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Abstract

Updating a linear least squares solution can be critical for near real-time signal-
processing applications. The Greville algorithm proposes a simple formula for
updating the pseudoinverse of a matrix A ∈ Rn×m with rank r. In this paper, we
explicitly derive a similar formula by maintaining a general rank factorization,
which we call rank-Greville. Based on this formula, we implemented a recursive
least squares algorithm exploiting the rank-deficiency of A, achieving the update
of the minimum-norm least-squares solution in O(mr) operations and, therefore,
solving the linear least-squares problem from scratch in O(nmr) operations.
We empirically confirmed that this algorithm displays a better asymptotic time
complexity than LAPACK solvers for rank-deficient matrices. The numerical
stability of rank-Greville was found to be comparable to Cholesky-based solvers.
Nonetheless, our implementation supports exact numerical representations of
rationals, due to its remarkable algebraic simplicity.

Keywords: Moore-Penrose pseudoinverse, Generalized inverse, Recursive least
squares, Rank-deficient linear systems

1. Introduction

In this paper, we are interested in computationally efficient algorithms for
solving the recursive least-squares problem on rank-deficient matrices.

Let Γi ∈ Rm represent an observation of m variables, called regressors,
associated with measurement yi and let Xn be the unknown parameters of the
linear relation:

AnXn + εn = Yn (1)

Email addresses: ruben.staub@ens-lyon.org (Ruben Staub),
stephan.steinmann@ens-lyon.fr (Stephan N. Steinmann)
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where An is an n × m matrix representing n such observations, Yn contains
associated measurements and εn is the random disturbance:

An =


Γ1
>

Γ2
>

...

Γn
>

 , Yn =


y1

y2

...
yn

 (2)

The solution Xn to the general linear least-squares problem of equation 1 is
defined as:

Xn = arg min
x∈S

(||x||2), S = arg min
x

(||Anx− Yn||2) (3)

This solution is unique[1], and sometimes called minimum-norm least-squares
solution. Because of its uniqueness, it is sometimes simply referred to as the
least-squares solution.

As demonstrated in the seminal paper by Penrose, the least-squares solution
Xn can also be written[2]:

Xn = An
+Yn (4)

where An
+ is the pseudoinverse of An, also called generalized inverse, or Moore-

Penrose inverse. Due to its practical importance, the numerical determination
of the generalized inverse remains an active topic of research.[3, 4]

The pseudoinverse A+ ∈ Cm×n of any matrix A ∈ Cn×m is uniquely[5]
characterized by the four Penrose equations[6]:

AA+A = A (5)

A+AA+ = A+ (6)

(AA+)> = AA+ (7)

(A+A)> = A+A (8)

Here, we are interested in a particular problem, i.e., updating a least-squares
solution (or the generalized inverse) when a new observation (Γn+1, yn+1) is
added. This is typically called the recursive least-squares (RLS) problem for
which the updated solution Xn+1 is usually written[1, 7]:

Xn+1 = Xn +K × (yn+1 − Γn+1
>Xn) (9)

where yn+1 − Γn+1
>Xn is the predicted residual (or a priori error), and K is

called the Kalman gain vector.
Algorithms that allow to update an already known previous solution can

be of critical importance for embedded-systems signal processing, for example,
as near real-time solutions might be required and new observations are added
continuously[7]. Therefore, recursive least squares algorithms significantly ben-
efit from the computational efficiency introduced by updating the least square
solution instead of recomputing it from scratch.
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If An has full column rank, the recursive least-squares solution Xn+1 of
equation (9) can be straightforwardly computed using normal equations[1]. This
RLS algorithm has a time complexity of O(m2) for each update. Therefore,
computing the solution for n successive observations, using equation (9), lead
to a total time complexity of O(nm2).

However in the general case, An can be rank deficient, i.e. neither full col-
umn rank nor full row rank. This is indeed the case if we want to sample a
large variable space (column deficiency), while accumulating data redundancy
on the subspace of observed variables (row deficiency). Handling rank defi-
ciency is, for example, desirable in neurocomputational learning applications[8].
Several algorithms have been developed to solve the rank-defficient recursive
least-squares problem. In particular, the Greville algorithm[9] was designed for
the recursive least-squares problem specifically, whereas most of the other al-
gorithms are common least-squares solvers (based on Cholesky decomposition,
QR factorization, SVD, . . . ) adapted to support updates of An (without the
need to recompute the whole solution)[1].

The Greville algorithm provides an updated least squares solution, and
additionally, an updated pseudoinverse at the same cost. This update step still
has computational complexity in O(m2), independently of the rank deficiency
of An. This leads to a O(nm2) time complexity for the computation of the full
solution.1 Variants of this algorithm were developed[10] based on the implicit
decomposition of An, but still with an O(m2) update complexity2.

In this paper, we write and implement a recursive least-squares algorithm
that has single-update time complexity in O(mr) (i.e. O(nmr) total time com-
plexity), where r is the rank of the matrix An. The underlying idea is to
maintain a general rank decomposition into a full row rank matrix (purely un-
derdetermined system) and a full column rank matrix (purely overdetermined
system), which are much easier to treat in a recursive least squares procedure.
Indeed, due to the rank deficiency of An these matrices have reduced sizes,
leading to more efficient updates.

The remarkable simplicity of this approach makes it compatible with exact
numerical representations in practice, without the need to use expensive sym-
bolic computing. We also explore slightly more sophisticated rank decomposi-
tions, effectively bridging the gap between the Greville algorithm and QR-based
recursive least-squares solvers.

1Note that one can easily reach O(max(n,m) min(n,m)2) using the property (An
>)+ =

(An
+)T .

2Using the notations defined below, Albert and Sittler maintain the m × m matrices

(1 − Cn
>C̃n) and (C̃n

>
Pn
−1C̃n), whereas we maintain Cn, C̃n and Pn

−1 (whose sizes are
reduced).
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2. Derivation

2.1. General non-orthogonal rank factorization

Let An be a n×m matrix of rank r. An can be expressed as the product[9]:

An = BnCn (10)

where Bn is a n × r matrix, and Cn is a r ×m matrix, both of rank r, which
corresponds to a full-rank factorization.

Let us consider a maximal free family BA of observations among observations
Γi ∈ Rm in An. Note that BA is a basis of Im(An

>). Such basis is represented
by the rows of Cn. Interpreting rows of Cn as observations ΓCi

∈ Rm, we find
that each observation ΓCi in Cn is linearly independent of the others. Hence
Cn can then be seen as a purely underdetermined system. This system can be
thought as linking the fitted value of each observation in BA, to the fitted values
for the m variables themselves.

