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ABSTRACT: Ruthenium catalysts for olefin metathesis are widely viewed as water-tolerant. Evidence is presented, how-
ever, that even low concentrations of water cause catalyst decomposition, severely degrading yields. Of 11 catalysts 
studied, fast-initiating examples (e.g., the Grela catalyst RuCl2(H2IMes)(=CHC6H4-2-OiPr-5-NO2) were most affected. 
Highest water-tolerance was exhibited by slowly-initiating iodide and cyclic (alkyl)(amino)carbene derivatives. Compu-
tational investigations indicated that hydrogen-bonding of water to substrate can also play a role, by retarding cycliza-
tion relative to decomposition. These results have important implications for olefin metathesis in organic media, where 
water is a ubiquitous contaminant, and for aqueous metathesis, which currently requires superstoichiometric “catalyst” 
for demanding reactions. 

Keywords olefin metathesis, catalyst decomposition, macrocycle, conformation, water, aqueous metathesis, chemical biol-
ogy, Z-selective

Olefin metathesis has been widely embraced for its ver-
satility in the catalytic assembly of carbon-carbon 
bonds.1,2 The demand for catalysts that integrate high ac-
tivity with robustness has intensified with a recent explo-
sion in applications in chemical biology,3-5a materials sci-
ence,6 and chemical manufacturing.7 Tolerance for water 
is critical in many contexts, most prominently olefin me-
tathesis in water-rich environments. Successes in aque-
ous metathesis of model substrates with ruthenium cat-
alysts5 (see, e.g., Chart 1) have been leveraged to ad-
vance metathetical modification of proteins,3 peptides,8 
and DNA,4b,9 and to develop water-soluble materials for 
drug delivery and other applications.6a-e,10,11 
These applications place extreme demands on the water-
tolerance of the catalysts. Decomposition by water is in-
creasingly identified as an obstacle to olefin metathesis 
in chemical biology3,5a (where Isenegger and Davis de-
scribe bioconjugation as a race between metathesis and 
decomposition)3a and biomaterials applications.6a-e,10-12 
The catalyst loadings required are routinely orders of 
magnitude above those in organic media: in highly de-
manding contexts such as protein modification, the Ru 
reagent must be used in significant stoichiometric ex-
cess.13 An anticipated, undesirable consequence is 

accelerated bimolecular decomposition of the active 
species,14 and associated side-reactions. Decomposed 
catalyst is believed to trigger both DNA degradation9,15 
and C=C migration.16  
Chart 1. Olefin Metathesis Catalysts Discussed 



 

 

Given that the problems of water co-solvent are only be-
ginning to be widely recognized,3,5a,17,18 it is unsurprising 
that challenges arising from low levels of water have not 
yet been considered. Here we demonstrate that even 
0.1–1% v/v water19 can severely limit the productivity of 
leading NHC and CAAC ruthenium catalysts. We also 
identify catalyst features that maximize water-tolerance, 
a finding that offers new opportunities in organic synthe-
sis, and in broader contexts in which water is an essential 
co-solvent.  
RCM macrocyclization (mRCM) represents a methodol-
ogy of major current interest for the production of anti-
viral therapeutics.7,20 The first indication that even low 
concentrations of water might impede mRCM emerged 
in reactions involving the dianiline catalyst Ru-1 (Chart 
1). In our hands, Ru-1 was exceptionally efficient,21 out-
performing even the leading nitro-Grela catalyst Ru-2 in 
mRCM of challenging, highly flexible substrates bearing 
multiple polar sites. Synthetic collaborators, however, 
observed variable performance. We speculated that the 
discrepancy might arise from the established21 hydro-
gen-bonding capacity of Ru-1. Sensitivity to water would 
have gone unobserved in our original work because rig-
orously dry22 solvents were used, a standard protocol in 
organometallic chemistry. In broader synthetic practice, 
water is a ubiquitous, little-regarded contaminant. It thus 
seemed plausible that water-induced decomposition 
might contribute to the inconsistent performance of Ru-
1. 

