A level-set framework for the wind turbine wake analysis

F. Houtin-Mongrolle¹, P. Benard¹, G. Lartigue¹, V. Moureau¹

¹ Normandie Univ, INSA Rouen, UNIROUEN, CNRS, CORIA, Rouen 76000, France

> U Magnitude 6.0 8.0 10.0 12.0 14.0

Wake Conference 2021: A level-set framework for the wind turbine wake analysis Context: Wind turbines wakes

- Optimize windfarm productions [1]:
 - Global control strategies : understand the wind turbine wake behaviour
 - 3D effect are not negligeable (yaw, tilt, atmospheric effects)

- Upstream turbulence [2]:
 - Turbine Loads
 - Wake meandering/recovery
- Yawed wind turbine [3]:
 - Wake deflection
 - Turbine loads

Methodology to investigate complex wake behaviour: yawed wind turbine, upstream turbulence \rightarrow Quantitative on the various regions in the near to far wake

Gebraad P M O, Teeuwisse F W, van Wingerden J W, Fleming P A, Ruben S D, Marden J R and Pao L Y 2016 Wind Energy 19 95–114
 Porté-Agel, F, Bastankhah, M and Shamsoddin, S 2020 Boundary-Layer Meteorology 174, 1–59
 Bastankhah M and Porté-Agel F 2016 Journal of Fluid Mechanics 806 506–541

Wake Conference 2021: A level-set framework for the wind turbine wake analysis Context: Wake modelling

 Field measurement of offshore turbines (~150m) are not achievable yet[1]. Need to capture the wake instabilities, vortices interactions and quantify the energy fluxes
 → Request of a numerical framework

	Spatial scale (m)	$egin{array}{c} { m Velocity\ scale}\ { m (m/s)} \end{array}$	Reynolds number	Time scale (s)
Blade Boundary layer	1.10 ⁻³	0 - 100	~10 ³	1.10^{-5}
Blade profile	1	0 - 100	~10 ⁶	1.10^{-2}
Rotor	1.10 ²	10	~10 ⁸	10
Windfarm	$1.10^3 - 1.10^4$	10	~10 ⁸	$1.10^2 - 1.10^3$

 \rightarrow Main wake simulation challenges: Large range of spatial and time scales

- High fidelity Large Eddy Simulation [2-3]:
 - Capture the wide range of scale dynamics \rightarrow Reliable flow diagnostics
 - Blade resolved computation unaffordable \rightarrow Actuator Line Method

High fidelity LES with ALM requests a fine resolution over a large computational domain:

 \rightarrow How to perform quantitative analysis ?

Breton S P, Sumner J, Sørensen J N, Hansen K S, Sarmast S and Ivanell S 2016 Mathematical, Physical and Engineering Sciences 375 20160097
 Sørensen J and Shen W 2002 J Fluids Eng 124 393–9
 L. A. Martínez-Tossas et. al. (2015), Wind Energy

Wake Conference 2021: A level-set framework for the wind turbine wake analysis **Define the wake bounding (Streamtubes)**

- Classical 1D momentum theory [1] is based on streamtube control volumes:
 - Three states considered: upstream, downstream and turbine position
- → Replicate 1D momentum theory based on integrals over the turbine streamtube

• Use of Accurate Conservative Level Set function [2,3] to track the streamtube interface: $\psi(\mathbf{x},t) = \frac{1}{2} \left(\tanh\left(\frac{\phi(\mathbf{x},t)}{2\varepsilon}\right) + 1 \right)$

After the function initialisation, 2 steps:

$$\frac{\partial \psi}{\partial \tau} + \frac{\partial \psi \langle \tilde{u}_i \rangle}{\partial x_i} = 0$$

$$\frac{\partial \psi}{\partial \tau} = \nabla \cdot (\varepsilon (\nabla \psi \cdot \mathbf{n}) \mathbf{n} - \psi (1 - \psi) \mathbf{n}$$
Advection
Beinitialization

- Low diffusion error

- Not requiring reconstruction (i.e. not limited by the streamtube curvature)