Interpreting rows of Bn as observations γi ∈ Rr, we find that each observa-
tion γi in Bn is the observation Γi of An expressed in the BA basis. Therefore,
Bn can be seen as a purely overdetermined system, since each observation in
BA is observed at least once. One can consider that this system links the value
of each observation Γi in An, to the fitted values for each observation in BA.

Theorem 1. The pseudoinverse An
+ of An can be computed in O(nmr) if

matrices Bn and Cn verifying equation 10 are known. An explicit formula is
then given by:

An
+ = Cn

>(CnCn
>)−1(Bn

>Bn)−1Bn
> (11)

Proof. By definition of Bn and Cn, Bn
>Bn and CnCn

> are both r× r matrices
of rank r, and therefore non-singular. As a consequence, the explicit formula
given is well defined as long as Bn and Cn correspond to a full-rank factorization.

It is straightforward to check that Eq. 11 satisfies all four Penrose equa-
tions (Eq. 5 to 8), and therefore, represents an acceptable pseudoinverse of
An[9]. By the unicity of the Moore-Penrose inverse, we conclude that An

+ =
Cn
>(CnCn

>)−1(Bn
>Bn)−1Bn

>. Computing the pseudoinverse can, therefore,
be reduced to computing the inverse of two r × r matrices and three matrix
multiplications giving rise (in any order) to a total O(nmr) time complexity,
that could even be reduced by using faster algorithms[11].

We are now interested in the update of the pseudoinverse of An when adding
a new observation Γn+1. Let us define An+1 as:

An+1 =

(
An

Γn+1
>

)
= Bn+1Cn+1 (12)

We distinguish two cases depending on the linear dependency of Γn+1 with
respect to previous observations Γ1, . . . , Γn. Note that we can equally well only
consider the observations in BA, since BA is a basis for Vect(Γ1, . . . , Γn).
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Let PBA be the projector into Vect(BA) = Im(C>). We define Γpn+1 ∈ Rm
the projection of Γn+1 into Vect(BA). We also define γpn+1 ∈ Rr as Γpn+1 ex-
pressed in the BA basis. If BA was an orthonormal basis, the decomposition γpn+1

could be easily computed by inner products with γpn+1 = CnΓn+1. However, in
the general (non-orthonormal) case, the decomposition γpn+1 of PBAΓn+1 can

be obtained using the dual B̃A of BA, represented by the rows of C̃n defined as:

C̃n = (CnCn
>)−1Cn

= σ−1
n Cn

(13)

where σn = CnCn
> is the Gram matrix of observations in BA. γpn+1 can then

be expressed by:
γpn+1 = C̃nPBAΓn+1

= C̃nΓn+1

(14)

and Γpn+1 can then be expressed by:

Γpn+1 = PBAΓn+1

= Cn
>C̃nΓn+1

= Cn
>γpn+1

(15)

We define the rejection vector Γrejn+1 ∈ Rm associated with the projection of
Γn+1 into BA:

Γn+1 = PBAΓn+1 + Γrejn+1

= Γpn+1 + Γrejn+1

= Cn
>γpn+1 + Γrejn+1

= Cn
>C̃nΓn+1 + Γrejn+1

(16)

It becomes clear that Γn+1 is linearly dependent from the previous observa-
tions Γ1, . . . , Γn, if and only if, Γrejn+1 is null. Note that γpn+1 , Γpn+1 and Γrejn+1

can be computed in O(mr) if C̃n and Cn are already known.
The pseudoinverse An

+ can then be rewritten:

An
+ = C̃n

>
Pn
−1Bn

> (17)

where

Pn = Bn
>Bn =

n∑
i=1

γpi · γ
p
i
>

(18)

We finally define ζn+1 ∈ Rr and βn+1 ∈ Rn as:

ζn+1 = Pn
−1γpn+1, βn+1 = Bnζn+1 (19)

Note that if C̃n, Cn and Pn
−1 are already known, ζn+1 can be computed in

O(mr), but βn+1 can only be computed in O(max(m,n)r) if Bn is also known.
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Theorem 2. If Γn+1 6= 0 is linearly independent from previous observations,
the pseudoinverse An+1

+ of An+1 can be updated in O(mn) if An
+, Bn, Pn

−1,
Cn and C̃n are known. An explicit formula is then given by:

An+1
+ =

(
An

+ 0
)

+
Γrejn+1∥∥∥Γrejn+1

∥∥∥2

2

(
−βn+1

> 1
)

(20)

Proof. First, let us observe how the full-rank factorization An+1 = Bn+1Cn+1

is impacted by adding an observation Γn+1 linearly independent from previous
observations. Concerning Cn+1, we have:

Im(Cn+1
>) = Im(An+1

>) = Vect(BA ∪ {Γn+1}) 6= Vect(BA) = Im(An
>) = Im(Cn

>)

⇒ Cn+1 6= Cn
(21)

Adding Γn+1 to the rows of Cn leads to:

Cn+1 =

(
Cn

Γn+1
>

)
, Bn+1 =

(
Bn 0
0 1

)
(22)

It becomes clear from this definition that Bn+1 has full column rank since Bn
has full column rank, and also that Cn+1 has full row rank. Therefore, Bn+1

and Cn+1 represent an acceptable full-rank decomposition of An+1, since we
have:

Bn+1Cn+1 =

(
Bn 0
0 1

)(
Cn

Γn+1
>

)
=

(
BnCn
Γn+1

>

)
=

(
An

Γn+1
>

)
= An+1 (23)

Second, we apply Theorem 1 to An+1:

An+1
+ = Cn+1

>(Cn+1Cn+1
>)−1(Bn+1

>Bn+1)−1Bn+1
>

=
(
Cn
> Γn+1

)( CnCn
> CnΓn+1

(CnΓn+1)> Γn+1
>Γn+1

)−1(
Bn
>Bn 0
0 1

)−1(
Bn
> 0

0 1

)
=
(
Cn
> Γn+1

)( CnCn
> CnΓn+1

(CnΓn+1)> Γn+1
>Γn+1

)−1(
(Bn

>Bn)−1 0
0 1

)(
Bn
> 0

0 1

)
=
(
Cn
> Γn+1

)( σn CnΓn+1

(CnΓn+1)> Γn+1
>Γn+1

)−1(
Pn
−1Bn

> 0
0 1

)
(24)

