conformations of PE chains can be described as a 

sequence of blobs,
6-8

 while in poor solvents the chains become partially collapsed forming a 

sequence of globules.
9-12 

 An increase of salt concentration screens the electrostatic interactions 

and leads to bending fluctuations of PE chains, which can be characterized by the electrostatic 

persistence length.
13

  

The tendency of counterions to occupy the maximum volume brings about an increase of 

solubility of PE chains rendering them soluble even in the case of insoluble backbones. It gives a 

number of interesting effects, including formation of microphase structures.
14

 Stabilization of 

these structures in the solutions of polyions of the same type (either cation or anion) is related to 

interplay between immiscibility of the PE chain backbone with the solvent on the one hand and 

their tendency to mix due to translational entropy of counterions on the other hand. An analysis 

of microdomain structures in weakly charged polyelectrolyte solutions in the weak segregation 

limit reveal that BCC, triangular and lamellar microdomain structures can be stable depending 
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on PE concentration, ion strength and other solution parameters.
11,15-18

 An association between 

ions and dielectric mismatch between polymer and solvent result in both the macrophase 

separation and formation of new microdomain phases characterized by ionomer-type behavior in 

the polymer-rich region.
19

 Microphases also arise in the blends of incompatible polymers, if one 

of the polymers carries a charge.
20,21

 Phase equilibria between homogeneous phase and 

microphases of different symmetry had been considered by Dobrynin and Erukhimovich
20

 using 

weak segregation theory whereas the lamellar phase had been analyzed by Nyrkova, Khokhlov 

and Doi
21

 both in strong and intermediate regimes by direct minimization of the free energy. 

Recently, microphase separation in salt free blends of oppositely charged polyelectrolytes with 

immiscible backbones had been studied both using the Leibler’s approach and the Brazovskii-

Fredrickson-Helfand approximation,
22

 and the strong segregation theory
 
which was verified by 

dissipative particle dynamic (DPD) simulations.
23

 It was also shown that block-copolymers 

containing polyelectrolyte blocks tend to form charged micelles.
24,25 

Complex coacervates (liquid phases where oppositely charged polymer segments are 

rather densely mixed) arise in PE solutions containing both polycations and polyanions or 

polyampholytes.
26-29

 Early approaches to study the coacervates were based on the Debye-Hückel 

theory and did not take into account the polymer specific effects.
30,31

 Further studies using 

theoretical tools like the random phase approximation (RPA),
32-35

 scaling methods
36,37

 and field-

theory approaches
38,39

 made it possible to better analyze the structure of complex coacervates 

formed by weakly charged polyelectrolytes and the conditions of their emergence. Homogeneous 

coacervate phases in composition-asymmetric solutions of polycations and polyanions had been 

analyzed 
40

 using a simple liquid-state theory based on the mean spherical approximation. The 

effect of incompatibility between oppositely charged polyelectrolytes on microphases formation 

had been studied by Castelnovo and Joanny
41

 in the weak segregation regime with a theory based 

on the one-loop approximation going beyond the standard RPA. The impact of solvent quality 
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and salt concentration for the state diagram of a symmetric coacervate had been considered by 

Rumyantsev, Zhulina and Borisov.
42

 In addition, the effects of salinity and the interaction 

parameters on the formation of macroscopic uniform and lamellar phases in blended solutions of 

polycations and polyanions have been recently examined using the RPA and scaling approaches 

.
43 

 PE multilayers (PEMs), which can also be regarded as complex coacervates, remain 

theoretically less studied, despite a large amount of experimental data on these systems.
44-52

 

Depending on the formation conditions, as well as the deposition time and the number of 

deposition steps, the thickness of the multilayers can grow exponentially or linearly. In a number 

of cases, a transition from exponential growth to linear was observed in the course of 

deposition.
45-50

 To date, the most explored simple analogs of PEMs are adsorbed PE monolayers 

formed by flexible PE chains on an oppositely charged solid surface.
53-58

 An important effect 

here is the ability of the adsorbed layer to overcharge the surface (reversing its total charge).
54,55

 

The influence of various parameters on the degree of charge reversal was studied recently in ref. 

58. Noteworthily, the effect of surface charge inversion by the adsorbed polyions was considered 

as a driving force for the multilayer growth.
59,60

 However, it was also demonstrated that strong 

short-range non-electrostatic attraction between two types of deposited polymer chains may be 

essential for the formation of multilayers.
61 

 In the present paper we consider complex coacervates formed by incompatible 

polycations and polyanions in poor solvent. We study various phase equilibria in these systems 

including symmetric and asymmetric coacervate phases with both uniform and lamellar 

structure. The dependence of the lamellar and the total multilayer thickness on the number of 

deposition steps and other parameters is considered as well.  

 

https://istina.ips.ac.ru/workers/2060930/
https://istina.ips.ac.ru/workers/2060930/
https://istina.ips.ac.ru/workers/7323858/
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2. Model and free energy 

Let us consider dilute polyelectrolyte solution containing polycations (PC), polyanions 

(PA) and small monovalent ions with absolute charge e . Each charged monomer group of 

polyion also carries absolute charge e . We assume that PC and PA are flexible chains of equal 

polymerization index 1N  and the same statistical segment length 
sa .The length 

sa  is defined 

by the Kuhn segment length 
Kl  and the length 

1l  (
1Kl l ) of the repeat monomer unit: the chain 

coil size 
coil s KR a N l L  where the contour chain length 

1L l N , hence 
1s Ka l l . The 

fraction of charged groups on the polyions is f , with 1f  and 1Nf , i.e. the polyion 

segments are weakly charged, but the chains as a whole are charged strongly.  

It is well known that solutions of polyions of opposite sign tend to form coacervate 

phases.
27

 Below we first consider a single coacervate phase of volume V  in which concentration 

of PC segments is 
Cn  and PA segments is 

An , so that C C

V

n dV  , A A

V

n dV  , where 

/ 1C N  and / 1A N  are the numbers of PC and PA chains, respectively. Short-range 

(excluded-volume) interactions between the chain segments are described in terms of the virial 

expansion for the excess free energy density
7
  

    
32 2

2 3
int A C A C A C

B C
F T n n n n n n

 
     
 

                                  (1) 

Here B absT k T  ( Bk  is Boltzmann constant, absT  is the absolute temperature), B ,   are the 

second virial coefficients and C  is the third one. For simplicity it is assumed that the virial 

coefficients B , C  are the same both for PC and PA chains. The virial expansion is valid at low 

polymer volume fraction, 
3 1p nb  , where A Cn n n   and  

1/3
2

1b l d  is the characteristic 
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monomer size ( d  is the chain thickness). Typically 5Åb , 6/ 1C b  and 3 1B b
T

 
 

 
 (  is 

 -temperature).
7
 More precisely it is assumed that the total polymer concentration n  is low 

enough, so that 2 1Cn . The parameter 0B     reflects a non-electrostatic repulsion 

between A and C segments (corresponding to a positive Flory parameter 3/AC b  , i.e., a 

tendency for their phase separation which is typical for neutral polymers): PC and PA chains are 

incompatible in the absence of charges if 0  . It is also natural to assume that backbones of the 

polyions are hydrophobic: 0B   ( T ).  