To probe this point, we examined the impact of water on 
mRCM of 1 (Figure 1a, dotted-fill).23 This reaction affords 
the olfactory lactone 2 via a concentration-dependent 
ring-chain equilibrium.24 High dilutions are essential to 
favour the cyclic product, as with any conformationally 
flexible diene.24,25 For 1, in which the ester functionality 
confers the sole conformational bias toward cycliza-
tion,26 a diene concentration of ≤5 mM is required.24 At 
catalyst loadings of 0.05 mol%, this translates into 2.5 
µM Ru: even low concentrations of water are thus stoi-
chiometrically significant.  
In dry toluene, mRCM of 1 reached 83% yield within 0.5 
h at RT (Figure 1a). Addition of 0.01% water – that is, 100 
ppm by volume – caused a ca. 60% drop in yield. At 
higher proportions of water (0.1 or 1% v/v), mRCM failed, 
signifying near-complete catalyst decomposition.  
As shown in Figure 1b, the Grela catalyst Ru-2 is decom-
posed to a lesser extent, affording 30% mRCM in the 
presence of 0.1% v/v water (vs 87% mRCM in dry tolu-
ene).27 More robust is the iodide analogue Ru-3. Water – 
somewhat unexpectedly – is emerging as a much more 
aggressive agent than O2 in Ru-catalyzed olefin metathe-
sis,28 and this higher water-tolerance is thus presumed to 
be key to the strong performance of Ru-3 in aerobic me-
tathesis.29 One probable contributor to improved toler-
ance is the limited capacity of Ru-3 to enter into hydro-
gen-bonding interactions with water. ROH…Cl–Ru inter-
actions have been reported for related metathesis cata-
lysts,30,31 and the higher water-sensitivity of Ru-1 vs Ru-
2 is consistent with stronger H-bonding to a dangling NH2 
functionality.  
To assess the potential impact of water on E/Z selectivity, 
two Z-selective catalysts (Ru-6, Ru-5) were also exam-
ined. Their lower reactivity necessitated use of elevated 
temperatures (60 °C) and higher catalyst loadings. For 
Ru-5, only 17% mRCM was observed even with 5 mol% 
catalyst: added water had no impact, probably because 
only a small proportion of catalyst had initiated.32 Ru-6 
afforded 64% mRCM in the anhydrous reaction (0.5 mol% 
Ru), and 25% in the presence of water. Of note, water 
had negligible impact on Z-selectivity (Ru-6, 85%; Ru-5, 
70%). We infer that decomposed catalyst does not pro-
mote E/Z isomerization, at least for Ru-6. 



 

 
Figure 1. Impact of water on mRCM. (a) For Ru-1 at 0.5 
h. (b) For various catalysts at 2 h (except Ru-6: 24 h). *Ru-
5, Ru-6: 60 °C, 0.01 atm.33 For tabulated data, see Table 
S1. 
Strikingly, however, water significantly accelerated posi-
tional isomerization in the self-metathesis of allylben-
zene 3 (Figure 2a). Terminal phenylpropenes are notori-
ously susceptible to isomerization to the conjugated b-
methylstyrenes.16c For Ru-6, 8% isomerization was ob-
served for the anhydrous reaction, vs 75% with 1% H2O 
present. In comparison, Ru-3 showed more isomeriza-
tion in the anhydrous reaction, but added water affected 
primarily conversions. 
A second, more demanding intermolecular metathesis 
reaction was also examined. In the cross-metathesis of 
anethole 6 with methyl acrylate 7 (Figure 2b), a ca. 30% 
drop in productivity was observed for Ru-3 in the pres-
ence of 1% water.  

 
rx  cat % H2O % 

conv 
% yielda (%Z) % 

isom 
(a) Ru-6 0 69 61 (>95) 8 
 Ru-6 0.1 57 47 (>95) 10  
 Ru-6 1 77 2 (>95) 75 
 Ru-3 0 80 39 (23) 41 
 Ru-3 1 61 27 (22) 34  

(b)b Ru-3 0 73 73 (0)c – 
 Ru-3 1 51 50 (0)c – 

a Yield of 4 (self-metathesis) or 8 (cross-metathesis). bRu-
6 is omitted, as it showed no reaction. c Solely E-8 is formed. 

