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Learning task controllers on a humanoid robot using multi-objective
optimization

Evelyn D’Elia'?, Jean-Baptiste Mouret!, Jens Kober?, Serena Ivaldi!

Abstract— Designing controllers for complex robots is not
an easy task. Often, researchers hand-tune controllers for
humanoid robots, but this approach requires lots of time
for a single controller which cannot generalize accurately to
varied tasks. We present a method which uses a multi-objective
evolutionary algorithm with various training trajectories and
outputs a diverse set of well-functioning controller weights
and gains. The results of this optimization in the Talos robot
show which weight and gain ranges can be used for a robust
controller and prove that the optimization yields a diverse set of
controller parameters, many of which can succeed on modified
robot models.

I. INTRODUCTION

It is difficult to find controllers that enable a humanoid
robot to perform a variety of different loco-manipulation
trajectories. This problem can be simplified by breaking it
down into a set of tasks, each with certain gain and weight
parameters to define their behavior. This is called a task
priority-based approach, as explained in [1], and it makes
controller design more straightforward, but it still requires
the task parameters to be chosen. One way to choose them
is by hand-tuning these parameters, but since this method is
time-consuming, it often focuses on tuning a single controller
which works for a large set of trajectories. The drawback
of this method is that with a single “robust” controller, the
quality of individual trajectories is compromised.

To save time, and to ensure that there are highly accurate
controllers for specific types of trajectories, we propose the
use of NSGA-II, a multi-objective optimization algorithm, to
learn a Pareto front of task parameter sets for the Talos robot
(shown in (1)) that are scored based on how they perform for
each of a set of training trajectories. This method is similar
to that used in [2], whose approach is based only on average
accuracy and stability over the training trajectories which
produces a less diverse Pareto front. Instead, our approach
directly optimizes based on each trajectory performance.

II. METHODS

The control framework on which the Talos runs is based
on quadratic programming (QP) with soft task priorities. At

This work was supported by the European Union’s Horizon 2020 Re-
search and Innovation Programme under Grant Agreement No. 731540
(project AnDy) and partly funded by the CPER project “CyberEntreprises”
and the CPER project SCIARAT.

nria, University of Lorraine,
evelyn.d-elia@inria.fr

2Delft University of Technology, Delft, Netherlands

CNRS, Loria, Nancy, France

Fig. 1. Simulated Talos performing a dance, recorded from human
movements using the Xsens MVN motion tracking suit.
TABLE I
SYMBOL, DESCRIPTION, SPW NAME AND CG TYPE FOR EACH TASK
CONSIDERED.

Task Description SPW CG
Tirh,in} hand pose (symmetric) wp, )\ff = a}:
Tirsif) foot pose (symmetric) wy )\}fj = 0}3

Tcom CoM position WeoM Noonr

Tto torso orientation (roll, pitch) Wto 051

To joint angles wp uff

each time step, the following optimization problem is solved:
min Y wy ([ Avu = ball* + € Jull?)

St. Cmin < Cu < Chax

(1)
Umin S u S Umaz,

where A,, is the task’s equivalent Jacobian, u is the control
input in the form of joint torques, and € is a regularization
factor, used to avoid singularities. The constraints bound the
control input, dynamics, and environmental factors. We use
inverse dynamics (ID) control, therefore the task reference
b,, is defined as:

b, = pt — J.qg+ e+ e, )

where n is the task index, p’;ﬁ is the desired task acceleration,
jn is the derivative of the task Jacobian, g are the joint
velocities, and \J and AP are proportional and derivative
scalar convergence gains (CG) for the task position e and
velocity é errors respectively. Soft priorities are represented
by a soft priority weight (SPW) w,, on the error of each
task 7. The tasks we consider are shown in Table [ We
use 5 distinct tasks, since those of the hands and feet are the
same on both sides. In total there are 10 parameters that are

optimized, represented by the parameter vector 6.
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Comparison of learned control parameters for 8 training trajectories and for robust controllers (those that work on all trajectories). Specific

trajectory results based on best 50 controllers among 5 different datasets, and robust results based on all robust controllers in 5 datasets (26 total).

TABLE I
AVERAGE CARTESIAN TASK ERROR ACHIEVED FOR EACH TRAINING
TRAJECTORY BY A HAND-TUNED CONTROLLER VERSUS THE AVERAGE
OBJECTIVE SCORE OF THE ROBUST CONTROLLERS LEARNED WITH OUR

METHOD.

Trajectory Hand-tuned (m) | Learned (m)
Walk on spot 0.0923 0.1020
Squat 0.1196 0.0894
Clap 0.4375 0.4105
Touch ground 0.4433 0.4242
Dance 0.1970 0.1898
Lean and twist 0.1889 0.1597
Right arm reach 0.1881 0.1865
Lift 0.1881 0.1770

We use NSGA-II [3], one of the best-performing multi-
objective evolutionary optimization algorithms, to generate a
set of Pareto optimal parameter sets, for which no one objec-
tive function can be further optimized without compromising
the performance of another objective [4]. In this work we use
8 objective functions, where one objective is calculated per
trajectory. Each objective function is given as:

1 ce
= 2 (e + flebente] + et
t=0

o

). ®

where b is the training trajectory number, N, is the total
number of time steps in the trajectory, 7' is the end time,
and the 3-D Cartesian position error e is calculated for the
center of mass (CoM), the hands, and the feet.

To determine whether this method yields transferable
controller solutions, we created 5 slightly different robot
models by varying the mass: an extra 5 kg in the right hand,
left shoulder, and as a backpack on the robot, and overall
weight scaled up and down 10% respectively.

III. RESULTS

We evaluate each set of task parameters using its perfor-
mance in Equation 3] We can see from Table [[I] that the
average “robust” controller learned via our method achieves
a lower Cartesian tracking error than the robust controller

tuned by a human expert. A video of the learned trajectories
is available at: https://youtu.be/cnlo-aWCOcs!

For each of the modified robot models we tested, we found
that there were at least a few successful controllers for each
trajectory, which shows the Pareto front is diverse enough to
succeed when the actual robot used is different from the one
which the Pareto front was designed for (which is inevitable
for the physical robot).

From Figure 2] we see from the universally high CoM
weights and low posture weights that no matter the trajectory,
the CoM and posture tasks are always the most and least
important, respectively. Some of the individual trajectory
results are surprising, such as that the hand weight is high
for the squat trajectory. This can be explained by the fact
that the hands balance the robot to avoid falling backward.
We also observe the compromise on accuracy that the robust
controllers make: wherever the robust and trajectory-specific
boxplots do not overlap, it means the robust controllers are
not even in the top 50 for that trajectory.

IV. CONCLUSION

Hands-on time is saved by learning the controller param-
eters using our optimization approach, and in addition the
results outperform hand-tuned parameter sets. In order to
validate our results further, the next step is to test the learned
controllers on the real Talos robot.
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