 The free energy density of the coacervate in the framework of the mean-field 

approximation is presented as a sum  

conf int id elF F F F F                                                           (2) 

The first term in eq (2) is the conformational energy of polyions, 

   
2 22

4

A C

conf

A C

n na T
F

n n

 
 

  

 
                                                (3) 

where 2 2 / 6sa a  and   is the gradient operator (nabla). The above equation is based on the 

assumption that the characteristic length-scale D  associated with the profiles 
An  and 

Cn  is much 

shorter than the coil size 
coilR a N . Here we neglected the translational entropy of the 

polyions since the chains are very long: coilR D . The second term in eq 2 is short-range 

interaction energy, see eq 1. The third term is the ideal-gas free energy of small ions, 

   ln / e ln / eidF T c c c c   
                                                   (4) 
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where c  and c  are concentrations of small monovalent cations and anions respectively (in 

particular due to added salt) and e 2.718 . We assume that volume fraction of small ions is so 

low that the excluded volume interactions between them can be neglected; ditto for interactions 

of small ions with polymer segments (whose volume fraction is low as well). The last term is the 

electrostatic energy which we present in the form 

 
21

2
el

B

F T
l


 
  

 
                                                 (5) 

Here /e T   and   is the electrostatic potential,  C Af n n c c       is the volume 

charge density, 4B Bl l  and 
2

B

e
l

T
  is the Bjerrum length (  is the dielectric constant of the 

medium). It is assumed that   does not significantly depend on the polymer concentration since 

the latter is low. Thus eq 2 is written in the form 

   
   

        

2 22
32 2

2

4 2 3

1
          ln / e ln / e

2

A C

A C A C A C

A C

C A

B

n na B C
F T n n n n n n

n n

c c c c f n n c c
l



     

  
       

   


        



 



            (6)  

Note that our approach is akin to, but is different from the mean-field theories developed in refs. 

17, 21. The total free energy of the coacervate is 
V

FdV  . Maximization of the free energy 

 with respect to   results in the Poisson-Boltzmann equation 

 B C Al f n n c c 
                                                  (7) 

The dilute bulk phase (referred to as simply bulk phase hereafter) stays in thermodynamic 

equilibrium with the coacervate phase. The free energy density of the bulk phase containing 
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small ions with concentration 
sc  of each sign is  ( ) 2 ln / eb

s sF Tc c  (the fraction of the free 

polyions in the bulk is negligibly small and is omitted). Equilibrium between the small ions in 

the bulk and in the coacervate implies equality of their chemical potentials: 

ln sT c
c









  ,             ln sT c
c









                                 (8) 

Note that   is constant (which is set to 0) in the bulk phase. Therefrom we find 

 expsc c                                                          (9a) 

and the Poisson-Boltzmann equation 7 is written in the form  

 2

1
sinh B C A

D

l f n n
r

                                                (9b) 

Here Dr  is the Debye length,  
1/2

2D B sr l c


 . 

To analyze the coacervate structure it is convenient to use the semi-grand thermodynamic 

potential         , where   and   are the numbers of small ions in the 

coacervate. Thus   depends on   and  , but also on the concentration profiles of polymer 

segments: 

   
   

     

2 22
32 2

2

4 2 3

1
                       2 cosh 1

2

A C

A C A C A C

A CV

s C A

B

n na B C
T dV n n n n n n

n n

c f n n
l


  
         

   


       




 



      (10) 

3. Homogeneous coacervate phases 
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 First we consider a homogeneous coacervate of volume V  with concentrations 

/A An V const  , /C Cn V const  . The free energy 10 in this case reads  

         
2 3

0 02 cosh 1
2 3

A C A C A C s C A

B C
TV n n B n n n n c f n n

 
              

 
  (11) 

and 
0  is defined by equation  2

0sinh D B C Ar l f n n    coming from eq 9b where 0  .  

After introduction of a new variable C Am n n   ( n m ) and using the Debye-Hückel 

approximation, 1 , eq 11 is written in a simple form  

   2 3 21 1

4 3 4
es

C
TV B n n B m 

 
       

 
                        (12) 

Here 2 2 22 /es D B sB r l f f c   is the electrostatic excluded volume. Next, let us introduce an 

asymmetry parameter C A

C A

m
p

n


 


. The Debye-Hückel (DH) approximation for the 

electric potential requires that sfm c , i.e. p sfp  , where 3

s sc b   is roughly the salt 

volume fraction. Another condition of validity of the DH-approximation reads:
7
 / 1B Dl r  

leading to  3 21/ 8 10s u    (here /Bu l b  is the standard Coulomb interaction parameter; 

with 7ÅBl , 5Åb  we get 1u ).  

 It is assumed that most of the total volume is occupied by the dilute bulk phase, where 

polymer concentration 0n  (in the case of long polymers, N  , considered here) and 

hence the osmotic pressure is zero. Below we identify the regions in the ( , )B   plane where one 

or several condensed phases are possible. By condensed phase we mean symmetric ( 0p  ) or 

asymmetric ( 0 1p  ) coacervate phases or pure phases of a single collapsed polyelectrolyte 
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(A or C, 1p  ). For our multi-component system (PA + PC + small ions + solvent) the study of 

phase equilibrium can be based on the analysis of /( )F TVn   considered as a function of p . 

Note that F  is proportional to the excess free energy per monomer (polymer segment) due to 

condensation of the added polyelectrolyte, and p  shows the gross composition depending on the 

total numbers of cation and anion chains in all the condensed phases. The phase equilibria in this 

system can be analyzed based on ( )F p  using the common tangent construction in analogy with 

single-component systems (whose free energy density is analogous to F , and concentration or 

density – to p ). In particular, 
2

2
0

F

p





 signals an emergence of a phase separation region (that 

is, multiple coexisting condensed phases). Using eq 12 and the condition of zero osmotic 

pressure, 0p
V


   


, we get (for a single homogeneous condensed phase) 

        
2

2 2 21 3

3 64
F Cn A p

C
      ,              23

8
n A p

C
                   (13) 

where es esB B B       ,   /A B    . The above equations are valid for 

2 0B p    , that is  2 0A p   . Otherwise (if the latter condition is not respected) a 

homogeneous condensed phase cannot be formed. 

 Using eq 13 we identify 5 regions in the ( , )B   diagram (Fig.1a). In region I 

( ,  / 2)esB B B   no condensed phase is possible (since  2A p   is negative for any p ), so 

the polyelectrolytes must be completely dissolved in the large-volume dilute bulk phase. This 

region consists of 2 subregions: Ia ( 0  , 1A  ) and Ib ( 0  , 0A ). The next region II 

,  / 2es esB B B B    (or, alternatively 0  , 1A ) corresponds to coexistence of 2 pure 

condensed polyelectrolyte phases: pure PC ( 1p  ) and pure PA ( 1p   ), both of concentration 
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 
3

2
8

II esn n B B
C

                                                         (14) 

 The coacervate condensed phases (symmetric or asymmetric) can be formed in the other 

3 regions (III, IV, V). A single mixed condensed PE phase is stable in the region III 

( / 2)esB B    if the global p  is such that *p p , where 

 * 1
2 4 3

3
p A   ,    *0 1/ 3p                                            (15) 

(Note that region III corresponds to 0 1A  , 0  ). A more asymmetric coacervate with 

*p p  cannot stay in equilibrium with the dilute bulk (so any excess PC or PA must be 

dissolved in the bulk volume). Note that in this case the coacervate phase volume is defined by 

the amount of the minor PE segments,  min ,A CM  : 

      */ 2 / (1 6 / / 1 4 3V M n p M n A      with  3 2 4 3 / (6 )n A A C     . 