Finally, we apply a generic block-wise inversion scheme:(
D E
E> F

)−1

=

(
D−1 +D−1E(F − E>D−1E)−1E>D−1 −D−1E(F − E>D−1E)−1

−(F − E>D−1E)−1E>D−1 (F − E>D−1E)−1

)
=

(
D−1 +D−1ES−1E>D−1 −D−1ES−1

−S−1E>D−1 S−1

)
(25)
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where S = F − E>D−1E, D = σn, E = CnΓn+1 and F = Γn+1
>Γn+1, since

σn is non-singular and Γn+1
>Γn+1 is not null since Γn+1 6= 0. This leads to the

pseudoinverse formula:

An+1
+ =

(
Cn
> Γn+1

)( σn CnΓn+1

(CnΓn+1)> Γn+1
>Γn+1

)−1(
Pn
−1Bn

> 0
0 1

)
=
(
Cn
> Γn+1

)(σ−1
n + σ−1

n CnΓn+1S
−1(CnΓn+1)>σ−1

n −σ−1
n CnΓn+1S

−1

−S−1(CnΓn+1)>σ−1
n S−1

)(
Pn
−1Bn

> 0
0 1

)
=
(
Cn
> Γn+1

)(σ−1
n + γpn+1S

−1γpn+1
> −S−1γpn+1

−S−1γpn+1
>

S−1

)(
Pn
−1Bn

> 0
0 1

)

=
(
Cn
> Γn+1

)((σ−1
n 0
0 0

)
+ S−1

(
γpn+1γ

p
n+1
> −γpn+1

−γpn+1
>

1

))(
Pn
−1Bn

> 0
0 1

)

=
(
An

+ 0
)

+ S−1
(
Cn
> Γn+1

)(γpn+1γ
p
n+1
> −γpn+1

−γpn+1
>

1

)(
Pn
−1Bn

> 0
0 1

)
=
(
An

+ 0
)

+ S−1
(
Cn
>γpn+1γ

p
n+1
>
Pn
−1Bn

> − Γn+1γ
p
n+1
>
Pn
−1Bn

> −Cn>γpn+1 + Γn+1

)
=
(
An

+ 0
)

+ S−1
(
−Γrejn+1βn+1

> Γrejn+1

)
(26)

where the Schur complement S of σn is written as:

S = Γn+1
>Γn+1 − Γn+1

>Cn
>σ−1

n CnΓn+1

= Γn+1
>Γn+1 − Γn+1

>Γpn+1

= Γn+1
>Γrejn+1

= Γrejn+1

>
Γrejn+1 =

∥∥∥Γrejn+1

∥∥∥2

2

(27)

S is, therefore, the square of the norm of the component of Γn+1 along the
orthogonal complement of Im(An

>). S is invertible since Γrejn+1 6= 0.

Γrejn+1 and βn+1 can be computed in O(max(m,n)r) if Cn, C̃n, Bn and Pn
−1

are already known. Therefore, the time complexity bottleneck is the outer
product Γrejn+1βn+1

>, leading to a total update in O(mn).

Theorem 3. If Γn+1 is a linear combination of previous observations, the pseu-
doinverse An+1

+ of An+1 can be updated in O(mn) if An
+, Bn, Pn

−1, Cn and
C̃n are known. An explicit formula is then given by:

An+1
+ =

(
An

+ 0
)

+
C̃n
>
ζn+1

1 + γpn+1
>
ζn+1

(
−βn+1

> 1
)

(28)

Proof. First, let us observe how the full-rank factorization An+1 = Bn+1Cn+1 is
impacted by adding an observation Γn+1 that is a linear combination of previous

7



observations. Notice that:

Γn+1 = PBAΓn+1 + Γrejn+1 = PBAΓn+1 = Γpn+1

= Cn
>C̃nΓn+1

= Cn
>γpn+1

(29)

Since Γn+1 ∈ Vect(Γ1, . . . , Γn) = Vect(BA), BA is still a basis for Vect(Γ1, . . . , Γn,Γn+1).
As a consequence, we can take Cn+1 = Cn, leading to:

Cn+1 = Cn, Bn+1 =

(
Bn

γpn+1
>

)
(30)

From this definition follows that Cn+1 still has full row rank, and also that Bn+1

has full column rank since Bn has full column rank. Therefore, Bn+1 and Cn+1

represent an acceptable full-rank decomposition of An+1, since we have:

Bn+1Cn+1 =

(
Bn

γpn+1
>

)
Cn =

(
BnCn

γpn+1
>
Cn

)
=

(
An

Γn+1
>

)
= An+1 (31)

Second, we apply Theorem 1 to An+1:

An+1
+ = Cn+1

>(Cn+1Cn+1
>)−1(Bn+1

>Bn+1)−1Bn+1
>

= Cn
>(CnCn

>)−1

((
Bn
> γpn+1

)( Bn
γpn+1

>

))−1 (
Bn
> γpn+1

)
= Cn

>(CnCn
>)−1

(
Bn
>Bn + γpn+1γ

p
n+1
>
)−1 (

Bn
> γpn+1

)
= C̃n

> (
Pn + γpn+1γ

p
n+1
>
)−1 (

Bn
> γpn+1

)
(32)

Finally, we apply the Sherman-Morrison formula stating that for any non-
singular matrix G ∈ Rn×n and any vector v ∈ Rn, if G + vv> is non-singular,
then: (

G+ vv>
)−1

= G−1 − G−1vv>G−1

1 + v>G−1v
(33)

with G = Pn and v = γpn+1, since Pn and Pn+1 = Bn+1Bn+1
> are non-singular3.

3Pn+1 = Bn+1Bn+1
> is non-singular, since Pn+1 is square with full rank. Indeed,

rank(Pn+1) = rank(Bn+1) = r, using theorem 5.5.4 of [12]

8



This leads to the pseudoinverse formula:

An+1
+ = C̃n

> (
Pn + γpn+1γ

p
n+1
>
)−1 (

Bn
> γpn+1

)
= C̃n

>
(
Pn
−1 −

Pn
−1γpn+1γ

p
n+1
>
Pn
−1

1 + γpn+1
>
Pn
−1γpn+1

)(
Bn
> γpn+1

)
= C̃n

>
(
Pn
−1 − ζn+1ζn+1

>

1 + γpn+1
>
ζn+1

)(
Bn
> γpn+1

)
=
(
An

+ C̃n
>
ζn+1

)
− C̃n

> ζn+1ζn+1
>

1 + γpn+1
>
ζn+1

(
Bn
> γpn+1

)
=
(
An

+ C̃n
>
ζn+1

)
− C̃n

>
ζn+1

1 + γpn+1
>
ζn+1

(
βn+1

> ζn+1
>γpn+1

)
=
(
An

+ 0
)

+
C̃n
>
ζn+1

1 + γpn+1
>
ζn+1

(
−βn+1

> 1 + γpn+1
>
ζn+1 − ζn+1

>γpn+1

)
=
(
An

+ 0
)

+
C̃n
>
ζn+1

1 + γpn+1
>
ζn+1

(
−βn+1

> 1
)

(34)
γpn+1 , ζn+1 and βn+1 can be computed in O(max(m,n)r) if C̃n, Bn and Pn

−1 are
already known. Therefore, the time complexity bottleneck is the outer product(
C̃n
>
ζn+1

)
βn+1

>, leading to a total update in O(mn).