Figure 2. Impact of H2O on: (a) self-metathesis of al-
lylbenzene. (b) cross-metathesis of estragole and methyl 
acrylate.  

To assess whether the negative impact of water is limited 
to relatively challenging reactions, we turned to RCM of 
diethyl diallylmalonate 9 (Figure 3). Diene 9 sets a noto-
riously low bar for olefin metathesis activity: the extreme 
facility with which it undergoes RCM makes it a corre-
spondingly aggressive test for the impact of water. Here, 
in addition to the catalysts examined above, we include 
benzylidene, indenylidene, NHC and CAAC catalysts.29,34-

36 Initial experiments were conducted at 0.005 mol% cat-
alyst (50 ppm vs substrate), to enable ‘anhydrous’ TONs 
in the thousands even for less active catalysts, without 
masking decomposition.37 

Shown in Figure 3a are TONs at 2 h, at which point con-
versions in the presence of water plateau (Fig. S1) for all 
but Ru-10 and Ru-7. Notwithstanding the ease of this 
RCM reaction, yields decreased sharply in the presence 
of 1% H2O for all catalyst surveyed. TONs of only 600 or 
1 800, respectively, were observed for Ru-1 and Ru-2 (vs 
ca. 18 000 in the anhydrous control reaction). Iodide 
complex Ru-3 gave maximum TONs (9 800). For Ru-4, a 
top-performing catalyst under anhydrous conditions, 
TONs dropped by 60% (from nearly 19 000 to 8 000).  
Given the high susceptibility of Ru-4 to bimolecular de-
composition,14b its performance relative to Ru-3 was 
reevaluated at a catalyst loading 5-fold lower (Figure 3b). 
TONs in the anhydrous control reaction increased in both 
cases: by nearly 4x for Ru-4, and 2.5x for Ru-3. Clearly, 
bimolecular coupling occurs for both catalysts, even at 10 
µM Ru. Higher water-sensitivity is evident at the lower 
catalyst loading: that is, decomposition by water com-
petes more strongly with bimolecular decomposition as 
catalyst concentrations decline. Ru-3 remains most pro-
ductive (TON 21 000, vs 14 000 for Ru-4). 
In Figure 3c, we assess catalyst water-tolerance inde-
pendent of metathesis activity, by normalizing TONs in 
the presence of water to those under anhydrous condi-
tions. For added context, water-tolerance is plotted 
against TONs in the presence of water: best performance 
is thus high on both axes. Least tolerant are the fast-ini-
tiating catalysts Ru-1 and Ru-2 (3% and 10%, respec-
tively), suggesting that increased time in the active cycle 
increases vulnerability. Consistent with this analysis is 
the improved tolerance (27-44%) of the catalysts high-
lighted in the blue band in Figure 3b, none of which are 
fast-initating.38,39 Most robust is iodide catalyst Ru-3 
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(56% tolerance). Slow initiation40 is again a plausible con-
tributor, in addition to the bulk and poor H-bonding ca-
pacity of the iodide ligands.29,34,35  

 
Figure 3. (a) Impact of H2O on RCM of 9. (b) Plot of cata-
lyst water-tolerance, 100−[(ΔTON/TONanhyd)×100], vs 
TON (0.005 mol% Ru). Blue band signifies intermediate 
tolerance. For rate curves and tabulated data, see SI.  