Region IV (2 1.5 ,  / 2)es esB B B B    corresponds to 1 3A  , 0  . Depending on 

the global composition p , either a single condensed phase is formed in this region (if cp p ) 

or otherwise (for cp p ) it separates in 2 phases: a coacervate with cp p  and a pure PE 

phase (A or C) with 1p  . Here 

 1
6 2 1

3
cp A                                                    (16) 

Finally, a single coacervate phase is always formed in region V (2 1.5 ,  )es esB B B B      

where 3A  , 0  . 
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Figure 1. (a) Diagram of stable homogeneous phases in ( , )B   plane diagram for arbitrary 

composition of PE solution. (b) diagram of stable homogeneous phases in the symmetric case 

(p=0). In the latter case all PE chains are condensed forming a common coacervate phase in the 

regions III, IV and V which are shown in part (b) as a unified region III
*
. The shaded area in this 

region corresponds to soluble individual polyions 2 esB B  with incompatible backbones 

( 0  ).  

 

Figure 1b concerns the symmetric case, p=0. Here the coacervate phases are formed in the region 

III*; their density is defined in eq 25.  

The thermodynamic and kinetic stability of all the coacervate phases considered above is 

ensured by high energy barriers which polyions have to overcome in order to enter the bulk 

solution (by kinetic stability here we mean that coacervate phases remain condensed and stable 

for a long time even in non-equilibrium conditions, in the absence of PEs in the surrounding bulk 

solution). The barrier height is defined by the chain chemical potential and is given by  
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   
1

3 4
8

A es

A

U N TNn B p p B
n V

 
  

       
  

                     (17a) 

   
1

3 4
8

C es

C

U N TNn B p p B
n V

 
  

       
  

                    (17b) 

For example when 0p   ( C A ) both barriers are high if 

  3 4 0esB p p B       which is equivalent to 

 3 4 0A p p                                                      (18) 

Note, that we consider the case 1N  and the regimes III, IV, V where esB  , B  , i.e. 

0  , 0A  . Therefore A CU U  for 0p  . The condition (18) means that either *p p  or 

*4 / 3p p   if 4 / 3A . In the opposite case, 4 / 3A  (i.e.   4 / 3 esB B    ) the 

condition 18 is valid for any p (with 0  , 0A  ). 

 In the above analysis, we omitted the electrostatic fluctuation correction to the free 

energy. This energy is related to fluctuations of polymer charge density p . Using the relevant 

order parameter C Am n n   (the fluctuation p f m  ) the free energy increment due to m  

is 

 

3
2

3
( )

2 2

TV d
m 


  q

q
q                                               (19a) 

where mq  is the Fourier transform of  m r  with wave vector q  and  

22 2

2 2
( )

2 2

B

D

f lq a

n r q





  


q                                              (19b) 
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Here q  q , the 1st term comes from eq 3, the 2nd term corresponds to the second ( A Cn n ) term 

in eq 11, and the last term reflects electrostatic interactions screened by the salt. Employing the 

standard technique of parameter variation (of the Bjerrum length in the present case) based on 

the Landau’s theorem on small increments,
62

 we get the correlation free energy (cp. ref. 37): 

 

3

3

( )
ln

2 ( )2
corr

ref

TV d 



 
 
 
 


q q

q
                                              (20) 

where ( )ref q  is ( ) q  for the reference system with switched off electrostatic interactions, 

0Bl  .  

 To simplify the problem let us assume 

1/2
2

2
1D esr nB

X
a

 
  
 

 and set 0   (the effect of   

is not important as long as esB  ). Then we get from eq 20  

 

3 2

3 2 2

1
ln 1

2 12
corr

D

TV d X

r

 
 

 


Q

Q Q
                                           (21) 

where DrQ q . It leads to  

     
3/23/23 3 2 3/ ( / ) ~ / / /corr D es s s sTV X r nB a f n c a                           (22) 

Comparing eq 22 with the main mean-field term   3/ TV Cn  (cf. eq 13) and assuming that 

esB Cn  we observe that  
3/2

2 3/corr Cn a  and it can be neglected if  

1/2 3/ 1sC a                                                               (23) 
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which is the standard condition of the mean-field theory validity in polymer physics.
7
 Lifting the 

assumption esB Cn  and using the inequalities 1X   and corr   we arrive at an additional 

(sufficient) condition of negligible corr : 

3/2 2/3 1/2/ Bf an C l                                                     (24) 

which is virtually equivalent to 3/2 2/3

pf C , where 6/C C b . A simple analysis shows that if 

the basic condition (23) is valid, the condition (24) is always satisfied apart from a narrow zone 

near the boundary of region III with the dissolved phase I (cf. Fig. 1a) where the total 

concentration n  gets very small. Note also that eq. (24) can be written as *n n  , where 

 
2/3* 1/3 4/9/ s Bn f a l C  is the typical coacervate concentration in a salt-free theta-solvent.

35
  

 

4. Stability analysis of the symmetric homogeneous phase 

 In this part we consider stability of the symmetric coacervate phase ( 0p  ) with respect 

to microphase separation between PC and PA leading to a lamellar structure. The relevant phase 

is labeled III
*
 in the diagram of PE solution with symmetric composition shown in Figure 1b. It 

is assumed that lamellar layers are oriented perpendicular to the z-axis. To begin with we 

consider the coacervate stability with respect to small fluctuations assuming that m n  and 

n n n  where  

 
3

8
n B

C
                                                    (25)  
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is concentration of the uniform symmetric phase. The free energy of the coacervate is presented 

in the form 

  2 3

1 2

1

4 3V

C
T B n n dV

 
       

 
                                  (26a) 

where  

 
22

2 2

1 2 2

1 1
2 cosh 1

4 42

z
s z

BV

nma
T c fm m dV

n m l


 
        

 
         (26b) 

22

2 2 2

2

4

z z z

V

nn mn ma
T dV

n m

  
 

                                                (26c) 

and z

dn
n

dz
  , z

dm
m

dz
  , z

d

dz


  . Further, we assume a harmonic perturbation leading to 

inhomogeneous profiles  n n z ,  m m z  in eqs 26a-c  

 cosmm n qz ,          1 cosnn n qz                                (27) 

where we took into account that due to symmetry (with respect to reflection z z ) the phase 

shift between the polycation and polyanion phases is 0 or π. After substitution of ( )m m z , eq 

27, in eq 9b and using expansion 3sinh / 6   one gets  

 
   

3

2 2 2 2 2 2 2 2

3cos cos 31 1
( ) cos

2 1 64 1 1 1 9

m m

D D D D

qz qz
z qz

q r q r q r q r

    
    

      
           (28) 

Here we have introduced a new parameter / snf c  : it is assumed that 1m  (cf. the 

discussion of the DH-approximation below eq 12). Substitution of eqs 27, 28 in the formulas 
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26a-c (we put 2 4cosh 1 / 2 / 24   ) followed by an expansion of the free energy   

with respect to , 1n m   and integration yield  

 
 

2 22 2 2
2 2 2

2 2

3 42 2
4 4 2 2

4
2 2

3 4 2 8 1

5
          6

32 512 1

n m es

D

m
m n m n

D

nBCn a q
n C a q n

TVn q r

fa q

q r

 


 
   

  
        

   

   


                  (29) 

Obviously, the minimum of the free energy 29 is attained at 0n  . Further minimization of the 

second-order term 2

m  with respect to wave-number q  shows that the homogeneous phase gets 

unstable if esB B    .This instability leads to a macroscopic phase separation (in 2 PE 

phases) beyond the spinodal point esB   (i.e. at esB  ) if 1X  , where 

2
2

2

D esr nB
X

a
                                                                 (30a) 

Note that 

* /s sX c c ,   

1/2 1/2

*

28 8

p

s

B

f n f
c

a l ab u



 

   
    

  
                                 (30b) 

Note also that earlier studies of PE complexation and microphase separation used the inverse 

parameter 1 */s ss X c c  .
14,15,32,33,41

  

If 1X   (that is, for *

s sc c ), the instability occurs as a microphase separation with the critical 

wave-number * 0q q  , 

* 1Dq r X                                                    (31) 
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The period of the lamellar structure at the spinodal is *2 / q  . In order to locate this 

transition (for 1X  ), the free energy, eq 29, was written for 0n   and *q q :  

 
2 2 2 42

2 3 2

2 2 3

5
2 1 1

3 8 32 16

m m

D es D

a aCn
X X X X

TVn r B r X

 


   
          

  
       (32) 

The lamellar phase formation occurs as the second order phase transition if the quartic term is 

positive, i.e., if 

 3 25
1

16
X X                                                           (33) 

In this case 1X   and the transition occurs at *  , 

2

*

2

2 1 1
1 1es es

X
B B

X X


   
        

                                        (34) 

The lamellar phase is stable beyond this critical point, i.e., for *  . The last condition boils 

down to  *2 /AC s sconst c c     in agreement with results of ref. 17.  