Corollary 3.1. For any observation Γn+1 ∈ Rm, the pseudoinverse An+1
+ of

An+1 can be updated in Θ(mn) if An
+, Bn, Pn

−1, Cn and C̃n are known.

Indeed, at least n×m terms of the pseudoinverse need to be updated when
adding a new observation, in the general case4. Therefore, the pseudoinverse
update has a fundamental cost component that cannot be improved, hence the
Θ(mn) complexity. This limitation is not present in the recursive least square
problem. In this problem, we are only interested in updating the least square
solution Xn+1 when adding a new observation Γn+1 with associated target yn+1:

Xn+1 =

(
An

Γn+1
>

)+(
Yn
yn+1

)
= An+1

+

(
Yn
yn+1

)
(35)

Theorem 4. If Γn+1 6= 0 is linearly independent from previous observations,
the least square solution Xn+1 can be updated in O(mr) if Xn, Cn and C̃n are

4To be convinced, consider An = In the identity matrix and Γn+1 =

1
...
1

.
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known. An explicit formula (in the form of equation 9) is then given by:

Xn+1 = Xn +
Γrejn+1∥∥∥Γrejn+1

∥∥∥2

2

(
yn+1 − Γn+1

>Xn

)
(36)

Proof. First, let us inject theorem 2 into the definition of Xn+1:

Xn+1 = An+1
+

(
Yn
yn+1

)
= An

+Yn +
Γrejn+1∥∥∥Γrejn+1

∥∥∥2

2

(
−βn+1

> 1
)( Yn

yn+1

)

= Xn +
Γrejn+1∥∥∥Γrejn+1

∥∥∥2

2

(
yn+1 − βn+1

>Yn

)
(37)

Let us simplify further this equation by recognizing βn+1
>Yn as the fitted target

associated with Γn+1:

Xn+1 = Xn +
Γrejn+1∥∥∥Γrejn+1

∥∥∥2

2

(
yn+1 − Γn+1

>C̃n
>
Pn
−1Bn

>Yn

)

= Xn +
Γrejn+1∥∥∥Γrejn+1

∥∥∥2

2

(
yn+1 − Γn+1

>An
+Yn

)

= Xn +
Γrejn+1∥∥∥Γrejn+1

∥∥∥2

2

(
yn+1 − Γn+1

>Xn

)

= Xn +
Γrejn+1∥∥∥Γrejn+1

∥∥∥2

2

∆yn+1

(38)

where ∆yn+1 = yn+1 − Γn+1
>Xn is the difference between the expected/fitted

target (i.e. Γn+1Xn
>) and the real target yn+1 associated with the new obser-

vation Γn+1 (i.e. the predicted residual, or a priori error). We identify
Γrej
n+1

‖Γrej
n+1‖22

to be the associated Kalman gain vector in this case[1].
Γrejn+1 can be computed in O(mr) if Cn and C̃n are already known, which is

the time complexity bottleneck of the whole update step.

Theorem 5. If Γn+1 is a linear combination of previous observations, the least
square solution Xn+1 can be updated in O(mr) if Xn, Cn, C̃n and Pn

−1 are
known. An explicit formula (in the form of equation 9) is then given by:

Xn+1 = Xn +
C̃n
>
ζn+1

1 + γpn+1
>
ζn+1

(
yn+1 − Γn+1

>Xn

)
(39)

10



Proof. Let us proceed similarly to theorem 4, by injecting theorem 3 into the
definition of Xn+1:

Xn+1 = An+1
+

(
Yn
yn+1

)
= An

+Yn +
C̃n
>
ζn+1

1 + γpn+1
>
ζn+1

(
−βn+1

> 1
)( Yn

yn+1

)

= Xn +
C̃n
>
ζn+1

1 + γpn+1
>
ζn+1

(
yn+1 − βn+1

>Yn

)
= Xn +

C̃n
>
ζn+1

1 + γpn+1
>
ζn+1

(
yn+1 − Γn+1

>Xn

)
= Xn +

C̃n
>
ζn+1

1 + γpn+1
>
ζn+1

∆yn+1

(40)

where ∆yn+1 = yn+1−Γn+1Xn
> (i.e. the predicted residual, or a priori error).

We identify C̃n
>
ζn+1

1+γp
n+1
>ζn+1

to be the associated Kalman gain vector in this case.

γpn+1 and ζn+1 can be computed in O(mr) if Cn, C̃n and Pn
−1 are already

known. The whole update step can then be performed in O(mr) operations.

Theorem 6. For any new observation Γn+1 ∈ Rm, the matrices Cn+1, C̃n+1

and Pn+1
−1 can be updated in O(mr) if Cn, C̃n and Pn

−1 are already known.

Proof. The updating formula naturally depends on the linear dependency of
Γn+1 from previous observations (i.e. whether Γrejn+1 is non-null). Let us note

that Γrejn+1 itself can be computed in O(mr) operations if C̃n and Cn are known.

If Γn+1 is linearly independent from previous observations (i.e. Γrejn+1 6= 0),
equation 22 is valid, leading to:

P−1
n+1 =

(
Bn+1

>Bn+1

)−1

=

((
Bn
> 0

0 1

)(
Bn 0
0 1

))−1

=

(
Bn
>Bn 0
0 1

)−1

=

(
Pn
−1 0

0 1

)
(41)

Cn+1 =

(
Cn

Γn+1
>

)
(42)

11



Using equation 26, we can write:

C̃n+1 = (Cn+1Cn+1
>)−1Cn+1 =

σ−1
n +

γp
n+1γ

p
n+1
>

‖Γrej
n+1‖22

− γp
n+1

‖Γrej
n+1‖22

− γp
n+1
>

‖Γrej
n+1‖22

1

‖Γrej
n+1‖22

( Cn
Γn+1

)

=

C̃n − γpn+1

Γrej
n+1

>

‖Γrej
n+1‖22

Γrej
n+1

>

‖Γrej
n+1‖22


(43)

These formulae can be applied in O(mr) operations, since γpn+1 and Γrejn+1 can

themselves be computed in O(mr) operations if C̃n and Cn are already known.
If Γn+1 is a linear combination of previous observations (i.e. Γrejn+1 = 0),

equation 30 is valid, leading to:

Cn+1 = Cn, C̃n+1 = C̃n (44)

Using equation 34, we can write:

Pn+1
−1 = Pn

−1 − ζn+1ζn+1
>

1 + γpn+1
>
ζn+1

(45)

This formula can be applied in O(mr) operations5, since γpn+1 and ζn+1 can

themselves be computed in O(mr) operations if Pn
−1, C̃n and Cn are already

known.