 \rightarrow Differ from lagrangian particles injection, requiring reconstruction [3,4]

Sørensen J N 2016 The general momentum theory vol 4 (Springer)
 Janodet R, Guillamòn C, Moureau V, Mercier R, Lartigue G, Benard P, Ménard T and Berlemont A 2020
 Meyers J and Meneveau C 2013 Journal of Fluid Mechanics 715 335–58
 West J R and Lele S K 2020 Energies 13 1–25

Wake Conference 2021: A level-set framework for the wind turbine wake analysis **Define the wake bounding (Streamtubes)**

• Use of Accurate Conservative Level Set function to track the streamtube interface:

Wake Conference 2021: A level-set framework for the wind turbine wake analysis

- Developed at CORIA and distributed in the SUCCESS scientific group [1,2]
- Features:
 - Unstructured meshes (complex geometries) and adaptive grid refinement
 - Low Mach number Navier Stokes equations (incompressible and variable density) solved with a projection method
 - Double domain decomposition [2]
 - Interface tracking functions (ACLS) for two-phase flows [3]
 - Highly efficient solvers for linear system inversion (PCG, DPCG)
 - $\,$ 4th order central finite volume method and 4th order time integration
 - Actuator Line Method [4]
 - Suited for massively parallel computing (>32 000 procs)

[2] Moureau et. al., CR Mecanique, 2011
[3] Janodet R, Guillamòn C, Moureau V, Mercier R, Lartigue G, Benard P, Ménard T and Berlemont A 2020
[4] Houtin–Mongrolle F, Benard P, Moureau V, Lartigue G, Bricteux L and Reveillon J 2020 J. Phys.: Conf. Ser. 1618 062064

Wake Conference 2021: A level-set framework for the wind turbine wake analysis $\mathbf{Application} \ \mathbf{to} \ \mathbf{DTU10MW} \ \mathbf{wind} \ \mathbf{turbine}$

DTU10MW [1]:

- Diameter = 178.3m
- Pitch angle = 0°
- TSR = 7.5
- Yaw angle, $\gamma = 0^{\circ}$, 30°

Numerical properties:

- Actuator elements: 75/blade
- $\varepsilon/\Delta x = 2$ [2]
- No corrections
- Isotropic gaussian kernel

High fidelity simulations:

2 yaw angles and 2 inflows.

LY0 LY30 **TY30 TY0** Request a mesh refined in the proper area \rightarrow How to generate a large mesh size based on the wake characteristics

Bak C, Zahle F, Bitsche R, Kim T, Yde A, Henriksen L C, Natarajan A and Hansen M 2013 DTU 10MW Ref WT Tech. rep. DTU Wind Energy
 L. A. Martínez-Tossas et. al. (2015), . Wind Energy
 Mann J 1998 Probabilistic Engineering Mechanics 13 269–82

Wake Conference 2021: A level-set framework for the wind turbine wake analysis High fidelity simulation mesh strategy

- Estimation of a streamtube surrounding the turbine:
 - Precursor simulations on coarse mesh
 - Computation of a wide streamtube
- Cell size is imposed in the streamtube (-2D \rightarrow 12D)
- Smooth Coarsening up to the inlet \rightarrow Turbulent cases

Computational ressources: 8448 cores/cases 400 GB/cases

Wake Conference 2021: A level-set framework for the wind turbine wake analysis Wake vizualisation

t=0.00~s Slice of the instantaneous streamwise velocity field for all cases

Wake Conference 2021: A level-set framework for the wind turbine wake analysis $Wake \ vizualisation$

Wake Conference 2021: A level-set framework for the wind turbine wake analysis $Budgets \ on \ streamtube$