Slightly below the critical point the free energy 32 reads 

 
2

* *2

3 16

L
m

Cn n

TVn
  


   ,       

 

5 *
*2

3 2

2

5
1

16

m

es

X

B
X X

 







 

                 (35) 

Let us consider the regime of low enough salinity, 1X . Assuming besides that 2 2/ 1Dr f a  

(which means that the Debye length is larger than the typical distance between neighboring 

charged groups along the chain) we get a simplified expression for the amplitude: 
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 *

*
2

m

es

X

B

 



,          * 2

esB
X

                                        (36) 

leading to 

2
2 2

3 8

esL

es

nB XCn

TVn B X

 
   

 
                                      (37) 

The instability considered above results in formation of a weak lamellar structure. By 

changing parameters (like  ) it can evolve into a strongly modulated coacervate phase (with 

m n ). In the next section we analyze such structures formed in region III
*
. It is shown there 

that lamellar phases with strong segregation between PC and PA domains can also emerge in 

region II.  

 

5. Lamellar structures with well-defined domains 

 Now we go beyond the perturbation scheme and consider lamellar structures with 

inhomogeneous composition, but uniform total concentration, i.e. n const  and 2 0  . Below 

we focus on the regime  

 / 1snf c                                                         (38) 

The latter condition is necessary for validity of the DH-approximation as long as m n . Note 

that 
2/ 2 BX l a n  , so the condition 1  for 1X  is equivalent to 2 1Bl a n  which is 

consistent with the condition of validity for the virial expansion, 1p , since 2 3

B pl a n b n  . 

Using non-dimensional variables 
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/ Dx z r ,      /y m n ,      2/ D Bfr l n                             (39) 

the free energy, eq 26a-c, at 1  is written as  

   
/2 22

2 2 2 2

2 2

/2

1 1
2

4 3 4 1

            

x
es x

D

yC a
TVn B n n nB y n y dx

r y
 





  
             

    
     (40) 

where x

dy
y

dx
  , 

x

d

dx


  , / Dr    and   is the period of the lamellar structure. Equation 9b 

can be rewritten in a simple form 

xx y                                                        (41) 

where 
2

2xx

d

dx


  .  

The theory can be simplified in the regime of strong segregation when the interfacial 

layer thickness i  between polyanion and polycation domains is much smaller than the period of 

the lamellar structure,  , i  . In this case we can use the strong segregation approximation: 

the free energy, eq 40, can be presented as a sum of the short range interaction energy int  inside 

domains, the interfacial energy between domains inf  and the long-range electrostatic energy 

es : 

int inf es                                                         (42) 

The interaction energy is given by  
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2 3

int
2 3

B C
TV n n

 
   

 
                                                 (43)  

The interfacial energy can be presented as  

 
22

2

inf 2 2
1

2 1

x

D

yn a
TV n y dx

r y






 
  

  
                                    (44)  

In the last formula the boundary conditions reflecting strong segregation between the domains 

are assumed: ( ) 1y    and ( ) 1y    . Minimization of eq 44 yields the profile 

 ( ) tanh /D iy x r x                                                          (45a) 

where the interfacial layer thickness is  

/i a n                                                        (45b) 

Therefrom we get (for i  ) 

3/2

inf 2
D

an
TV

r




                                                  (46) 

The corresponding interfacial tension is 2

i iTn  . 

Finally, the electrostatic energy within the DH-approximation is written as 

 
/42

2 2

es

/4

2
2

es
x

B n
TV y dx





  
                                    (47)  

The long-range character of electrostatic interactions allows to use a step-like profile (since 

i Dr , i  ): 
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1,   / 4 0
( )

1,   0 / 4

x
y x

x

   
 

   

                                          (48) 

This function is defined for a half period of the lamellar structure with the interface located at 

0z  . ( )y x  is extended to the whole range x   using reflection symmetry at / 4x   . 

The continuous potential ( )x  is defined by eq 41 using additional conditions 

( / 4) ( / 4)     , ( / 4) ( / 4) 0x x
      . Thus we get: 

/2

/2

/2

/2

1 ,   / 4 0
1

( )

1 ,   0 / 4
1

x x

x x

e e
x

e
x

e e
x

e

 



 



 
   


 
    



                                (49a) 

The maximum potential value is * 22sinh ( / 8) / cosh( / 4)     and the electric field strength at 

the interface is (0) tanh( / 4)x
   . Substitution of eq 49a in eq 47 yields  

2

es

4
1 tanh

4 4

esB n
TV

  
       

                                        (50) 

The total free energy then becomes 

21
tanh

2 2 3 4

es esB B nC
B n n

TVn

    

              

                      (51a) 

where 

2 2 2

es esD es

a

B X Br B n

  



                                         (51b) 
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It is obvious that for 1   the minimum of this free energy is attained at    corresponding 

to a uniform macro-phase. By contrast, a lamellar structure is stable for 1  . Minimization of 

the free energy, eq 51a, with respect to   gives the following equation for the period of the 

lamellar structure 

 2
tanh 0

4 4cosh / 4


  
   

 
                                           (52)    

The transition from a finite to infinite period   for a mixture of weakly charged and neutral 

polymers was predicted and discussed in ref. 21. The total polymer concentration in the lamellar 

phase can be found by minimization of   with respect to n  at nV const  (this condition is 

equivalent to setting osmotic pressure 2n
n nV

  
   

  
 to zero): 

0
n nV

  
 

  
                                                           (53) 

After substitution of the free energy eq 51a in eq 53 and using eq 52 one gets 

23
1 tanh

4 2 4

es
L

BB
n n

C B

  
    

  

                                          (54)    

The total free energy, eq 51a, can be written in terms of Ln : 

2 2 21
tanh

2 2 4 3 3

es
L

B C C
B n n n

TVn

   
        

  

                              (55) 

The lamellar phase is stable if the free energy 55 is smaller than the free energy of the 

isotropic phases in the regions II or III
*
. This criterion can be reformulated in terms of polymer 
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concentration since in all the cases the free energy is   2/ / 3TVn Cn   . Hence the phase 

with higher polymer concentration is always more stable. Obviously, 
3

1
4 2

es
L II

BB
n n

C B

 
   

 
 (cf. 

eq 14), therefore it seems that the lamellar phase is always more favorable thermodynamically in 

the region II provided that 1  . Recalling that this regime implies that esB  (cf. Figure 1), 

we arrive at the following subregion IIL of lamellar structure stability: 

2

1
4es

X

B


                                                               (56) 

Some clarifications are required at this point: (i) The above criterion applies to the strongly 

segregated structures only. (ii) It must be supplemented by the conditions of validity of the 

narrow interface approximation adopted here: 

D ir  ,         i                                                (57) 

From eqs 45b, 51b we get 

1

2

i es es

D

B B

r X



 


                                                 (58) 

The condition 
1

1i es

D

B

r X 


  together with 

2
1

esX B


    implies that 2 1X . By virtue 

of eq 52 the latter condition also insures that i  . Therefore, the condition 1X  must be 

added to the conditions 56. 