Corollary 6.1. For any n ×m matrix An of rank r and any vector Yn ∈ Rn,
the least square solution Xn = An

+Yn can be computed in O(mnr) operations.

2.2. Orthogonal rank factorization

The theorems regarding the update of the pseudo-inverse An+1
+ (theorems

2 and 3) and least-squares solution Xn+1 (theorems 4 and 5) are valid for any
decomposition satisfying equation 10. Therefore, the rows of Cn can be required
to form an orthogonal basis. This can be easily achieved by storing only the re-
jection vectors Γrejn+1 into Cn+1. More generally, one can store rescaled rejection

vectors αn+1Γrejn+1 instead, with 0 6= αn+1 ∈ R. Theorem 6 remains valid, with
equations 41, 42 and 43 becoming:

Cn+1 =

(
Cn

αn+1Γrejn+1

>

)
(46)

5Note that this complexity reduces to O(r2) if γpn+1 is already known.
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C̃n+1 =

 C̃n
Γrej
n+1

>

αn+1‖Γrej
n+1‖22

 (47)

P−1
n+1 =

(
Bn+1

>Bn+1

)−1

=

((
Bn
> γpn+1

0 1
αn+1

)(
Bn 0

γpn+1
> 1

αn+1

))−1

=

(
Pn
−1 −αn+1ζn+1

−αn+1ζn+1
> α2

n+1(1 + γpn+1
>
ζn+1)

) (48)

In particular, one can consider αn+1 =
∥∥∥Γrejn+1

∥∥∥−1

2
. In this case the rows of

Cn form an orthonormal basis, i.e., Cn is an orthogonal matrix (i.e. C̃n = Cn),
and equation 10 becomes a Gram-Schmidt based thin LQ decomposition. This
variant offers slightly reduced storage and update computational time.

3. Implementation

Based on the theorems above, one can devise a simple algorithm satisfying
corollary 6.1, the pseudocode of which is shown in Algorithm 1.

Algorithm 1 Rank-deficient RLS, also called rank-Greville

1: procedure UpdateLeastSquares(Γ, y, X, C, C̃, P−1)
2: γ ← C̃ Γ
3: Γr ← Γ− C>γ
4: if Γr 6= 0 then
5: K ← Γr

‖Γr‖22

6: C ←
(
C
Γ>

)
7: C̃ ←

(
C̃ − γ K>

K>

)
8: P−1 ←

(
P−1 0

0 1

)
9: else

10: ζ ← P−1γ

11: K ← C̃>ζ
1+γ>ζ

12: P−1 ← P−1 − ζ ζ>

1+γ>ζ
13: end if
14: X ← X +K ×

(
y − Γ>X

)
15: end procedure

These formulae have been implemented in Python3 using the Numpy li-
brary. In addition to the least-squares update algorithm (in O(mr) operations),
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this implementation also supports pseudo-inverse (in O(mn) operations) and
covariance matrix[13] updates (in O(m2) operations).

The orthogonal and orthonormal basis variants described in section 2.2 have
also been implemented for least-squares update (in O(mr) operations) and
pseudo-inverse update (in O(mn) operations).

In practice, checking if Γrejn+1 6= 0 is ill-defined with floating-point arithmetic.
Yet, it is crucial in this algorithm as it determines the effective rank of the linear
system. Therefore, we define a threshold eps so that Γn+1 is considered a linear
combination of previous observations if and only if:

||Γrejn+1||2 < eps or ||Γrejn+1||2 < eps× ||Γn+1||2 (49)

By default, eps is set to (m2r+mr+m)× εM in order to account for rounding
error propagation, with εM being the machine precision.

It is important to note that the general non-orthogonal basis implementation
does support exact representations such as those defined in Python’s fractions
module. Indeed, this scheme (as the Greville algorithm) uses only operations
well defined on rational numbers. One should note that the orthogonal basis
variant scheme is also compatible with exact numerical representations as long
as the rescaling factors αn+1 can themselves be represented exactly.

4. Numerical Tests

All computations were performed using Python 3.6.9[14, 15] with Scipy ver-
sion 1.4.1[16] and Numpy version 1.18.3[17, 18] linked with OpenBLAS on an
Intel Xeon W-2123 CPU with DDR4-2666 RAM. The code used for the nu-
merical tests is available along with our Python3 implementation in the sup-
porting information and will soon become available on https://github.com/

RubenStaub/rank-greville.

4.1. Computational efficiency

In this section we empirically evaluate the computational efficiency achieved
by the rank factorization Greville algorithm described in this paper (Algorithm
1), referred to as ”rank-Greville”. Note that for comparison purposes, its to-
tal complexity (i.e. computing the full least-squares solution from scratch in
O(nmr) operations) is studied here, even though this algorithm was not specif-
ically designed as a least-squares solver from scratch6. Rather, rank-Greville
was designed for the recursive update in applications requiring a constantly
up-to-date solution.

For this analysis to be meaningful, the rank-Greville algorithm time effi-
ciency is compared against standard algorithms from the LAPACK library:

6Indeed, in this case rank-Greville must perform much more memory allocation and copy
than a conventional solver, explaining, in part, the large prefactor
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• ”gelsy” refers to the DGELSY least-squares solver from the LAPACK
library based on a complete orthogonal factorization (using QR factoriza-
tion with column pivoting)[19, 20].

• ”gelss” refers to the DGELSS least-squares solver from the LAPACK li-
brary based on SVD[19].

• ”gelsd” refers to the DGELSD least-squares solver from the LAPACK
library also based on SVD, using a diagonal form reduction[19].

These routines were accessed through the scipy.linalg.lstsq wrapper function
from the Scipy library.

For these tests, we consider the computation from scratch of the least-squares
solution Xn verifying:

RN (n,m, r)Xn + εn = RN (n, 1, 1) (50)

where RN (n,m, r) ∈ Rn×m is a pseudo-random matrix with rank r and whose
elements are standardized (µ = 0, σ = 1)7. For reproducibility purposes, the
pseudo-random number generator was reset before each RN (n,m, r) computa-
tion.