• <u>Mean Kinetic Energy budget (MKE):</u>

• <u>Mean Momentum budget horizontal component (MM_v):</u>

$$\oint_{S} \underbrace{\langle \widetilde{u}_{y} \rangle \langle \widetilde{u}_{j} \rangle n_{j}}_{i} + \underbrace{\frac{1}{\rho} \langle \widetilde{P} \rangle n_{y}}_{ii} + \underbrace{\langle \widetilde{u}'_{y} \widetilde{u}'_{j} \rangle n_{j}}_{iii} + A_{y} dS - \iiint_{V_{st}} \underbrace{\langle \widetilde{f}_{y} \rangle}_{iv} dV = 0$$
i: Change in Momentum (S)
i: Pressure forces (S)
ii: Forces of the Reynolds stress (S)
iv: Turbine forces (V)
$$Viscous and subgrid scale terms are negligible. \rightarrow Yet included in the Residual (MKE and MM)$$

$$N = 150$$

 \rightarrow Streamtubes are decomposed in 150 cross-sections where Mean Momentum and Mean Kinetic Energy Budgets are integrated

Wake Conference 2021: A level-set framework for the wind turbine wake analysis Wake recovery: MKE budget

Four regions highlighted:

- Region I: Tip vortices advection
- Region II: Tip vortices pairing
- Region III: Velocity deficit recovers
- Region IV: Turbulence decays

Wake Conference 2021: A level-set framework for the wind turbine wake analysis Wake recovery: integrated quantities

→ 4 regions are highlighted in the wake Yawed wind turbine induces lower velocity deficit → Lower Thrust coefficient Upstream turbulence triggers the wake recovery

DES SCIENCES APPLIQUÉES

DE ROUEN

Wake Conference 2021: A level-set framework for the wind turbine wake analysis Conclusion and further work

Four high fidelity Large Eddy Simulations LY0 LY30

TY30 TY0

- Upstream turbulence impact:
 - 4 regions are identified from the terms contributing to MKE
- Yawed wind turbine wake deflection:

- Reliable tools for case comparison including complex 3D effects on high fidelity \rightarrow numerical simulations
- Further work:
 - Use this framework to compare higher complexity cases:
 - ABL effects, tower/nacelle effects, blade deformation effect on wake
 - Take into account unsteadiness of the wake: Meandering
 - Use of ACLS to follow fluids particles passing through the rotor in order to evaluate the mixing layer width

Wake Conference 2021: A level-set framework for the wind turbine wake analysis Acknowledgment

• <u>Turbine performances:</u>

Case	$ \gamma$	inflow	# elements	$\langle C_P \rangle \pm C_P'$	$\langle C_T \rangle \pm C_T'$
LY0	0°	uniform	$1.9 imes10^9$	0.466 ± 0.003	0.772 ± 0.002
LY30	$+30^{\circ}$	uniform	$1.7 imes10^9$	0.366 ± 0.006	0.606 ± 0.003
TY0	0°	$TI_{-2D} = 14\%$	$1.9 imes10^9$	0.49 ± 0.09	0.78 ± 0.07
TY30	$+30^{\circ}$	$TI_{-2D} = 14\%$	$1.7 imes 10^9$	0.39 ± 0.08	0.62 ± 0.06

Table 1. Cases and mesh properties. Reference values for a laminar inflow are $\langle C_P \rangle = 0.476$ and $\langle C_T \rangle = 0.814$ [14].

• <u>Computational cost:</u>

Time averaging over 1783s:

- Wall clock time $\sim 72h/case$
- Processors 8448/case
- CPUkh ~ 1 000/case

Compute Streamtube:

- Wall clock time ~ 15 h/case
- Processors 8448/case
- CPUkh ~ 130/case

Wake Conference 2021: A level-set framework for the wind turbine wake analysis \mathbf{MKE} all cases

0.020.010.00 30° -0.01- *i*, *MKE* change -0.02 IIIIV▲ *ii*, *Pressure work* YAW - iii, Reynolds stress work \checkmark iv, TKE production IVIIIII $\cdots v$, Turbine work 0.02 -- Residual 0.01 0.00 --0.01-0.020.02 0.010.00 -0.01-D- i, MKE change °0 ▲ *ii*, *Pressure work* -0.02- *iii*, Reynolds stress work IVTT \blacksquare iv, TKE production YAW $\cdots v$, Turbine work III-- Residual II0.02IV0.01 0.00 -0.01-0.0210 -20 $\mathbf{2}$ 4 6 8 12x/D