In the general case of any positive ratio / esB  (including the regime III
*
) the condition 

i   is satisfied if /esB X . It is easy to show (using eq 55) that the latter condition 
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(together with 1X ) is sufficient to stabilize the lamellar phase in region III
*
. Therefore, the 

whole region of the strongly segregated lamellar structure is defined by conditions  

21/ / / 4esX B X  ,            1X                                                (59) 

The period of the lamellar structure and the polymer concentration can be found 

analytically in the limiting cases of small and large  . First we assume that 1  ( 1 ). 

From eqs 52, 54 we get:  

 
1/31/3 1/6
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2/3 1/6
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l f n






  
   

   
                                      (60)   

     
2/33

1 1.5
4 2

es
L

BB
n n

C B


 
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 
                                                (61) 

Note that the period is independent of salinity sc  and scales as 1/6 2/3a f   in agreement with 

the previous finding.
23

 The stability condition 59 together with 1  are equivalent to 

21/ / / 4esX B X , 1X . The free energy of the lamellar phase in this case reads 

2
22 33 3

3 4 64

es es

es es

nB BCn

TVn B X C B X

    
       

   
                              (62) 

 Another limiting case corresponds to 1  (1 1 ). Equations 52, 54 now produce 

the following results 

1
2 ln

1
Dr



 
  

 
,             

3
1 4 3
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es
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n n

C B


 
   

 
                         (63)   

Stabilization of the long-period lamellar phase occurs near the boundary 2/ / 4esB X  , 1X .  
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In order for the strongly-segregated lamellar phase to be stable, it is necessary to fulfill 

the conditions 1X , 1 , 1  . They lead to 

 
1/2

2 2D B

a
r l n

f



                                                  (64a) 

 
1

2 2D Br l fn


                                                    (64b) 

3

22
D

B

a
r

nl f


                                                     (64c) 

These conditions are compatible if 

1Ba l n                                                            (65a) 

2 2

Bf l a n                                                        (65b) 

Note that lamellar structures emerge in solution of soluble polyelectrolytes if an additional 

condition 2esB B  is satisfied implying that 2

p f  . The latter condition with 1  ensures 

validity of condition 65b. 

 

6. General conditions for the lamellar phase stability 

As shown above, the strongly segregated lamellar structures are stable for 1X . It is 

also clear that a domain structure cannot possibly be favorable for 0X   since electrostatic 

contribution is totally suppressed in this limit ( 0Dr  ). Therefore there must be a minimal 

cX X  compatible with lamellar phase stability. It is evaluated below. 
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Note that the condition 1X  comes, in particular, from the requirement of long-range 

electrostatics, D ir  , since X  is proportional to 2

Dr :  2 / 2D BX r f a l n . Below we show 

that an opposite regime (allowing for a lower X ), D ir  , is relevant in regime II close to its 

boundary with regime III
*
. In this case the electrostatic interactions are relatively short-range and 

mainly lead to a renormalization of the second virial coefficients providing a term 2

esB m  in the 

free energy density (cf. eq 12). It is important, however, to include the gradient correction to this 

term coming from the q-dependence of esB : 

 * 2 2

2 2
1

1

es
es es es D

D

B
B B B q r

q r
  


,       1Dqr                                 (66) 

Taking this correction into account leads to the following expression for the electrostatic free 

energy (assuming as before that the total concentration n is uniform): 

  2 2 2 2/ 4es es D z
V

T B n y r y dV                                         (67) 

The same result can be obtained directly from eqs 47, 41 for a smooth charge density profile 

with characteristic length-scale Dr . The total interfacial tension between 2 homogeneous 

macro-phases with 1y   therefore is (cf. eqs. (44), (67), (12)): 

  
 

2 22 2
2 2 2

inf ( ) 2
min 1

4 44 1

es D
y z es z z

B n rn na
dz B y y y

y
 





  
     

  
                (68) 

Let us first suppress the last term in curly brackets. In this case the result is 

 0 0( ) tanh / iy z z  ,   
 

0i

es

a

n B
 


                                    (69a) 
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and 

 
1/23/2

inf 0 esTan B                                                            (69b) 

This tension is positive if esB  . Can the full inf  (including the last negative term) become 

negative? The answer is certainly yes if es esB B  . The simplest case is esB  : then only the 

gradient terms are present in eq 68. For 2 2 2

es Dna B n r , i.e. 1X  , the integrand there is 

necessarily positive, hence inf 0   again. However, as soon as X exceeds 1 minimization in eq 

68 always leads to inf 0  . The condition 1Dqr  is not a problem since for / 1esB   the r.h.s. 

of eq 68 does not change sign (remains negative) for however smooth profile ( )y z . Similarly, 

inf  remains negative also for / 1esB   , 1  if 1X   , with some 1 . 

Negative inf  means that interfaces are favorable, so a domain (lamellar) structure with 

period i   must be more favorable than 2 coexisting macro-phases (a similar idea was 

proposed in ref. 21). Hence we arrive at 1cX   and predict that lamellar structures are stable in a 

part of region II, for 

 *1 / esB r X  ,            1X                                                 (70) 

where  * 1 1r  . This conclusion is in agreement with eq 56 which is valid for 1X . It shows 

that  

 * 2 / 4r X X ,    1X                                                    (71a) 

Combining the above results we propose the following extrapolation: 
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 * 21 ( 1) / 4r X X   ,    1X                                              (71b) 

What about the single-phase region III
*
 where esB  . The analysis of section 4 shows 

that a lamellar structure is expected for (cf. eq 34): 

2

2 1
/ 1es

X
B

X



  ,            1X                                                 (72) 

As before we assume that 1  (cf. eq 38); note that eq 33 with 1   is virtually equivalent to 

1X  . The above inequalities are obviously in harmony with eq 59 which is valid in the regime 

of strong segregation. 

Remarkably we thus arrived at the same condition of a lamellar phase stability ( 1X   for 

/ 1esB   ) using 2 entirely different approaches: in one case (cf. eq 31-34) a nearly uniform 

phase with a weak harmonic composition profile was considered at / 1esB  . By contrast, in the 

current section we considered a strongly segregated domain structure with maximum 

composition contrast between the domains (from 1p   to 1p   ) and thin interfaces ( i  ) 

for / esB  slightly exceeding 1. It is therefore reasonable to expect that the nature of lamellar 

structure changes from weak to strong as the ratio / esB  increases from / 1esB   (regime III
*
) 

to / 1esB   (regime II) at 1X  . 

The schematic phase diagram in coordinates X, / esr B  is shown in Figure 2 for 

2B  . It includes regions of 1 uniform phase ( 1r  , 1X   and 
2

2 1X
r

X


 , 1X  ), of 2 

coexisting uniform phases ( 1r  , 1X   and  *r r X , 1X  ), and of lamellar phase 

(  *

2

2 1X
r X r

X


  , 1X  ). The critical (Lifshitz) point is located at 1r  , 1X  . This 
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prediction is in agreement with the earlier results on microphase separation in PEs
14,15,41,43

 

revealing a Lifshitz point located at 1/ 1s X  . 

 

 

Figure 2. Phase diagram in coordinates (X, / esr B ). The dashed line is obtained from the eq 

(71b). Filled circles are from numerical calculations, see section 7. The solid line passed through 

the circles is the boundary between the 2 phase region II and Lam phase. The solid line between 

the 1 phase region III
*
 and Lam phase is obtained from the eq 34. 

 

Note that a qualitatively similar phase diagram has been proposed in ref. 43 based on the 

weak segregation approximation (which was implied by their RPA approach). The theory of ref. 