In order to assess the scaling properties of these algorithms, we evaluate
(using Python’s timeit module) the time elapsed for solving equation 50 us-
ing various input sizes. In the following, it is assumed that sufficiently large
matrices were used for each algorithm to approach its asymptotic behavior in
terms of computational time dependency with respect to input size. In other
words, we assume that the scaling properties observed reflect the computational
complexity of the algorithms considered8. These analyses were performed us-
ing various ranges for the parameters n, m, and r, allowing for an empirical
characterization of the computational complexities involved:

• Full-rank square matrices:
r = n = m (51)

Figure 1 highlights a roughly n3 scaling of the elapsed computational time
for large enough matrices, for all algorithms.

This corroborates the O(n3) asymptotic complexity of all algorithms in
this case.

• Full-rank rectangular matrices:

r = n ≤ m (52)

7While random matrices are generally non rank-deficient, rank-deficient pseudo-random
matrices are obtained here from the dot product of adequate pseudo-random matrices gener-
ated using the normal N (0, 1) distribution

8Which is equivalent to assuming that, for each algorithm, the largest computational times
are dominated by the highest order term for the variable being considered.
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When fixing the number of rows n, Figure 2 highlights a roughly linear
scaling (with respect to m) of the elapsed computational time for large
enough matrices, for all algorithms9.

Since square matrices are a special case of rectangular matrices, this result
is expected to be compatible with the scaling properties found for square
matrices, if we assume a similar processing of both inputs. Therefore, in
the case of full-rank rectangular matrices (with n ≤ m), only an empir-
ical mn2 scaling (with respect to n and m) can be deduced from these
experiments.

This supports a O(mn2) asymptotic complexity of all algorithms in this
case.

• Rank-deficient square matrices:

r ≤ n = m (53)

At fixed rank r = 100, with square matrices of increasing size, Figure 3
nicely highlights the particular scaling (with respect to n) of rank-Greville,
compared to the other commonly used algorithms. Indeed, all LAPACK-
based algorithms display a roughly n3 empirical scaling (comparable with
results found for full-rank square matrices), while rank-Greville was found
to display a roughly n2 scaling of the elapsed computational time for large
enough matrices.

Using a similar argument as before, and assuming rank-deficient matrices
are not treated differently, these results are expected to be compatible
with the previously found scaling properties. Therefore, the only empir-
ical scaling (with respect to r, n and m) compatible with all previous
experiments is in mnr for rank-Greville and mn2 for all other algorithms.

These empirical findings demonstrate the distinctive ability of rank-Greville
to take advantage of rank-deficiency, in order to reach an O(mnr) asymp-
totic complexity.

• Optimal (time-efficiency wise) applicability domains:

r ≤ n ≤ m (54)

Figure 4 illustrates which algorithm is the fastest (and by which margin)
for a range of parameters ratios. Even though not specifically designed
for solving the linear least-squares problem from scratch, the rank-Greville
algorithm appears to be more efficient than other LAPACK solvers, but
only when the observations matrix has particularly low rank r . 0.15 ×
min(n,m).

9Additional tests at m > 4× 105 seem to confirm the asymptotic linear dependency on m
for the DGELSS solver.
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Figure 1: Timings for solving the linear least-squares problem on a random full-rank square
observations matrix RN (n, n, n). The asymptotic dependency with respect to n is fitted on
the last points and reported in the legend.

Figure 2: Timings for solving the linear least-squares problem on a random full-rank obser-
vations matrix RN (n,m, n) with a fixed number of observations n = 100. The asymptotic
dependency with respect to m is fitted on the last points and reported in the legend.

These tests confirm the lowest O(mnr) asymptotic complexity of the rank-
Greville algorithm compared with other LAPACK solvers (O(m2n) or O(mn2))
for solving the least-squares problem from scratch. We note, nonetheless, that
rank-Greville has a larger pre-factor, in part due to the additional work of main-
taining a constantly up-to-date minimum-norm least-squares solution, typical
of RLS solvers.
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Figure 3: Timings for solving the linear least-squares problem on a random rank-deficient
square observations matrix RN (n, n, r) with a fixed rank r = 100. The asymptotic dependency
with respect to n is fitted on the last points and reported in the legend.

Figure 4: The fastest algorithm is represented for various n/m and r/n ratios, with m = 4000.
The contour plot represents the interpolated relative margin by which an algorithm is the
fastest (e.g. ×1.25 means that the execution time for the second fastest algorithm was 1.25
times larger than for the fastest one).
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4.2. Numerical stability

In this section we evaluate the numerical stability achieved by the approach
described in this paper for computing the pseudoinverse.

For a more meaningful analysis, we compare our rank-Greville algorithm
with standard algorithms from the LAPACK library described in 4.1, and other
related algorithms:

• ”Cholesky” refers to the scipy.linalg.cho solve solver applied to the Cholesky
factorization of M = A>A.

• ”Greville” refers to a basic implementation of the original Greville algorithm[9,
21].

• ”orthogonal” refers to the orthogonal variant described in section 2.2 with
rescaling factors αn+1 = 1.

• ”orthonormal” refers to the orthonormal variant described in section 2.2
(i.e. orthogonal variant with rescaling factors αn+1 = ||Γrejn+1||

−1
2 ).

In order to assess the numerical stability of the algorithms described in this
paper, we rely on the measures defined in [22, 20]:

• The stability factor of an algorithm with respect to the computation of
the pseudoinverse A+ of A is given by:

ealgo =

∣∣∣∣∣∣A+
algo −A+

∣∣∣∣∣∣
2

εM ||A+||2 κ2(A)
(55)

where A+
algo is the pseudoinverse of A computed by the algorithm, A+

is the exact pseudoinverse, || · ||2 is the 2-norm (e.g. for a matrix A,

||A||2 = max(σ(A)) is the largest singular value of A), κ2(A) = max(σ(A))
min(σ(A))

is the condition number of A and εM is the machine precision.

This estimator is related to the forward stability of such algorithm, and
should be bounded by a small constant depending on m and n.

• Similarly, we refer to the residual error as:

resalgo =

∣∣∣∣∣∣A+
algoA− I

∣∣∣∣∣∣
2

||A||2
∣∣∣∣∣∣A+

algo

∣∣∣∣∣∣
2

(56)

where I is the identity.

This estimator is related to the mixed forward-backward stability of such
algorithm, and should be of the order of the machine precision εM .

During the test, the machine precision used corresponds to εM ≈ 2.22 ×
10−16.