The discussion above focuses on the impact of water on 
the catalyst. Given evidence for H-bonding of water to 
macrolactones, however,41 we queried whether H-bond-
ing to the substrate might alter preferred diene confor-
mations, and hence the thermodynamics and/or kinetics 
of cyclization. To probe this point, we undertook a com-
putational study of the impact of one H-bonded water 
molecule on the preferred conformations of 1 and 9. The 
1:1 ratio corresponds to 0.01% v/v H2O and 0.05 mol% 
Ru (Figure 1a). The highly precise ANAKIN-ME neural-
network force field42,43 was used for extensive screening 
of possible geometries; calculated electronic energies for 
the most relevant conformers were refined using single-
point energy calculations at the DLPNO-CCSD(T)/CBS 
level of theory. 
Reaction free energies for RCM of 1 and 9 (see SI), 
showed no clear change due to bound water, indicating 
that the negative effect is not thermodynamic in origin. 
The impact of water on pre-organization was therefore 
examined. In the absence of water, the most stable con-
former for diene 1 is essentially linear, with an end-to-

end distance of >12 Å. In comparison, a distance of 3.72 
Å is calculated for the most stable conformer of 9. Seen 
for the latter, but absent for 1, is a stabilizing p-stacking 
interaction between the two C=C bonds, a previously 
overlooked contributor to the facile RCM of 9. As ex-
pected, bringing the two C=C bonds of 9 into proximity 
incurs no penalty (DG=0.0 kcal/mol: Figure 4a). For 1, the 
cost is higher (5.8 kcal/mol), consistent with the lower 
RCM reactivity of 1. 
The impact of H-bonded water on cyclization is shown in 
Figure 4b. For both 1 and 9, the diene conformation most 
favourable to cyclization is predicted to be less accessible 
in the presence of even one molecule of water, with a 
negative impact on the cyclization kinetics. Macrocycliza-
tion of 1 is impeded by location of the water molecule in 
the middle of the nascent cycle. For 9, the water mole-
cule is outside the forming ring, but nevertheless stabi-
lizes the linear conformation. Indeed, water destabilizes 
the pre-cyclic conformation even more strongly for 9 
than for 1 (by 5.6 or 2.7 kcal/mol, respectively: Figure 
4b),44 in part by disrupting the C=C p-stacking arrange-
ment seen for anhydrous 9. 
The unexpectedly greater negative impact of H2O on cy-
clization of 9 is supported by experiment. On repeating 
the RCM of 9 at the 5 mM diene concentration employed 
in mRCM, using the most robust catalyst Ru-3, we ob-
serve lower catalyst water-tolerance for 9 than 1 (30% vs 
73%; Figure S3). Water thus has a greater negative im-
pact on 9 than 1. By retarding the rate of metathesis rel-
ative to catalyst decomposition, therefore, H-bonded 
water can exacerbate catalyst decomposition, further 
limiting RCM performance in the presence of water.  

 



 

Figure 4. (a) Impact of 1 H2O on the free energies re-
quired to adopt the incipient (“pre-cyclic”) conformation 
for 1 and 9. (b) Destabilization of pre-cyclic confor-
mations by H-bonded water. C..C distances: 3.72 Å (1); 
4.21 Å (9). 

The foregoing demonstrates that even low levels of wa-
ter severely degrade the productivity of leading ruthe-
nium catalysts for olefin metathesis. This is an important 
clue to the pathways by which water triggers decompo-
sition: it points toward direct attack by water on the cat-
alyst, independent of any effects arising from water as a 
medium. Fast-initiating catalysts prove particularly vul-
nerable. Maximum productivity is seen for slower-initiat-
ing, bulkier iodide and CAAC catalysts, which emerge as 
the systems of choice where drying is impractical, or wa-
ter is an essential co-solvent. These findings represent 
the first insights into structure-decomposition relation-
ships for olefin metathesis in the presence of water. They 
will aid in deconvoluting the mechanisms by which water 
causes decomposition, and ultimately, design of truly 
water-tolerant olefin metathesis catalysts.  
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