43 thus yields the same equation esB   for the boundaries II/III
*
 and II/Lam. Our study shows, 

however, that the RPA approximation is never applicable near the boundary Lam/II between 

microphase separated coacervate (Lam) and the two-macrophase region (II), apart from the 

Lifshitz point. As demonstrated in section 5 the microdomain structure near the Lam/II boundary 
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is strongly segregated. Our quantitative theory (see section 7) is more general and is valid for 

both weak and strong segregation regimes. It shows that the Lam/II boundary is located strongly 

above the line esB   in low-salt conditions, 1X  (cf. Figure 2). It may be also worth 

mentioning that the phase diagram of Figure 2 is universal for the virial model we consider. 

 

7. Numerical analysis of the lamellar structure 

Minimization of the free energy (40) with respect to ( )y x  yields 

 

2
2

22
21 1

xx x

es

y yy
X y

y By

  
   

  
                                           (73) 

Here 
2

2xx

d y
y

dx
  . Integration of eqs 41, 73 results in the following conservation law 

2
2 2 2 2 2

2
2

1

x
x

es

y
X y y X I const

y B

 
        

  
                          (74a) 

where 2X I  is integration constant. The constant I  can be expressed through the maximum 

values *  and *y  of the periodic functions ( )x  and ( )y x  (note, by symmetry these values are 

attained in the middle of the domains where 0x
  , 0xy  ): 

* * *2 *22
es

I y y
B


                                                     (74b) 

The free energy 40 after using eq 74a is written as  

  21 1

4 3 2
es

C
B n n nB J

TVn



     ,                                      (75a) 
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/2

2 2

/2

1
2

2es

I
J y y dx

B






 
    
  
                                      (75b) 

The lamellar structure profile and the period for a given polymer concentration n  is 

found from numerical solution of equations 41 and 73 treating *y  and *  as fitting parameters. 

To do this, we set the value of *y  and numerically solve the system of eqs 41, 73 by choosing 

the desired value of * to get half-period of the lamellar structure with knots ( 0y   and 0  ) 

at the same point x. Further, the function *( )J y  is found for the obtained profiles using eq 75b. 

Since *  enters eqs 74a,b quadratically, one value of *y  in the general case may correspond to 

two different values of * . Therefore, two different profiles ( )x  and ( )y x  may exist for a 

given *y , so that the function *( )J y  can have two branches (with two values of *( )J y  

corresponding to the same *y ). The optimum lamellar structure is obtained by minimization of 

*( )J y  with respect to the amplitude *y . The dependence of *( )J y  on the amplitude *y  for 

1.5X  , /  0.95; 1.0esB   and 2X  , / 0.9;  1.0esB   are shown in Figure 3a,b and the 

optimum lamellar structures corresponding to the minimum of *( )J y  are shown in Figure 4a,b 

and Figure 5a,b.  
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Figure 3. Dependence of the parameter J  on the amplitude *y . (a): 1.5X  , curve (1) 

corresponds to / 0.95esB   and curve (2) - / 1esB  , (b): 2X  , curve (1) corresponds to 

/ 0.9esB  , curve (2) - / 1esB  . 

 

Figure 4. Profiles of the lamellar structure ( )y x  and electric potential ( )x  at 1.5X   and (a) 

/ 0.95esB   ( 10.5  , 
min 0.0039J   ), (b) / 1esB   ( 11.5  , 

min 0.012J   ). 
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Figure 5. Profiles of the lamellar structure ( )y x  and electric potential ( )x  at 2X   and (a) 

/ 0.9esB   ( 7  , 
min 0.018J   ), (b) / 1esB   ( 8  , 

min 0.043J   ).  

 

With increasing / esB , the composition inhomogeneity of the lamellar phase also increases. The 

boundary  *r X  between the lamellar phase (region “Lam” in Figure 2) and 2 homogeneous 

phases (region II) is defined by the condition that their free energies per particle, 
TVn


, are equal. 

On using eq 75a and eq 12 with m n  the latter condition converts to 2 1
es

J
B


  .  

The polymer concentration n  can be obtained using the condition of zero osmotic 

pressure, 0   (cf. eq 53). Substitution of the free energy 75a,b in eq 53 yields  

 
3

2
8

esn B JB
C

                                                          (76)  

(The derivative in eq 53 is taken at constant profiles ( )y x , ( )x , hence J const  as well.) 

Thermodynamic stability of the lamellar phase implies that its concentration n , eq 76, is higher 

than concentrations of the homogeneous phases n  and IIn  (cf. eqs 14, 25). These criteria lead to 

the conditions 0J   and 2 1
es

J
B


  , coming from competition with homogeneous coacervate 

phase and pure PE phases,  respectively. The general conditions of lamellar structure stability 

therefore read 

                                         2 min 0,  1
es

J
B

 
  

 
                                                        (77) 
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 The thermodynamic transition line,  *r X , between the lamellar (Lam) phase and the 

two-phase region (II) was obtained using the criterion inf 0   following the ideas described in 

section 6. Here inf  is the interfacial tension between two homogeneous PE phases coexisting in 

region II. The tension is defined in eq 68, which can be transformed (using eqs 74a,b) to 

2

inf es DTn B r                                                        (78a) 

where 

2 21
( 1)(1 ) ( )

2
r y y dx





                                              (78b) 

The functions ( )y x  and ( )x were found by solving eqs 41 and 74 with boundary conditions 

1y    at x   and 1y     at x   , leading to 

1 ,      / esI r r B                                                    (79) 

The asymptotics of   for high/low X  (obtained using the theory of sections 5,6) are 

/ 1/ 2,      1

1 / ,           1

r X X

r X X

 
 



                                             (80) 

The obtained results, which are shown in Figure 2, are in agreement with the low-salt asymptotic 

behavior given in eq 71a. Note that the first line in eq. (80) gives 

3/2 2

inf 0.5 es DTan Tn B r                                                        (80a) 

where the first term is due to interactions of neutral polymer segments, while the second term 

comes from electrostatic interactions. The electrostatic term and the general structure of inf  in 
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the strong segregation regime had been considered in ref. 21. It is also worth noting that we 

demonstrated here (both analytically and numerically) that the interfacial thickness inf  remains 

finite at the transition line, where inf 0  : 

 
inf

es

a

n B



                                                    (80b) 

The above equation is valid for any esB  , and, in particular, both in the weak segregation 

regime (where inf Dr ) and for strong segregation (where inf Dr ). 

 

8. Adsorbed multilayer  

 In this section we study formation of polyelectrolyte multilayer on a charged surface 

upon the layer-by-layer deposition process. This process involves alternating contact of the 

surface multilayer with bulk solution containing soluble polyions carrying a charge opposite to 

the charge of the chains used in the previous stage of the multilayer formation. After a sufficient 

deposition time some part of the chains penetrate inside the multilayer. Any non-adsorbed chains 

are then removed by washing with clear water solution.  

 When forming a layer, two scenarios can be distinguished. The first scenario is realized 

for compatible soluble polyions (cf. the filled triangle area in Figure 1b defined by conditions 

B B    and 2esB B ). The second case corresponds to soluble polyions forming lamellar 

structures, implying that 1X  , cf. Figure 2. Below we focus on the first case when the 

multilayer has a nearly homogeneous structure. Let us consider a negatively charged surface 

with charge density e  and assume that during the deposition time the incoming from the outer 
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solution chains can diffuse through the whole multilayer and thus can establish thermodynamic 

equilibrium between the multilayer and the bulk solution (as long as the oppositely charged 

polyions remain trapped in the layer, cf. eq. 85 below). Let kL  be the layer thickness after k  

deposition steps. We consider the regime of sufficiently thick layer, kL  , where 

 max ,D ir    is the characteristic correlation length defining the thickness of the proximal 

sublayer, where the charge density is inhomogeneous due to the adsorbing surface effect ( i  is 

defined in eq 45b). 