This evaluation was performed empirically, using the matrices defined in
[22]:
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• Pascal matrices P (n) ∈ Zn×n.

These are full-rank square matrices whose inverses P (n)−1 ∈ Zn×n can be
computed exactly since their elements are also integers.

Empirical results are reported in Tables 1 and 2. We found Greville-like
algorithms, as well as the Cholesky decomposition to be orders of magni-
tudes less robust than the standard LAPACK solvers, with respect to both
numerical stability indicators. Nonetheless, one should note that, as ex-
pected, when using fractions.Fraction based numerical representation, the
rank Greville algorithm and its orthogonal variant were able to compute
the exact inverse.

• Random matrices RN ∈ R3n×n whose elements are sampled from the
normal N (0, 1) distribution.

Pseudoinverses generated by the DGELSY solver were used as reference for
computing the stability factor since they display the lowest residual error
and the empirical results are reported in Tables 3 and 4. We also found
that the numerical stability indicators for the Greville-like algorithms are
significantly dependent on the seed used by the pseudorandom number
generator, unlike other algorithms tested.

• Random ill-conditioned matrices RN
4 ∈ Rn×n, taken as the fourth power

of random square matrices RN ∈ Rn×n whose elements are sampled from
the N (0, 1) distribution.

Similarly as above, we used for pseudoinverse reference
(
RN

4
)+

=
(
RN

+
)4

,
the fourth power of the pseudoinverse generated by the DGELSY solver.

Empirical results are reported in Tables 5 and 6, which show that for
these ill-conditioned matrices, the Cholesky-based solver is, overall, the
least stable algorithm tested herein.

• Random matrices USV >, where U ∈ R5n×n and V ∈ Rn×n are random

column orthogonal matrices and S = diag(1, 2
1
2 , . . . , 2

n−1
2 ).

In this case, (USV >)+ = V S−1U> was used for pseudoinverse reference.

Empirical results are reported in Tables 7 and 8. For these tests, the
rcond/eps parameter was set to 10−8. This was required by Greville-like
algorithms to reach a reasonable solution.

• Kahan matrices[23] K(c, s) ∈ Rn×n with c2 + s2 = 1 and n = 100.

An explicit formula is available for the inverse[23], and was used as pseu-
doinverse reference.

Empirical results are reported in Table 9. Unlike what was reported in [22],
we did not find the pure SVD-based solver to perform significantly worse
than other LAPACK solvers. Furthermore, after setting the rcond/eps
parameter low enough to tackle the extreme ill-conditionality of the Ka-
han matrices (i.e. rcond < κ2(A)−1), all algorithms (except Cholesky)
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Table 1: Empiric stability factors associated with the pseudoinverse computation of Pascal
matrices P (n).

n κ2(A) eorthonormal eorthogonal erank-Greville eGreville eCholesky egelsy egelsd egelss

4 6.92e+2 8.80e−2 1.11e−1 1.67e+0 4.73e−2 5.88e+0 3.86e−2 6.67e−2 6.76e−2
6 1.11e+5 7.18e+2 1.06e+2 2.12e+2 6.58e+2 2.44e+3 5.04e−3 4.74e−2 4.74e−2
8 2.06e+7 3.42e+5 1.93e+3 2.18e+4 2.08e+5 1.59e+5 3.86e−3 8.55e−3 8.55e−3
10 4.16e+9 1.08e+6 1.08e+6 1.08e+6 1.08e+6 7.34e+5 3.00e−4 1.86e−3 1.86e−3

Table 2: Empiric residual errors associated with the pseudoinverse computation of Pascal
matrices P (n).

n κ2(A) resorthonormal resorthogonal resrank-Greville resGreville resCholesky resgelsy resgelsd resgelss

4 6.92e+2 1.83e−15 5.99e−16 3.85e−16 1.66e−17 4.01e−15 5.29e−17 5.39e−17 5.42e−17
6 1.11e+5 1.81e−13 4.16e−14 4.71e−14 1.46e−13 1.04e−12 2.49e−17 4.77e−17 4.47e−17
8 2.06e+7 7.60e−11 6.17e−13 4.84e−12 4.61e−11 9.24e−11 6.06e−17 3.16e−17 1.58e−17
10 4.16e+9 1.42e−9 1.61e−9 1.37e−9 1.54e−9 2.35e−8 4.78e−17 3.26e−17 1.54e−17

performed relatively well, with the QR-based LAPACK solver performing
the best.

The algorithms described in this paper (rank-Greville and variants), includ-
ing the original Greville algorithm, perform roughly equivalently in terms of
numerical stability. Furthermore, the stability of these Greville-like algorithms
seems much less dependent on κ2(A) than the Cholesky based algorithm. As
expected, we found these algorithms to be neither mixed forward-backward nor
forward stable. As a consequence, the much more robust LAPACK least-squares
solvers are to be recommended when numerical stability is crucial. However, the
stability of Greville-like algorithms are competitive compared to the Cholesky-
based LS solvers.

A compromise between update efficiency and numerical stability can be
searched among the full QR decomposition updating algorithms[1], or even
faster, stable updating algorithms for Gram-Schmidt QR factorization[24, 1].

Table 3: Empiric stability factors associated with the pseudoinverse computation of random
matrices RN ∈ R3n×n with elements distributed from N (0, 1).

n κ2(A) eorthonormal eorthogonal erank-Greville eGreville eCholesky egelsd egelss

4 2.44e+0 1.06e+2 7.46e+1 2.02e+1 2.84e+0 7.57e−1 2.08e+0 1.67e+0
6 2.25e+0 4.00e+0 4.98e+0 2.56e+0 1.05e+0 9.20e−1 1.35e+0 1.86e+0
8 2.74e+0 3.98e+0 4.43e+0 2.86e+0 2.23e+0 1.39e+0 1.81e+0 2.63e+0
10 2.84e+0 1.14e+3 4.60e+2 3.18e+2 2.24e+1 1.54e+0 1.99e+0 2.21e+0
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Table 4: Empiric residual errors associated with the pseudoinverse computation of random
matrices RN ∈ R3n×n with elements distributed from N (0, 1).

n κ2(A) resorthonormal resorthogonal resrank-Greville resGreville resCholesky resgelsy resgelsd resgelss

4 2.44e+0 3.45e−14 2.55e−14 6.36e−15 7.20e−16 1.25e−16 2.24e−16 4.38e−16 4.68e−16
6 2.25e+0 8.53e−16 1.69e−15 7.61e−16 2.09e−16 2.32e−16 2.24e−16 4.10e−16 6.77e−16
8 2.74e+0 1.24e−15 1.05e−15 3.88e−16 3.39e−16 2.77e−16 2.48e−16 4.96e−16 6.16e−16
10 2.84e+0 4.75e−13 1.73e−13 3.73e−14 3.22e−15 4.36e−16 2.64e−16 6.33e−16 8.02e−16