Generally the equilibrium composition of the adsorbed layer depends on the chemical 

potentials *  of bulk polyions and the bulk osmotic pressure. We assume that concentration bn  

of polyions in the bulk is very small (dilute solution regime), so that the bulk osmotic pressure is 

mainly defined by the ideal gas term and is negligible, / 0b bTn N  . The chemical potential 

of polymer segments is  * / ln bT N n . Equilibrium concentration of polymer segments inside 

a thick adsorbed layer far away from the surface and the free interface can be found using eq 13 

as explained below.  

Suppose that the bulk contains polycations. The amount of polyanions inside the layer is 

fixed and defined in the previous stage of the deposition process. The chemical potentials of 

polycations C  and polyanions A  in the layer can be found using the free energy, eq 12, 

supplemented with the ideal-gas contribution: 

   21 1
/ ln

2 2
C C es

p
T n B n Cn B n

N
                                (81a) 

   21 1
/ ln

2 2
A A es

p
T n B n Cn B n

N
                                (81b) 
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where 

1
(1 )

2
Cn n p  ,     

1
(1 )

2
An n p                                         (82) 

are the concentrations of polycation and polyanion segments, respectively. 

Based on the chemical potential balance, *

C  , eqs 81a and 13 we arrive at the 

following equations defining the total concentration in the adsorbed layer, n , and the 

composition parameter p :  

   21 (1 ) 1
ln 0

2 2 2
es

b

n p p
B n Cn B n

N n
 


                              (83a) 

 23

8
esn B p B

C
                                                 (83b) 

For 1N  the ideal-gas log-term in eq 83a can be neglected, and so we get: 

 * 2
1 1 3 / 4

3
p p A     (note that this result for *p  coincides with eq 15). Polymer 

concentration inside the layer is defined by eq 80b with *p p :  

   * *2 *3

8 2
n n A p A p

C C

 
                                                       (84) 

The chemical potential of PA segments is (cf. eq 81b) * * *

A Tn p   , so the potential barrier 

holding the PA chains in the layer is * * *

AU TNn p  . Therefore, their desorption can be 

neglected if 

 * * */ 1A esU T Nn p B                                                 (85) 
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which is true for sufficiently long chains,  
1

* *

esN n p B 


   . 

 At the next deposition step of the layer-by-layer adsorption the bulk should contain 

polyanions, so the picture becomes mirrored: the concentrations of polycations and polyanions 

after this step are defined by eq 82 with *p p  . The new layer thickness, 1kL  , is now defined 

by the condition that the total amount of polycations in the layer does not change, while their 

concentration changes from *1
(1 )

2
Cn n p   to *1

(1 )
2

Cn n p  . These conditions lead to  

* *

1

1 1
(1 ) (1 )

2 2
k kn p L n p L      or     

*

1 *

1

1
k k

p
L L

p






                       (86a) 

Therefrom we arrive at the exponential growth of the layer thickness 

*

*

1
ln

1

0

p
k

p

kL L e

 
                                                      (86b) 

Here 0L  is the initial layer thickness. Note that Eq. (86a) agrees with the empirical eq 1 of ref. 

45. 

  

9. Discussion and Conclusions 

Discussion  

In the present paper we aimed at considering the most general and universal features of 

phase equilibria and other phenomena (like layer-by-layer adsorption) in solutions of oppositely 

charged PEs. For this reason we focused on the structural properties whose characteristic length-

scales (the surface and interfacial layer thickness i , cf. eq. 45b, the Debye screening length Dr , 
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the period   of microdomain structure) which are much longer than the microscopic length-

scales related to small ion or monomer sizes (the Bjerrum length Bl , the chain thickness d , its 

statistical segment sa  and Kuhn segment Kl ), but are much shorter that the polymer coil size 

coil sR a N . These conditions imply the asymptotic regime of long ( 1N ) and flexible 

chains, low polymer volume fraction, 1p , weak excluded-volume interactions of PE 

segments and weakly-charged  chains (low fraction of charged monomer units, 1f ). The 

validity of the third virial approximation for interactions of polymer segments (adopted in our 

study) is also justified by the above conditions. They also ensure that the polymer translational 

entropy has a negligible effect for the transitions between different homogeneous and 

microdomain structures (cf. Figs. 1 and 2): the translational free energy per monomer unit is 

/T N , while the relevant interactional energy is nT  (cf. eq. (12)), hence the latter 

contribution dominates if 1nN  which is equivalent to 
icoilR  . In this regime the effect of 

the translational entropy boils down to just a minor renormalization of the interaction parameter 

 . 

In addition, we assumed that PA and PC chains are geometrically similar (same chain 

lengths, monomer sizes, and virial coefficients B, C). While it is not difficult to lift these 

assumptions, we preferred to minimize the number of essential parameters involved in the 

theory.  

It is worth noting that we used a mean-field theory neglecting fluctuation corrections 

whose smallness is guaranteed by eqs. (23), (24) demanding a low third virial interaction 

constant C and low charge degree f; these requirements are in harmony with the general 

conditions described above. Our theory is based on the Edwards-Lifshitz approach
63,64

 to obtain 

the polymer conformation related part of the free energy (cf. the first term in the r.h.s. of eq. 
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(10)). This approach (also known as the self-consistent field theory, SCFT) naturally leads to the 

well-known Edwards equations for the polymer partition functions.
7,65

 This method is more 

general that the RPA theory
6
 valid only for weakly-inhomogeneous polymer structures. The RPA 

free energy is hinged on the q -dependent polymer chain formfactors ( ( )FS q ) typically defined 

in terms of the Debye function (of the wave-vector q ).
6
 Importantly, the effect of polymer 

formfactors is automatically taken into account by the Edwards-Lifshitz approach.
7
 This can be 

easily seen for the regime we focus on, which involves the structural length-scales much longer 

than the Kuhn segment length (
Kl ) of polymer backbones. It is well known

6,65
 that in this regime 

the ideal chain formfactor depends on one “flexibility parameter” only, namely, the statistical 

segment length 
sa . In the case of long polymers considered here the formfactor becomes 

2 2( ) 1/ ( )F sS aq q ,
6
 so the corresponding conformational free energy contribution, which is 

proportional to 1/ ( )FS q , is consistent with the SCFT expression, eq. (3). It is therefore not 

surprising that our result, eq. (34), for the spinodal line between homogeneous and lamellar 

coacervate phases agrees with the RPA-based eq. 39 of ref. 43. It is worth emphasizing that the 

electrostatic screening effects coupled with polymer formfactors are also automatically 

accounted for by our approach leading, in particular, to a correct prediction of the Lifshitz point 

location (cf. Fig. 2) in agreement with earlier results.
14,15,41,43

  

Using the SCFT approach allows us to describe not only homogeneous and weakly-

segregated coacervate phases, but also the more general intermediate and strong segregation 

regimes. Here we would like to emphasize that the applicability of our theory in these regimes is  

not compromised by the fact that the well-known Debye-Hückel (DH) approximation was 

adopted for small ions (its validity is hinged on conditions D Br l  and /sf c n , where /sc n  

is the ratio of small ion to polymer volumes). A strong segregation means that the electrostatic 

potential energy of a PE segment comparable in size with the lamellar period   is much larger 
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than the thermal energy B absT k T . This condition is certainly compatible with the DH 

requirement that the electrostatic energy of a small ion is B absk T  since the  -segment contains 

many charged groups ( 2 2/ 1f a  as follows from 1p  and the conditions of strong 

segregation, eq. (59)). It is noteworthy that conditions of that sort are ubiquitous in polymer 

physics: for example, the well-known Flory-Huggins theory
6
 predicts the onset of phase 

separation in a symmetric polymer mixture at 2N   and a strong segregation of polymers at 

1N  (with energy gain per chain B absk T ) whereas the interaction energy gain per monomer 

stays always low since typically 1 .  

While the present theory concerns macroscopic coacervate phases, it is also applicable to 

large finite aggregates (polyelectrolyte complexes) involving many PE chains since internal 

structure of such complexes is similar to that of macro-coacervates (just like equilibrium internal 

structure of a large globule reflects that of a macroscopic precipitate).
7 

 

Conclusions.  

1. Considering dilute solutions of both polycation (PC) and polyanion (PA) chains, we developed 

a simple equilibrium theory of PE coacervation based on a mean-field approach and virial 

expansion. We studied weakly charged PE chains with small fraction f  of charged units, 

1f , and very large polymerization index, 1N . An added low-molecular monovalent salt 

of concentration 
sc  provides partial screening of electrostatic interactions characterized by the 

Debye length 
Dr . The other main parameters are: the second virial coefficient 3 1B b

T

 
  

 
 

characterizing effective attraction of similar neutral segments below Θ-temperature, the virial 
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coefficient   reflecting incompatibility of neutral polycation (PC) and polyanions (PA) 

(penalty for AC contacts), and 2 /es sB f c , the electrostatic contribution to the effective 

excluded volume for interaction of similar segments which is a measure of electrostatic 

interactions between polymer segments. The condition 0B   means that the solvent is poor for 

both polymers (PA and PC) in the neutral state when 0f  . Minimization of the free energy 

allowed us to find the thermodynamic properties and composition of stable asymmetric uniform 

polymer phases emerging in the solution and to built the corresponding diagrams of state. We 

analyzed formation of the lamellar structures in the symmetric coacervate phases considering 

the general case including weak, intermediate and strong segregation regimes. The stability 

region of the lamellar phase has been identified and shown on the phase diagram. We also 

developed a simple theory of the exponential growth for polyelectrolyte multilayers obtained 

with a layer-by-layer (LbL) technique.
66

  

2. Considering uniform macroscopic phases we established that polymer coacervation or 

precipitation from solution is possible if  2 min , esB B . In this regime, the PEs condense and 

separate into two macroscopic polymer phases (nearly pure PC and PA) if esB   and 2 esB B  

(cf. region II in Fig. 1a,b). Otherwise, a coacervate phase is emerged. Its nature crucially depends 

on the dimensionless parameter 
2

es

B
A

B









, where 0 A  , and on the gross composition of 

the system C A

C A

p





, where C , A  are the total amounts of PC and PA segments, 

respectively. In particular, for 0 1A   (region III in Fig. 1a) the PEs form a single symmetric 

(if 0p  ) or asymmetric (if *0 p p  , cf. eq 15) macroscopic coacervate phase (note, 

* *( )p p A  increases with increasing A  up to the value * 1/ 3p   at 1A  ). For 
*p p  the 

coacervate phase stays at the critical composition equals to *p , while an excess amount of PC 
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(if *p p ) or PA (if *p p  ) remains in the dilute solution phase. In the region 1 3A   

(region IV in Fig. 1a) a single coacervate phase is formed for cp p  (cf. eq 16), while for 

cp p  the PEs form 2 macrophases: asymmetric coacervate with composition parameter cp  

and a pure PE phase (PC or PA). A single coacervate phase is always formed for 3 A   

(region V). Remarkably, the parameter A  increases on adding salt, so a transition from region III 

to region II (in the symmetric case) or a series of transitions III → IV → V → II for 0 1A  , 

IV → V → II for 1 3A   (in the composition-asymmetric systems) are expected as the ionic 

strength of the solution is increased. It means that with increasing salinity the coacervate phase 

should ultimately separate into pure PC and pure PA phases.  

3. Further, we established that the assumption of uniform coacervate phases is valid in the high-

salt regime D esr   , where /es esa nB   is the characteristic thickness of an interface 

between PA and PC solutions with esB  . In the opposite case, / 1D esX r   , a coacervate 

with microdomain structure may be thermodynamically more favorable. Focusing on the 

lamellar morphology we found that for the symmetric case, 0p  , a lamellar phase is stable if 

2

2 1
*( )

es

X
r X

B X

 
   with 2*( ) 1 ( 1) / 4r X X   . Two condensed polyelectrolyte phases (PA 

and PC) are coexisting at *( ) / esr X B . The lamellar structure changes from weak to strong as 

either / esB  or X  is increased. It is interesting to note that the period of the lamellar structure 

in the case of strong incompatibility between PC and PA chains scales as 1/6 2/3a f   and 

does not depend on the salt concentration. This result is consistent with the corresponding result 

obtained for a salt-free blend of PC and PA, and the 1/6 power in the dependence of the period 

on the incompatibility parameter   has been confirmed using DPD simulations.
23
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4. As another important result, it is shown that the interfacial tension 
inf  between PA and PC 

phases can become negative at sufficiently low immiscibility parameter  . We thus support a 

similar idea proposed and discussed in ref. 21. We provide an evidence that (both near the 

Lifshitz point, at 1X  , and for 1X  corresponding to low ion strength, *

s sc c ) the transition 

from lamellar structure to uniform macroscopic phases occurs at the line of vanishing interfacial 

tension 
inf  (cf. section 6). Exactly at this transition line ( / *( )esB r X  , cf. Fig. 2) the 

macroscopic phases remain stable. Unlike the classical critical phenomena (for example, a 

liquid/gas coexistence near the critical temperature) the interfacial width remains finite in the 

present case at the transition line, inf 0   (cf. eq. (80b)), while the coexisting PA and PC phases 

stay really distinct. These predictions are likely important: it appears that PE macro-phases with 

zero (or very small) inf  must show interesting (anomalous) dynamical behavior.  

5. Finally we developed a simple theory of the exponential growth for polyelectrolyte 

multilayers. We considered the regime (cf. triangular region in Figure 1b) where a nearly 

uniform macroscopic coacervate phase is thermodynamically stable. This regime is defined by 

conditions on virial coefficients: 0 2B  , 2esB B . In addition, the condition of sufficiently 

high ionic strength of the solution, *

s sc c , must be applied (it is equivalent to 

D es

es

a
r

nB
   ), so the lamellar structure does not form. The theory predicts that the PE layer 

thickness kL  increases as a geometrical progression with the number k of deposition steps: 

1k kL KL  
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with factor 
*

*

1

1

p
K

p





 and * 2 4 3

3

A
p

 
 . In the regime we consider 0 1A  , *0 1/ 3p   

and 1 2K  . The dependence of K  on the ionic strength 
sc  comes from 

esB : a higher 
sc  leads 

to larger K  and, therefore, to a more rapid exponential growth of the layer thickness and mass. 

We thus predict that the regime of exponential growth turns on beyond a critical ionic strength, 

*

s sc c , and that the growth gets faster with an increase of 
sc . Moreover, K  also increases, as 

the polymer charge density f  gets lower. These predictions are in harmony with numerous 

experimental data on PE multilayers.
3,45,48,67-71

 

It is worth noting that in the above analysis we assumed that during the deposition time 

the PE chains penetrate inside the whole multilayer. Obviously, when the film thickness becomes 

large enough, the molecules will only partially penetrate and the amount of the adsorbed mass 

becomes dependent on the deposition time. Therefore the growth of the film thickness should 

eventually follow a linear law.   
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