Table 5: Empiric stability factors associated with the pseudoinverse computation of random
ill-conditioned matrices R4

N ∈ Rn×n.

n κ2(A) eorthonormal eorthogonal erank-Greville eGreville eCholesky egelsy egelsd egelss

6 3.39e+2 5.52e+0 3.04e+0 1.39e+1 8.87e+0 3.72e+1 5.59e−2 6.86e−2 7.36e−2
8 1.08e+2 1.50e+0 3.07e+0 4.16e+0 6.85e+0 2.40e+0 1.66e−1 1.58e−1 1.72e−1
10 2.92e+7 3.53e+0 2.62e+0 8.25e+0 5.62e+0 6.60e+5 2.07e−1 1.49e−2 1.49e−2
12 5.78e+4 2.47e+1 1.64e+1 2.41e+2 3.06e+1 1.62e+3 2.80e−2 7.38e−2 7.38e−2

Table 6: Empiric residual errors associated with the pseudoinverse computation of random
ill-conditioned matrices R4

N ∈ Rn×n.

n κ2(A) resorthonormal resorthogonal resrank-Greville resGreville resCholesky resgelsy resgelsd resgelss

6 3.39e+2 1.40e−15 7.32e−16 3.38e−15 2.03e−15 1.01e−14 5.06e−17 8.23e−17 4.55e−17
8 1.08e+2 8.97e−16 1.55e−15 1.05e−15 1.63e−15 2.90e−15 1.02e−16 3.00e−16 2.79e−16
10 2.92e+7 1.57e−15 8.01e−16 1.83e−15 1.25e−15 9.58e−10 6.37e−17 1.71e−16 1.58e−16
12 5.78e+4 6.09e−15 5.01e−15 5.36e−14 6.90e−15 1.55e−12 4.71e−17 9.97e−17 1.36e−16

Table 7: Empiric stability factors associated with the pseudoinverse computation of random
matrices USV > ∈ R5n×n, where U and V are random column orthogonal matrices and

S = diag(1, 2
1
2 , . . . , 2

n−1
2 ).

n κ2(A) eorthonormal eorthogonal erank-Greville eGreville eCholesky egelsy egelsd egelss

10 2.26e+1 6.72e+0 4.60e+0 4.19e+1 1.09e+1 1.85e+0 2.77e−1 2.94e−1 2.89e−1
15 1.28e+2 1.63e+2 1.60e+2 2.40e+3 2.99e+3 1.16e+1 1.70e−1 2.85e−1 2.93e−1
20 7.24e+2 1.57e+2 2.41e+2 1.52e+4 1.07e+4 4.24e+1 1.60e−1 1.85e−1 1.85e−1

Table 8: Empiric residual errors associated with the pseudoinverse computation of random
matrices USV > ∈ R5n×n, where U and V are random column orthogonal matrices and

S = diag(1, 2
1
2 , . . . , 2

n−1
2 ).

n κ2(A) resorthonormal resorthogonal resrank-Greville resGreville resCholesky resgelsy resgelsd resgelss

10 2.26e+1 2.68e−15 4.25e−15 2.52e−15 5.92e−16 1.70e−15 1.01e−16 1.62e−16 1.26e−16
15 1.28e+2 1.67e−14 9.69e−15 9.20e−14 2.59e−13 7.37e−15 7.58e−17 1.19e−16 1.30e−16
20 7.24e+2 1.65e−14 6.11e−14 6.04e−13 4.93e−13 3.53e−14 4.31e−17 9.96e−17 5.61e−17
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Table 9: Empiric residual errors associated with the pseudoinverse computation of Kahan
matrices K(c, s) ∈ R100×100, with c2 + s2 = 1.

c κ2(A) resorthonormal resorthogonal resrank-Greville resGreville resCholesky resgelsy resgelsd resgelss

0.10 5.42e+4 5.57e−17 3.00e−17 3.50e−17 2.64e−17 3.40e−13 5.24e−17 7.61e−17 1.33e−16
0.15 1.13e+7 1.11e−17 2.16e−17 1.03e−17 1.19e−17 1.60e−10 1.52e−17 5.61e−17 7.97e−17
0.20 2.18e+9 8.10e−18 7.96e−18 2.42e−18 2.41e−18 failure 7.40e−18 6.30e−17 5.69e−17
0.25 4.37e+11 2.07e−18 1.06e−18 1.14e−18 1.17e−18 1.61e−6 8.74e−18 4.85e−17 4.39e−17
0.30 9.77e+13 3.01e−19 4.31e−19 1.92e−19 1.94e−19 7.98e−4 1.82e−19 1.33e−16 2.43e−17
0.35 2.57e+16 3.57e−20 4.27e−20 2.73e−20 2.18e−20 failure 5.05e−20 9.43e−18 2.03e−18
0.40 8.36e+18 3.46e−21 3.51e−21 3.09e−21 2.55e−21 1.02e−4 1.08e−20 3.17e−19 3.04e−19
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5. Conclusion

In this paper, we first derive a simple explicit formula for the recursive least-
squares problem using a general rank decomposition update scheme. Based
on this, we devise a transparent, Greville-like algorithm. We also introduce
two variants bridging the gap between Greville’s algorithm and QR-based least-
squares solvers. In contrast to Greville’s algorithm, we maintain a rank de-
composition at each update step. This allows us to exploit rank-deficiency to
reach an asymptotic computational complexity of O(mr) for updating a least-
squares solution when adding an observation, leading to a total complexity of
O(mnr) for computing the full least-squares solution. This complexity is lower
than Greville’s algorithm or any commonly available solver tested, even though
a truncated QR factorization based solver can achieve such a O(mnr) bound
for computing the full least-squares solution[25]. Nonetheless, a O(mr) bound
for the least-squares solution update step is, to our knowledge, lower than those
achieved by the more sophisticated updating algorithms explicitly reported in
the literature. We have implemented these algorithms in Python3, using Numpy.
This publicly available implementation offers a recursive least-squares solver
(O(mr) operations per update), with optional pseudoinverse (O(mn)) and co-
variance support (O(m2)). The numerical stability of these Greville-like algo-
rithms were empirically found to be significantly inferior compared to common
LAPACK solvers. However, it is important to note that the algebraic simplic-
ity of some of these Greville-like methods make them compatible with exact
numerical representation, without the need to use symbolic computing.
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